癌症治疗‑质子断层摄影仪及其使用方法与流程

文档序号:13086874阅读:328来源:国知局
癌症治疗‑质子断层摄影仪及其使用方法与流程

相关申请的交叉引用

本申请是于2017年3月23日提交的美国专利申请第15/467,840号的部分继续申请,其是于2017年1月10日提交的美国专利申请第15/402,739号的部分继续申请,其是于2016年11月10日提交的美国专利申请第15/348,625号的部分继续申请,其是于2016年5月27日提交的美国专利申请第15/167,617号的部分继续申请。

本发明大体涉及肿瘤的成像及治疗。



背景技术:

癌症治疗

质子疗法通过将高能电离粒子(例如用粒子加速器加速的质子)瞄准靶点肿瘤来起作用。这些粒子会破坏细胞的dna,最终导致它们的死亡。癌细胞由于其分裂率高且修复受损dna的能力下降,它们的dna特别容易受到攻击。

与本发明有关的专利概括如下。

质子束治疗系统

洛马琳达(lomalinda)大学医学中心的f.cole等人的题为“多站质子束治疗系统(multi-stationprotonbeamtherapysystem)”的美国专利第4,870,287号(1989年9月26日),其中描述了一种质子束治疗系统,用于选择性地产生质子束并将质子束从单个质子源和加速器输送到多个患者治疗室中选定的治疗室。

问题

在带电粒子癌症治疗领域中存在对患者的准确、精密且快速成像的需要和/或使用带电粒子治疗肿瘤的需要。



技术实现要素:

本发明包括癌症成像/治疗仪及其使用方法。

附图说明

本发明的更完整的理解通过参照关联附图描述的详细的说明书和权利要求书获得,在附图中相似的附图标记指代相似的部分。

图1a示出带电粒子束治疗系统的部件连接,图1b示出带电粒子束治疗系统;

图2示出了断层摄影系统;

图3示出了粒子束路径识别系统;

图4a示出了耦合到粒子束传输系统和断层摄影闪烁检测器的粒子束路径识别系统,图4b示出了与患者和台架喷嘴一起旋转的闪烁检测器;

图5示出了治疗递送控制系统;

图6a示出了相对于癌症治疗束的二维-二维成像系统,图6b示出了多个台架支撑的成像系统,图6c示出了可旋转的锥形束;

图7a示出了确定治疗室物对象的位置的过程,图7b示出了迭代位置追踪、成像和治疗系统;

图8示出了基准记号增强断层摄影成像系统;

图9示出了基准记号增强治疗系统;

图10a至图10c示出了非等中心(isocenterless)的癌症治疗系统;

图11示出了用于肿瘤治疗的可变换的轴系统;

图12示出了半自动化癌症治疗成像/治疗系统;

图13示出了自动产生辐射治疗方案的系统;

图14示出了在治疗期间自动更新癌症辐射治疗方案的系统;和

图15示出了自动辐射治疗方案开发和实施系统。

附图中的元件和步骤是为了简单和清楚而被示出的,并且未必根据任何特定的顺序进行。例如,附图中示出了同时或以不同顺序执行的步骤,以帮助改善对本发明的实施例的理解。

具体实施方式

本发明包括集成了质子断层摄影成像系统集成的质子疗法癌症治疗系统,其使用一个或多个被设计为在与带电粒子束相互作用时发射光子的涂层。通常,一个或多个对从涂层发射的光子成像的检测器(也称为成像片或层)被用来在给定时间确定带电粒子束的一个或多个点位置。组合多个点位置产生突出带电粒子束位置(例如进入患者和/或离开患者)的局部向量。在对肿瘤和周围组织样品绘图时和/或肿瘤治疗时,使用一个或多个涂层所得到的带电粒子状态确定系统与闪烁检测器或断层摄影成像系统结合使用,其中常见的同步加速器、束传输、和/或喷嘴元件被用于质子成像和癌症治疗。

上述实施例可选地与一组基准记号检测器组合使用,该基准记号检测器被配置为检测从位于治疗室中的一个或多个物体上的一组基准记号发射的和/或反射的光子,并且所得到的确定的距离和/或计算的角度用于确定治疗室中多个物体或元素的相对位置。通常,在迭代过程中,在第一时间,对诸如治疗束线输出喷嘴、相对于肿瘤的患者的特定饮剂、闪烁检测材料、x射线系统元件和/或检测元件等物体被绘图,并且确定它们之间的相对位置和/或角度。在第二时间,绘图物体的位置用于:(1)成像,诸如x射线、正电子发射断层摄影和/或质子束成像,和/或(2)束瞄准和治疗,例如带正电粒子为基础的癌症治疗。由于使用基准标记系统来动态地确定治疗室中的物体的相对位置,因此去除了对治疗束线的等中心的工程和/或数学限制。

组合描述了一种用于确定患者中肿瘤的位置的方法和装置,以便在治疗室中使用带正电的粒子来治疗肿瘤。更具体地,该方法和装置使用一组基准记号和基准检测器,利用从记号到检测器的光子来标记/确定在治疗室中的静态和/或可移动物体的相对位置。此外,至少一个物体的位置和取向被校准到参考线,例如通过出口喷嘴的零偏移束治疗线,其生成每个被标记物体在治疗室中的相对位置。随后使用参考线和/或其上的点来确定治疗计算。发明人注意到,治疗计算可选地且优选地不使用等中心点,例如治疗室台架旋转所围绕的中心点,进行,这样消除了与等中心点,即实践中等中心体积,相关联的机械误差。

组合地,使用带正电的粒子和x射线使患者肿瘤成像的方法和装置包括以下步骤:(1)使用束传输线将带正电的粒子从加速器输送到患者位置,其中束传输线包括带正电的粒子束路径和x射线束路径;(2)使用闪烁检测器系统检测由带正电的粒子引起的闪烁;(3)使用x射线检测器系统检测x射线;(4)通过线性延伸/缩回定位安装轨道,从而:在第一时间在安装轨道的第一延伸位置处,将闪烁检测器系统定位到与患者的与出口喷嘴相对的位置处,然后在第二时间在安装导轨的第二延伸位置,将x射线检测器系统定位到与患者的与出口喷嘴相对的位置处;(5)使用闪烁检测器系统和x射线检测器系统的输出产生肿瘤的图像;和(6)通过使用带正电的粒子经由照射肿瘤在检测闪烁与治疗肿瘤的步骤之间交替。

组合地,断层摄影系统任选地与带电粒子癌症治疗系统组合使用。断层摄影系统使用断层摄影或断层摄影成像,其涉及通过截面进行成像或通过使用穿透波进行切片,例如来自注入器和/或加速器的正电荷粒子。可选地且优选地,共用的注入器、加速器和束输送系统被用于带电粒子为基础的断层摄影成像和带电粒子癌症治疗。在一种情况下,束输送系统的输出喷嘴与台架(gantry)系统一起定位,而台架系统和/或患者支架将断层摄影系统的闪烁板维持在患者与输出喷嘴的相对侧上。

在另一示例中,在对肿瘤和周围组织绘图时和/或肿瘤治疗时,癌症治疗系统或断层摄影成像系统的带电粒子状态确定系统将一个或多个涂层与闪烁材料、闪烁检测器和/或断层摄影成像系统结合使用,例如确定带电粒子束进入患者的输入向量和/或从患者输出的带电粒子束的输出向量。

在另一示例中,带电粒子断层摄影仪与带电粒子癌症治疗系统组合使用。例如,使用由注入器产生、用加速器加速并用递送系统引导的带电粒子进行癌性肿瘤的断层摄影成像。癌症治疗系统使用相同的注入器、加速器和引导递送系统将带电粒子递送至癌性肿瘤。例如,断层摄影仪和癌症治疗系统使用共用的光栅束法和仪器治疗实体癌。更具体地说,本发明包括多轴和/或多场光栅束带电粒子加速器,其用于:(1)断层摄影和(2)癌症治疗。可选地,系统独立地控制患者平移位置、患者旋转位置、二维束轨迹、递送的辐射束能量、递送的辐射束强度、束速度、带电粒子递送的时机和/或辐射冲击健康组织的分布。该系统与负离子束源,同步加速器,患者定位、成像和/或靶向方法和仪器一起操作,以在分布冲击健康组织辐射的同时向肿瘤递送有效且均匀剂量的辐射。

为了清楚呈现并且不失一般性,在本文中,相对于患者的肿瘤描述了治疗系统和成像系统。然而,更一般地,任何样本用本文所述的任何成像系统成像,和/或用本文所述的带正电的粒子束治疗样本的任何元素。

带电粒子束疗法

在本文中,描述了带电粒子束治疗系统,例如质子束、氢离子束或碳离子束。本文使用质子束来描述带电粒子束治疗系统。然而,以质子束教导和描述的方案并不旨在限于质子束的方案,而是示例性的带电粒子束系统、带正电的束系统和/或多层带电粒子束系统,如c4+或c6+。本文描述的任何技术同样适用于任何带电粒子束系统。

现在参考图1a,示出了带电粒子束系统100。带电粒子束优选地包括多个子系统,其包括以下中的任一个:主控制器110;注入系统120;同步加速器130,通常包括:(1)加速器系统131和(2)内部或连接的提取系统134;束传输系统135;扫描/瞄准/递送系统140;喷嘴系统146;患者接口模块150;显示系统160;和/或成像系统170。

提供了使用带电粒子束系统100的示例性方法。主控制器110控制一个或多个子系统以准确且精密地将质子递送到患者的肿瘤。例如,主控制器110从成像系统170获得诸如身体和/或肿瘤的一部分的图像。主控制器110还从患者接口模块150获得位置和/或时机信息。主控制器110可选地控制注入系统120将质子注入同步加速器130。同步加速器通常至少包含加速器系统131和提取系统134。主控制器110优选地控制加速器系统内的质子束,例如通过控制质子束的速度、轨迹和时机。然后,主控制器控制通过提取系统134从加速器提取质子束。例如,控制器控制提取的束的时机、能量和/或强度。控制器110还优选地通过扫描/瞄准/递送送系统140控制质子束瞄准到患者接口模块150或具有患者定位系统的患者。患者接口模块150的一个或多个分量,例如患者的平移和旋转位置,优选地由主控制器110控制。此外,显示系统160的显示元件优选地通过主控制器110进行控制。通常为一个或多个操作者和/或一个或多个患者提供显示器,例如显示屏幕。在一个实施例中,主控制器110对来自所有系统的质子束的递送进行定时,使得质子以最佳治疗方式递送到患者的肿瘤。

本文中,主控制器110指的是控制带电粒子束系统100的单个系统,控制多个控制带电粒子束系统100的子系统的单个控制器,或者控制带电粒子束系统100的一个或多个子系统的多个单独控制器。

示例i

充电粒子癌症治疗系统控制

现在参考图1b,提供了带电粒子束系统100的一个版本的说明性的示例实施例。部件的数量、位置和描述类型本质上是说明性而非限制性的。在所示实施例中,注入系统120或离子源或带电粒子束源产生质子。注入系统120可选地包括以下中的一个或多个:负离子束源、正离子束源、离子束聚焦透镜和串联加速器。质子被递送到真空管中,该真空管伸入、通过和离开同步加速器。产生的质子沿着初始路径262递送。可选地,使用聚焦磁体127(例如四极磁体或注入四极磁体)来集中质子束路径。四极磁铁是聚焦磁铁。注入器弯曲磁体128将质子束朝向同步加速器130的平面弯曲。具有初始能量的被集中的质子被引入注入器磁体129,注入器磁体129优选地是注射lambertson磁体。通常,初始束路径262沿着离开同步加速器130的循环平面的轴线,如上方。注入器弯曲磁体128和注入器磁体129组合以将质子移动到同步加速器130中。主弯曲磁体、偶极子磁体、转动磁体或循环磁体132用于沿着循环束路径264转动质子。偶极子磁体是弯曲磁体。主弯曲磁体132将初始束路径262弯曲成循环束路径264。在该示例中,主弯曲磁体132或循环磁体被表示为四组且每组四个磁体,以将循环束路径264保持为稳定的循环束路径。然而,可选地使用任何数量的磁体或任何组的磁体以在循环过程中围绕单个轨道移动质子。质子通过加速器133。加速器加速了循环束路径264中的质子。随着质子被加速,由磁体施加的场增大。特别地,通过加速器133而获得的质子的速度与主弯曲磁体132或循环磁体的磁场同步,以保持质子围绕同步加速器的中心点或区域136的稳定循环。在不同的时间点,加速器133/主弯曲磁体132的组合用于使循环的质子加速和/或减速,同时保持质子在循环路径或轨道中。反曲器/偏转器系统的提取元件与lambertson提取磁体137组合使用,以从同步加速器130内的循环束路径264移走质子。一个偏转器部件的示例是lambertson磁体。通常,偏转器将质子从循环平面移动到离开循环平面(例如循环平面上方)的轴线。使用提取弯曲磁体142和任选的提取聚焦磁体141(例如四极磁体)和可选的弯曲磁体,使提取的质子优选沿着束传输系统135中的带正电的粒子束传输路径268,诸如束路径或质子束路径,被引导和/或集中而进入扫描/瞄准/递送系统140。扫描系统140或瞄准系统的两个部件通常包括如竖直控制的第一轴控制器(control)143和如水平控制的第二轴控制器144。在一个实施例中,第一轴控制器143允许质子束268约100mm的竖直或y轴扫描,而第二轴控制器144允许质子束268约700mm的水平或x轴扫描。喷嘴系统146用于引导质子束,用于使质子束成像,用于限定质子束的形状,和/或作为同步加速器的低压的束路径与大气之间的真空屏障。质子被受控递送到患者接口模块150和患者的肿瘤。所有上述列出的元件都是可选的,并且可以以各种排列和组合使用。

从离子源提取离子

为了清楚呈现并不失一般性,示例集中在来自离子源的质子上。然而,更通常地,使用本文所述的技术,可选地从相应的离子源提取任何电荷的阳离子。例如,使用本文所述的离子提取方法和仪器任选地提取c4+或c6+。此外,通过反转系统的极性,阴离子任选地从阴离子源提取,其中阴离子是任何电荷。

在本文中,为了清楚呈现且不失一般性,离子提取与肿瘤治疗和/或肿瘤成像相结合。然而,在使用离子流或离子的离散时间束的任何方法或装置中,离子提取是可选的。

束的输送

束输送系统135被用于将带电粒子从加速器移动到患者,例如通过下文描述的台架中的喷嘴移动。

喷嘴

在从同步加速器130提取并且沿束传输系统135中的质子束路径268输送带电粒子束之后,带电粒子束通过喷嘴系统146离开。在一个示例中,喷嘴系统包括覆盖喷嘴系统146的端部或喷嘴系统内的横截面积的喷嘴箔(foil),从而形成真空密封。喷嘴系统包括沿着质子束路径268的z轴以x/y横截面积扩展的喷嘴,以允许分别通过竖直控制元件和水平控制元件沿着x轴和y轴扫描质子束268。喷嘴箔优选地由喷嘴或喷嘴系统146的出口端口的外边缘机械地支撑。喷嘴箔的示例是约0.1英寸厚的铝箔片。通常,喷嘴箔将喷嘴箔的患者侧上的大气压力与喷嘴箔的同步加速器130侧的低压区域(例如约10-5至10-7托区域)分离。保持低压区域以减少循环的带电粒子束在同步加速器中的散射。本文中,喷嘴的出口箔可选地是下面描述的带电粒子束状态确定系统750的第一片材760。

断层摄影术/束状态

在一个实施例中,带电粒子断层摄影仪用于对患者的肿瘤成像。由于当前的束位置确定/验证用于断层摄影术和癌症治疗中,为了清楚的呈现且不做限制的,束状态确定在本部分中也得到解决。然而,波束状态确定可以分开使用并且不进行断层摄影。

在另一示例中,带电粒子断层摄影仪与使用共用的元件的带电粒子癌症治疗系统组合使用。例如,癌性肿瘤的断层摄影成像使用带电粒子执行,带电粒子由注入器产生、加速器加速并用递送系统引导,其中注入器、加速器和递送系统是如下所述的癌症治疗系统的部分。

在各种示例中,断层摄影成像系统可选地与使用共用元件的带电粒子癌症治疗系统同时操作,允许在患者旋转时断层摄影成像,患者在直立、半直立和/或水平位置均可操作,可与x射线成像同时操作,和/或允许使用适应性带电粒子癌症治疗。此外,共用的断层摄影和癌症治疗仪的元件可选地在多轴和/或多场光栅束模式中操作。

在常规的医用x射线断层摄影中,在曝光期间通过使x射线源和x射线胶片中的一个或两个相对于患者移动,来制作通过身体的截面图像。通过修改运动的方向和程度,操作者可以选择不同的焦平面,其中包含感兴趣的结构。更现代的断层摄影的变化包含通过移动x射线源而从多个方向收集投影数据,并将数据供应到由计算机处理的断层投影重建软件算法中。本文中,与已知方法形成鲜明对比的是,辐射源是带电粒子,例如质子离子束或碳离子束。本文描述的断层摄影系统使用质子束,但是描述适用于较重的离子束,例如碳离子束。此外,与已知技术形成鲜明对比的是,在患者旋转时,辐射源可选地是静止的。

现在参考图2,描述了断层摄影仪的示例,并且描述了束状态确定的示例。在该示例中,断层摄影系统700使用与带电粒子束系统100相同的元件,包括以下一个或多个元件:注入系统120、加速器130、束输送系统135中束输送壳体320内的带正电粒子束输送路径268、瞄准/递送系统140、患者接口模块150、显示系统160、和/或成像系统170(例如x射线成像系统)。闪烁材料可选地是用于测量带电粒子束的能量、强度和/或位置的一个或多个闪烁板,例如闪烁塑料。例如,闪烁材料710或闪烁板相对于瞄准/递送系统140的元件位于患者730后面,闪烁材料710可选地用于测量透过患者之后带电粒子束的强度和/或位置。可选地,如下所述的第二闪烁板或带电粒子诱导光子发射片材相对于瞄准/递送系统140的元件位于患者730之前,其可选地用于测量带电粒子束在透过患者之前的入射强度和/或位置。如上所述的带电粒子束系统100已被证实在高达(并包括)330mev下操作,这足以发送质子通过身体并与闪烁材料接触。特别地,使用250mev至330mev使束以标准尺寸的路径长度通过标准尺寸的患者,例如通过胸部。作为位置的函数的质子击中板的强度或数量被用来创建图像。质子撞击闪烁板的速度或能量也用于创建肿瘤720的图像和/或患者730的图像。患者730围绕y轴旋转并且收集新的图像。优选地,患者每旋转约一度就收集一张新图像,导致使用断层摄影重建软件将约360张图像组合成断层照片。断层重建软件在重建中使用重叠的旋转变化的图像。可选地,患者每旋转约2、3、4、5、10、15、30或45度就收集一张新图像。

本文中,闪烁材料710或闪烁体是当被带正电的粒子撞击时、或当带正电的粒子将转移到闪烁材料的能量足以引起发光时,发射光子的任何材料。可选地,闪烁材料710在延迟之后发射光子,诸如荧光或磷光。然而,优选地,闪烁体具有快速的百分之五十的熄灭时间,例如小于0.0001、0.001、0.01、0.1、1、10、100或1000毫秒,使得发光迅速变暗、衰减或结束。优选的闪烁材料包括碘化钠、碘化钾、碘化铯、碘化物盐和/或掺杂的碘化物盐。闪烁材料的其它示例包括但不限于:有机晶体、塑料、玻璃、有机液体、发光体和/或无机材料或无机结晶,例如氟化钡、baf2;氟化钙、caf2、掺杂氟化钙、碘化钠、nai;掺杂的碘化钠、掺杂铊的碘化钠、nal(ti);钨酸镉、cdwo4;锗酸铋;钨酸镉、cdwo4;钨酸钙、cawo4;碘化铯、csi;掺杂碘化铯;掺杂铊的碘化铯、csi(ti);掺杂csi(na)的碘化铯;碘化钾、ki;掺杂的碘化钾、氧硫化钆、gd2o2s;掺杂铈的溴化镧、labr3(ce);氯化镧、lacl3;铯掺杂氯化镧、lacl3(ce);铅钨酸铅、pbwo4;lso或镥氧基原硅酸盐(lu2sio5);lyso、lu1.8y0.2sio5(ce);钇铝石榴石、yag(ce);硫化锌、zns(ag);和钨酸锌、znwo4。

在一个实施例中,在使用带电粒子束系统100进行癌症治疗的同时,收集断层照片或单独的断层截面图像。例如,收集断层图像,随后执行癌症治疗:患者未从定位系统移动,例如在半竖直局部固定系统、坐式局部固定系统或躺卧位置。在第二示例中,使用加速器130的第一循环并使用加速器130的下一循环来收集单个断层照片切片,肿瘤720被照射,例如在大约1、2、5、10、15或30秒内。在第三种情况下,在后续肿瘤照射治疗的大约5、10、15、30或60秒内,使用患者730的1、2、3、4或更多个旋转位置来收集约2、3、4或5个断层照片切片。

在另一个实施例中,断层摄影成像过程和x射线收集过程的独立控制允许x射线图像和断层摄影图像的同时单场和/或多场收集,减轻了多个图像的解释。实际上,当患者730可选地在每个图像中处于相同位置时,x射线和断层摄影图像可选地覆盖和/或整合,从而形成混合的x射线/质子束断层摄影图像。

在另一个实施例中,收集患者730在使用随后的照射疗法治疗患者的肿瘤的近似相同位置的断层照片。对于一些肿瘤,患者位于相同的直立或半直立位置与处于躺卧位置相比,允许肿瘤720更好地与患者730的周围器官或组织分离。闪烁材料710在患者730的后面定位允许在患者处于相同的直立或半直立位置时发生断层摄影成像。

在断层摄影成像和带电粒子癌症治疗中使用共用元件使癌症治疗(上文所述)具有许多益处,可选地与断层摄影成像一起使用,例如质子束x轴控制、质子束y轴控制、质子束能量的控制、质子束强度的控制、束递送到患者的时机控制、患者的旋转控制以及患者平移的控制,所有都在质子能量递送的光栅束模式下。使用单个质子或阳离子束线进行成像和治疗,减轻了患者的设置,减少对准的不确定性,减少束状态的不确定性,并简化质量保证。

在又一个实施例中,最初收集三维断层x射线和/或基于质子的参考图像,例如具有肿瘤720和患者730的数百个单独旋转图像。随后,在癌症的质子治疗之前,收集患者的仅仅几个二维控制断层摄影图像,例如静止的患者或仅在几个旋转位置,例如直接到患者的图像,患者各方面旋转约45°和/或x射线源和/或患者围绕y轴各方面旋转约90°。将单个控制图像与三维参考图像进行比较。随后可选地执行适应性质子疗法,其中:(1)基于三维参考图像与一个或多个二维控制图像之间的差异,质子癌症疗法不是用于指定位置,和/或(2)基于三维参考图像与一个或多个二维控制图像之间的差异,实时修改质子癌症疗法。

带电粒子状态确定/验证/光子监控

仍然参考图2,断层摄影系统700可选地与带电粒子束状态确定系统750一起使用,可选地用作带电粒子验证系统。带电粒子状态确定系统750可选地测量、确定和/或验证以下之一:(1)带电粒子束例如治疗束269的位置,(2)治疗束269的方向,(3)治疗束269的强度,(4)治疗束269的能量,(5)带电粒子束的位置、方向、强度和/或能量,例如通过样本或患者730之后残余带电粒子束267,和/或(6)带电粒子束的历史。

为了清楚呈现并且不失一般性地,在图3和图4a中分别描述并示出了带电粒子束状态确定系统750;然而,如本文所描述的,带电粒子束状态确定系统750的元件可选地并且优选地集成到带电粒子治疗系统100的喷嘴系统146和/或断层摄影系统700中。更具体地,带电粒子束状态确定系统750的任何元件被集成到喷嘴系统146、动态台架喷嘴、和/或断层摄影系统700中,例如闪烁材料710的表面或闪烁检测器、板或系统的表面。喷嘴系统146或动态台架喷嘴为带电粒子束提供从初始在注入系统120处的真空管通过同步加速器130和束输送系统135的出口。带电粒子束状态确定系统的任何板、片、荧光团或检测器可选地集成到喷嘴系统146中。例如,喷嘴的出口箔可选地是带电粒子束状态确定系统750的第一片材760,并且第一涂层762可选地涂覆到出口箔,如图2所示。类似地,闪烁材料710的表面可选地是用于第四涂层792的支撑表面,如图2所示。带电粒子束状态确定系统750在下文中进一步描述。

现在参考图2、图3和图4a,使用四片即第一片760、第二片770、第三片780和第四片790来说明关于带电粒子束的透射的检测片和/或光子发射片材。每个片材可选地涂覆有诸如荧光团的光子发射器,例如第一片材760可任选地涂覆有第一涂层762。不失一般性并且为了清楚呈现,四个片材均被以单元示出,其中未示出发光层。因此,例如,第二片材770可选地是指由发光元件涂覆的支撑片材、发光片材和/或支撑片材。这四个片材代表n个片材,其中n是正整数。

现在参考图2和图3,带电粒子束状态验证系统750是允许实时监控实际带电粒子束位置而不破坏带电粒子束的系统。带电粒子束状态验证系统750优选地包括第一位置元件或第一束验证层,其在本文中也称为涂层、发光层、荧光层、磷光层、辐射层或观察层。第一位置元件可选地且优选地包括基本上与片材(例如喷嘴箔的内表面)接触的涂层或薄层,其中内表面在喷嘴箔的同步加速器侧。较不优选地,验证层或涂层基本上与喷嘴箔的外表面接触,其中外表面在喷嘴箔的患者治疗侧。优选地,喷嘴箔提供被涂层涂覆的基底表面。可选地,粘合层位于涂层和喷嘴箔、基底或支撑片之间。可选地,位置元件放置在带电粒子束路径中的任何位置。可选地,分别在一个以上片材上的一个以上的位置元件被用于带电粒子束路径,并用于确定带电粒子束的状态特性,如下文所述。

仍然参考图2和图3,被称为荧光团的涂料由于质子束的透射,产生被检测器或照相机在空间上可见的可测量的光谱响应。涂料优选是荧光体,但是可选地是由于带电粒子束撞击或透过涂料或涂层而导致材料发生变化由检测器可见或成像的任何材料。检测器或照相机观察从涂层发射的二次光子,并且由通过涂层的质子和/或带电粒子束产生的光谱差异来确定治疗束269的位置,其也称为带电粒子束的当前位置或带电粒子束的最终治疗向量。例如,在肿瘤720的治疗期间,当质子束或带正电的阳离子束正被例如第一轴控制器143,竖直控制,和第二轴控制器144,水平控制,束位置控制元件扫描时,照相机观察涂层表面的表面。照相机通过光谱响应来观察如测量的带电粒子束或治疗束269的当前位置。涂层优选是由于带电粒子束的激发而在短时间内发光和/或发射光子的荧光体或发光材料,例如5秒内50%的强度。检测器观察温度变化和/或观察从带电粒子束穿过斑点发射的光子。可选地,使用多个照相机或检测器,其中每个检测器观察涂层的全部或一部分。例如,使用两个检测器,其中第一检测器观察涂层的第一半部分,第二检测器观察涂层的第二半部分。优选地,将检测器的至少一部分安装到喷嘴系统中,以在穿过第一轴控制器143和第二轴控制器144之后观察质子束位置。优选地,涂层位于质子束路径268中的质子冲击患者730之前的位置。

现在参考图1和图2,连接到相机或检测器输出的主控制器110可选地且优选地比较最终质子束位置或治疗束269的位置与方案的质子束位置和/或校准参考(例如校准的束线),以确定实际质子束位置或治疗束269的位置是否在公差范围内。带电粒子束状态确定系统750优选地用于一个或多个阶段,例如校准阶段、绘图阶段、束位置验证阶段、治疗阶段和治疗方案修改阶段。校准阶段用于关联第一轴控制器143和第二轴控制器144的x、y位置来响应质子束在患者接口处的实际x、y位置的函数。在治疗阶段期间,监控带电粒子束位置并使其与校准和/或治疗方案进行比较,以验证质子准确递送到肿瘤720和/或作为带电粒子束截止安全指示器。现在参考图5,位置验证系统179和/或治疗递送控制系统112在确定肿瘤转移时,治疗时的不可预测的肿瘤变形和/或治疗异常可选地产生和/或提供推荐的治疗改变1070。在患者730仍然处于治疗位置时,治疗改变1070可选地被发送到例如临近医师或通过因特网发送到远程医师,以进行医师批准1072,接收医师批准1072后允许继续现在修改并批准的治疗方案。

示例i

现在参考图2,使用两个阳离子诱导信号产生表面(本文称为第一片材760和第三片材780)示出了带电粒子束状态确定系统750的第一示例。下面描述每个片材。

仍然参考图2,在第一示例中,沿带电粒子束路径位于患者730之前的可选的第一片材760涂覆有第一荧光团涂层762,其中通过第一片760传输的阳离子(例如带电粒子束)激发第一荧光团涂层762的局部荧光团,从而导致发射一个或多个光子。在该示例中,第一检测器812对第一荧光团涂层762成像,而主控制器110使用荧光团涂层762和检测到的光子的图像确定带电粒子束的当前位置。检测到的从第一荧光团涂层762发射的光子的强度可选地用于确定在治疗肿瘤720时使用的带电粒子束的强度,或在产生患者730的肿瘤720的断层照片和/或断层摄影图像时被断层摄影系统700检测。因此,分别使用发射的光子的位置和/或强度来确定带电粒子束的第一位置和/或第一强度。

仍然参考图2,在第一示例中,位于患者730后面的可选的第三片材780可选地是如前段所述的阳离子诱导光子发射片材。然而,如图所示,第三片材780是固态束检测表面,例如如检测器阵列。例如,检测器阵列可选地是电荷耦合器件、电荷感应器件、cmos或照相机检测器,其中检测器阵列的元件与商业照相机一样直接读取,而没有光子的二次发射。类似于对第一片材所描述的检测,第三片材780分别用于使用来自检测器阵列的信号位置和/或信号强度来确定带电粒子束的位置和/或带电粒子束的强度。

仍然参考图2,在第一示例中,来自第一片材760和第三片材780的信号在患者730前和后产生位置,允许更准确地确定通过患者730之间的带电粒子束。可选地,已知在瞄准/递送系统140中的带电粒子束路径,例如经由穿过第一轴控制器143的第一磁场强度或穿过第二轴控制器144的第二磁场强度所确定的,与从第一片材760获得的信号组合,以产生前带电粒子在进入患者730之前的第一向量和/或带电粒子束进入患者730的输入点,这还有助于:(1)控制、监控和/或记录肿瘤治疗,和/或(2)断层摄影术的发展/解释。可选地,使用从位于患者730之后的第三片材780获得的信号与来自断层摄影系统700(例如闪烁材料710)获得的信号组合,以产生患者730之后的带电粒子的第二向量,和/或带电粒子束离开患者730的输出点,其还有助于:(1)控制、监控、解密和/或(2)解释断层照片或断层摄影图像。

为了清楚呈现并且不失一般性,使用从片材发射的光子的检测来进一步描述带电粒子束状态确定系统750。然而,本文描述的任何阳离子诱导的光子发射片材可选地是检测器阵列。此外,任何数量的阳离子诱导的光子发射片材被用在患者730之前和/或在患者730之后,例如1、2、3、4、6、8、10或更多。此外,任何阳离子诱导的光子发射片材被放置在带电粒子束中的任何位置,例如在同步加速器130中、在光束输送系统135中、在瞄准/递送系统140中、喷嘴系统146、在治疗室和/或在断层摄影系统700中。任何阳离子诱导的光子发射片材被用于产生作为时间的函数的束状态信号,其被可选地记录,例如用于治疗患者730的肿瘤720的准确历史和/或用于辅助生成断层摄影图像。

示例ii

现在参考图3,使用三个阳离子诱导信号产生表面(本文称为第二片材770、第三片材780和第四片材790)来示出带电粒子束状态确定系统750的第二示例。第二片材770、第三片材780和第四片材790中的任一个包含上述片材的任何特征。

仍然参考图3,在第二示例中,定位在患者730之前的第二片材770可选地集成到喷嘴和/或喷嘴系统146中,但是被示为单独的片材。从第二片材770(例如在点a处)得到的信号可选地与来自第一片材760的信号和/或瞄准/递送系统140的状态组合,以在第一时间t1在样本或患者730之前产生从带电粒子束的点a到点b的第一线或向量v1a,以及在第二时间t2在样本前产生从带电粒子束的点f到点g的第二线或向量v2a。

仍然参考图3,在第二示例中,位于患者730后面的第三片材780和第四片材790可选地集成到断层摄影系统700中,但被示出为单独的片材。从第三片材780(例如在点d)获得的信号可选地与来自第四片材790的信号和/或来自断层摄影系统700的信号组合,以在第一时间t1在患者730之后产生从带电粒子束的点c2到点d和/或点d到点e的第一线段或向量v1b,以及在第二时间t2在样本之后产生例如从带电粒子束的点h到点i的第二线段或向量v2b。从第三片材780和/或第四片材790获得的信号以及在第二时间t2的对应的第一向量被用来确定输出点c2,点c2可以且通常不同于第一向量v1a的延伸,从点a到点b通过患者到点c1的非散射束路径。点c1和点c2之差和/或第一时间的第一向量v1a与第二时间的第一向量v1b之间的角度α被用于确定/映射/识别患者730、样本和/或肿瘤720的内部结构,例如通过断层摄影分析,特别是在以时间为函数在x/y平面扫描带电粒子束组合时,例如由第一时间的第二向量v2a和第二时间的第二向量v2b示出,形成角β和/或患者730旋转(例如绕y轴)作为时间的函数。

仍然参考图3,示出了分别用于检测来自多个片材的信号的多个检测器/检测器阵列。然而,如下面进一步描述的,可选地使用单个检测器/检测器阵列来检测来自多个片材的信号。如图所示,示出了一组检测器810,其包括成像第二片材770的第二检测器814、成像第三片材780的第三检测器816以及成像第四片材790的第四检测器818。本文所述的任何检测器可选地是检测器阵列,可选地与任何滤光器耦合,和/或可选地使用一个或多个中间光学器件来成像四个片材760、770、780、790中的任何一个。另外,两个或更多个检测器可选地成像单个片材,例如片材的区域,以辅助光耦合,例如f数光耦合。

仍然参考图3,确定带电粒子束的向量或线段。特别地,在所示示例中,第三检测器816通过对二次发射的光子的检测来确定通过点d传输的带电粒子束,第四检测器818确定通过点e传输的带电粒子束,其中点d和e用于确定第二时间的第一向量或线段v1b,如上所述。为了提高所确定的带电粒子束向量的准度和精度,第一确定的束位置和第二确定的束位置可选地并优选地分开距离d1,例如大于0.1、0.5、1、2、3、5、10或更多厘米。示出了支撑元件752,其可选地将带电粒子束状态确定系统750的任两个或多个元件彼此连接和/或连接到带电粒子束系统100的任何元件,例如用于定位和/或共同旋转患者730的旋转平台756和断层摄影系统700的任何元件。

示例iii

仍然参考图4a,在集成的断层摄影癌症治疗系统900中示出了带电粒子束状态确定系统750的第三示例。

参考图4a,示出了多个片材和多个检测器,确定患者730之前的带电粒子束状态。如图所示,第一照相机812在点a对从第一片材760发射的光子(从通过的带电粒子束的转移能量的结果)空间成像,以产生第一信号,第二照相机814在点b对从第二片770发射的光子(从通过的带电粒子束的能量转移的结果)空间成像,从而产生第二信号。第一信号和第二信号允许计算第一向量或线段v1a,随后确定带电粒子束进入患者730的入口点732。第一向量v1a的确定可选地补充由从如上所述的第一轴控制器143,竖直控制,和第二轴控制器144,水平轴控制,周围的磁场状态获得的信息。

仍然参考图4a,带电粒子束状态确定系统被示出为具有多个可分辨光波长的光,它们作为带电粒子束通过多于一种分子类型、发光中心和/或荧光团类型传输的结果而发射。为了清楚呈现并且不失一般性,第三片材780中的第一荧光团被示出为发射蓝光b,第四片材790中的第二荧光团被示出为发射红光r,它们均被第三检测器816检测。第三检测器可选地与诸如滤光器、光栅或傅立叶变换装置的任何波长分离装置耦合。为了清楚呈现,系统描述为红光通过阻挡蓝光的红色透射滤光片,蓝光通过阻挡红光的蓝色透射滤光片。使用任何方式的波长分离允许一个检测器检测例如在点c处以第一波长的第一个二次发射和例如在点d以第二波长的第二个二次发射导致的带电粒子束的位置。通过扩展,使用适当的光学元件,可选地使用一个照相机而对样本之前和之后的多个片材和/或片材成像。与从第一时间第一向量v1a确定的从患者730离开的非散射出口点734相比,红光和蓝光的原点的空间确定允许计算在第二时间的第一向量v1b和从患者730离开的实际出口点736。

仍然参考图4a并且现在参考图4b,示出了集成断层摄影癌症治疗系统900,其具有带电粒子束状态确定系统750的元件可与癌症治疗系统100的喷嘴系统146共同旋转的可选构造。更具体地,在一种情况下,位于患者730之前、之后或两侧的带电粒子束状态确定系统750的片材与闪烁材料710围绕任何轴共同旋转,如所示的围绕y轴旋转。此外,带电粒子束状态确定系统750的任何元件,诸如检测器、二维检测器、多个二维检测器和/或光耦合光学器件,随台架的移动而移动,例如沿着喷嘴系统146的共用的运动弧和/或距共用弧一固定距离。例如,当台架移动时,位于肿瘤720或患者730的与喷嘴系统146相对侧上的监控照相机保持在肿瘤720或患者730的相对侧上的位置。在各种情况下,共同旋转通过使带电粒子束系统的台架和患者的支撑件的共同旋转来实现,患者的支撑件例如可旋转平台756,其在本文中也称为可移动或可动态定位的患者平台、患者椅或患者沙发。例如支撑元件752的机械元件使带电粒子束状态确定系统750的各种元件相对于彼此、相对于喷嘴系统146和/或相对于患者730固定。例如,支撑元件752保持肿瘤720的位置和第三片材780之间的第二距离d2,和/或保持第三片材780的位置和闪烁材料710之间的第三距离d3。更一般地,支撑元件752可选地例如通过计算机控制,将患者730周围的任何元件相对于彼此或在患者诊断/治疗室中的x、y、z空间动态地定位。

现在参考图4b,描述了在台架移动系统950中将台架960的喷嘴系统146定位在患者730的与检测表面(例如闪烁材料710)的相对侧上。通常,在台架移动系统950中,随着台架960围绕轴先旋转,喷嘴/喷嘴系统146和/或束输送系统135的一个或多个磁体被重新定位。如图所示,在第一时间t1,喷嘴系统146被台架960定位在第一位置,在第二时间t2被定位在第二位置,其中n个位置是可选择的。机电系统,诸如患者台、患者床、患者沙发、患者旋转装置和/或闪烁板支架,将患者730保持在喷嘴系统146和断层摄影系统700的闪烁材料710之间。类似地,为了清楚而未示出,随着台架960旋转或移动喷嘴系统146,机电系统将第三片材780的位置和/或第四片材790的位置保持在患者730的后侧或与喷嘴系统146的相对侧。类似地,随着台架960旋转或移动喷嘴系统146,机电系统将第一片材760或第一屏幕的位置和/或第二片材770或第二屏幕的位置保持在患者730的与喷嘴系统146的相同侧或前侧。如图所示,在第一时间t1,机电系统可选地将第一片材760定位在带正电粒子路径,而在第二时间t2使第一片材760旋转、枢转和/或滑动离开带正电粒子路径。机电系统可选地并且优选地连接到主控制器110和/或治疗递送控制系统112。机电系统可选地在以下之间保持固定距离:(1)患者与喷嘴系统146或喷嘴端612,(2)患者730或肿瘤720与闪烁材料710,和/或(3)喷嘴系统146与闪烁材料710,在第一治疗时间台架960处于第一位置,而在第二治疗时间台架960在第二位置。使用共用的带电粒子束路径进行成像和癌症治疗和/或维持束输送/引导元件与治疗和/或检测表面之间的已知或固定距离增强了所生成的图像和/或肿瘤治疗的精度和/或准度,如上所述。可选地,台架在台架的旋转轴线的相对侧上包括配重。理想情况下,配重不会影响台架配重系统关于台架旋转轴线的净力矩。在实践中,配重质量和距离力(本文所有元件在台架的旋转轴的一侧)是在台架的处于台架的旋转轴的相对侧上的截面的质量和距离力的10%、5%、2%、1%、0.1%或0.01%之内。

系统集成

本文描述的任何系统和/或元件可选地集成在一起和/或可选地与已知系统集成。

治疗递送控制系统

现在参考图5,示出了集中的带电粒子治疗系统1000。通常,一旦设计了带电粒子治疗方案,则使用中央控制系统或治疗递送控制系统112来控制子系统,同时减少和/或消除主要子系统之间的直接通信。通常,治疗递送控制系统112用于直接控制癌症治疗系统的多个子系统,而在选择的子系统之间没有直接通信,这增强了安全性,简化了质量保证和质量控制,并且便于编程。例如,治疗递送控制系统112直接控制以下的一个或多个:成像系统、定位系统、注入系统、射频四极杆系统、线性加速器、环形加速器或同步加速器、提取系统,束线、照射喷嘴、台架、显示系统、瞄准系统和验证系统。通常,控制系统集成子系统,和/或将上述癌症治疗系统元件中的一个或多个的输出与上述癌症治疗系统元件中的一个或多个的输入集成。

仍然参考图5,提供了集中的带电粒子治疗系统1000的示例。最初,如肿瘤学家的医生开处方1010或推荐使用带电粒子进行肿瘤治疗。随后,启动治疗规划1020并且将治疗规划步骤1020的输出发送到肿瘤学信息系统1030和/或直接发送到作为主控制器110的示例的治疗递送系统112。

仍然参考图5,进一步描述了治疗规划步骤1020。一般来说,放射(辐射)治疗规划是肿瘤学家、放射治疗师、医学物理学家和/或医学剂量测定师团队对患者的癌症进行适宜的带电粒子治疗的方案的过程。通常,使用一个或多个成像系统170对肿瘤和/或患者进行成像,如下文所述。规划可选地:(1)向前规划和/或(2)逆向规划。癌症治疗方案可选地借助剂量-体积直方图来评估,其允许临床医生评估剂量对肿瘤和周围健康结构的均匀性。通常,使用多模态图像匹配、图像共同配准或融合来计算患者断层摄影数据集,治疗规划几乎完全基于计算机。

向前规划

在向前规划中,治疗肿瘤学家将束放置在放射疗法规划系统中,包括使用多少辐射束以及从哪个角度递送每个束。这种规划被用于相对简单的案例,其中肿瘤具有简单的形状并且不靠近任何重要器官。

逆向规划

在逆向规划中,放射肿瘤学家限定患者的重要器官和肿瘤,并为每个给出了目标剂量和重要性因素。随后,运行优化程序以找到最符合所有输入条件的治疗方案。

肿瘤学信息系统

仍参考图5,进一步描述了肿瘤学信息系统1030。一般地,肿瘤学信息系统1030是以下各项中的一个或多个:(1)肿瘤学专用电子病历,其管理医疗、放射和外科肿瘤部门的临床、财务和行政过程;(2)全面的信息和图像管理系统;和(3)集中患者数据的完整患者信息管理系统;和(4)提供给带电粒子束系统100、主控制器110和/或治疗递送控制系统112的治疗方案。通常,肿瘤学信息系统1030与商用带电粒子治疗系统接口。

安全系统/治疗递送控制系统

仍然参考图5,进一步描述了治疗递送控制系统112。通常,治疗递送控制系统112从治疗规划步骤1020和/或从肿瘤学信息系统1030接收诸如带电粒子癌症治疗方案的治疗输入,并且使用治疗输入和/或治疗方案来控制带电粒子束系统110的一个或多个子系统。治疗递送控制系统112是主控制器110的示例,其中治疗递送控制系统接收来自带电粒子束系统100的第一子系统的子系统输入,并提供给带电粒子束系统100的第二子系统:(1)直接地,所接收的子系统输入,(2)所接收的子系统输入的处理版本,和/或(3)诸如用于满足治疗规划步骤1020的必要条件的命令或肿瘤学信息系统1030的指示。通常,带电粒子束系统100的子系统之间的大部分或全部通信往返于治疗递送控制系统112,而不是与带电粒子束系统100的另一个子系统直接通信。使用逻辑集中的治疗递送控制系统具有许多益处,包括:(1)单个集中代码来维护、调试、保护、更新并对例如质量保证和质量控制进行检查;(2)子系统之间的信息的受控逻辑流;(3)仅用一个接口代码修改来替换子系统的能力;(4)室安全;(5)软件访问控制;(6)安全监控的单一集中控制;和(7)集中代码导致包含带电粒子束系统100的多数或所有子系统的集成安全系统1040。带电粒子癌治疗系统100的子系统的示例包括:射频四极杆1050、射频四极杆线性加速器、注入系统120、同步加速器130、加速器系统131、提取系统134、束线268的任何可控或可监控元件、瞄准/递送系统140、喷嘴系统146、台架1060或台架1060的元件、患者接口模块150、患者定位器152、显示系统160、成像系统170、患者位置验证系统179、上述任何元件和/或任何子系统元件。治疗时的治疗改变1070可选地在技术人员或医生的帮助下或者没有在技术人员或医生的帮助下由计算机产生,并且在患者仍处于治疗室、治疗椅和/或治疗位置时被批准。

集成的癌症治疗-成像系统

一个或多个成像系统170可选地用于癌症治疗室中的固定位置,和/或用台架系统移动,例如台架系统支撑:束输送系统135的一部分、瞄准/递送控制系统140、和/或围绕患者定位系统移动或旋转,例如在患者接口模块。不失一般性并为了便于描述本发明,集成的癌症治疗-成像系统的示例如下。在每个系统中,束输送系统135和/或喷嘴系统146指示如上所述的用于肿瘤治疗和/或断层摄影术的带正电的束路径,例如来自同步加速器。

示例i

现在参考图6a,示出了集成的癌症治疗-成像系统1300的第一示例。在该示例中,带电粒子束系统100被示出为具有沿着z轴指向患者730的肿瘤720的治疗束269。还示出了一组成像源1310、成像系统元件和/或它们的路径,以及对应于该组成像源1310的相应元件的一组检测器1320。本文中,该组成像源1310被称为源,但是可选地是在肿瘤之前的束列的任何点或元件或台架旋转的中心点。因此,给定的成像源可选地是用于形成锥形束的分散元件。如图所示,第一成像源1312产生第一束路径1332,第二成像源1314产生第二束路径1334,其中每个路径至少进入肿瘤720,并且可选地且优选地分别到达该组检测器1320的第一检测器阵列1322和第二检测器阵列1324。本文中,第一束路径1332和第二束路径1334被示出为形成90°角,其产生肿瘤720和/或患者730的互补图像。然而,形成的角度可选地为10到350°的任何角度。本文中,为了清楚呈现,第一束路径1332和第二束路径1334被示出为单线,其可选地是扩展的、均匀直径的或集中的束。本文中,第一束路径1332和第二束路径1334以传输模式示出,其相应的源和检测器分别位于患者730的相对两侧。然而,从源到检测器的束路径可选地是散射路径和/或漫反射路径。可选地,该组检测器1320中的一个或多个检测器是单个检测器元件、一行检测器元件或优选地二维检测器阵列。使用两个二维检测器阵列在本文中指的是二维-二维成像系统或2d-2d成像系统。

仍然参考图6a,第一成像源1312和第二成像源1314分别示出在第一位置和第二位置。第一成像源1312和第二成像源1322中的每一个可选地:(1)保持固定位置;(2)分别提供第一束路径1332和第二束路径1334,诸如到成像系统检测器1340或通过台架960,例如通过一组的一个或多个孔或狭缝;(3)分别将第一束路径1332和第二束路径1334离开轴线地提供给喷嘴系统146的运动平面;(4)当台架960绕至少第一轴线旋转时,与台架960一起移动;(5)如上所述,与辅助成像系统一起移动,辅助成像系统与台架的运动无关;和/或(6)表示扩张锥形束路径的窄横截面。

仍然参考图6a,该组的检测器1320被示出为与该组的源1310的相应元件耦合。该组的检测器1320中的每个构件可选地并且优选地与相应构件与该组的源1310的相应构件共同移动和/或共同旋转。因此,如果第一成像源1312静态地定位,则第一检测器1322可选地且优选地被静态地定位。类似地,为了便于成像,如果在台架960移动时第一成像源1312沿着第一弧移动,则第一检测器1322可选地并且优选地随着台架960的移动而沿着第一弧或第二弧移动,其中第一成像源1312在第一圆弧上的相对位置、台架960移动所围绕的点以及第一检测器1322沿着第二弧的相对位置是恒定的。为了便于该过程,检测器可选地机械连接,例如以机械支撑台架960,以使得当台架960移动时,台架同时移动源和相应的检测器。可选地,源移动,诸如沿着第二弧的一系列检测器捕获一组图像。如图6a所示,第一成像源1312、第一检测器阵列1322、第二成像源1314和第二检测器阵列1324耦合到可旋转的成像系统支撑件1812,支撑件1812可选地独立于台架960旋转,如下文进一步描述的。如图6b所示,第一成像源1312、第一检测器阵列1322、第二成像源1314和第二检测器阵列1324联接到台架960,在这种情况下,台架960是可旋转台架。

仍然参考图6a,可选地且优选地,该组的源1310的元件与该组的检测器1320的元件的组合被用于收集一系列响应,例如一个源和一个检测器产生检测到的强度,且可旋转的成像系统支撑件1812优选一组检测到的强度以形成图像。例如,第一成像源1312(例如第一x射线源或第一锥形束x射线源)和第一检测器1322(例如x射线胶片、数字x射线检测器或二维检测器)在第一时间产生患者的第一x射线图像,并在第二时间产生患者的第二x射线图像,例如以确认肿瘤的保持位置、或在台架和/或喷嘴系统146的移动、或患者730的旋转之后的保持位置。作为台架和/或由台架支撑的喷嘴系统146的运动的函数、和/或作为患者730的运动和/或旋转的函数而使用第一成像源1312和第一检测器1322收集的一组n个图像,可选地且优选地组合以产生患者730的三维图像,例如患者730的三维x射线图像,其中n是正整数,例如大于1、2、3、4、5、10、15、25、50或100。可选地,这组n个图像如所描述的与使用第二成像源1314(例如第二x射线源或第二锥形束x射线源)和第二检测器1324(如第二x射线检测器)收集的图像组合地聚集,其中使用两个或多个源/检测器组合被组合为产生患者730没有在图像之间移动的图像,因为两个或多个图像可选地并且优选地在同一时间收集,例如时间差小于0.01、0.1、1或5秒。可以使用更长的时间差。优选地,n个二维图像作为台架960绕肿瘤和/或患者旋转的函数、和/或作为患者730的旋转的函数收集,x射线锥形束的二维图像被数学组合以形成肿瘤720和/或患者730的三维图像。可选地,第一x射线源和/或第二x射线源是发散地形成通过肿瘤的锥形的x射线源。作为发散的x射线锥形绕肿瘤旋转的函数而使用检测透射通过肿瘤的发散的x射线的二维检测器所收集的一组图像,被用于形成肿瘤和患者的一部分的三维x射线,例如在x射线计算机断层摄影中。

仍然参考图6a,使用彼此按90°设置的两个成像源和两个检测器允许台架960或患者730转过仅使用一个成像源和检测器的组合所需角度的一半。第三成像源/检测器的组合允许将三个成像源/检测器的组合按60°间隔设置,从而可以将成像时间切割成使用单个成像源-检测器的组合所需的台架960或患者730旋转的三分之一时间。通常,n个源检测器的组合将时间和/或旋转要求缩短到1/n。如果患者730和台架960沿相反方向旋转,则进一步缩短是可能的。通常,使用给定技术的多个源-检测器的组合允许不需要转过大角度的台架,具有显著的工程益处。

仍然参考图6a,该组的源1310和该组的检测器1320可选地使用多于一种成像技术。例如,第一成像技术使用x射线,第二成像技术使用荧光透视,第三成像技术检测荧光,第四次成像技术使用锥形束计算断层扫描或锥形束ct,第五成像技术使用其他电磁波。可选地,该组的源1310和该组的检测器1320使用给定成像技术的两个或更多个源和/或两个或更多个检测器,例如上面描述的两个x射线源至n个x射线源。

仍然参考图6a,使用这组的源1310中的一个或多个以及该组的检测器1320中的一个或多个可选地与使用如上所述的带正电粒子断层摄影系统耦合。如图6a所示,带正电粒子断层摄影系统使用第二机械支撑件1343,以将闪烁材料710与台架960共同旋转,以及与可选的片材共同旋转,例如第一片材760和/或第四片材790。

示例ii

现在参考图6b,示出了使用大于三个成像器的集成的癌症治疗-成像系统1300的第二示例。

仍然参考图6b,示出了两对成像系统。特别地,耦合到第一检测器1322和第二检测器1324的第一成像源1312和第二检测器1314如上所述。为了清楚呈现且不失一般性,第一成像系统和第二成像系统被称为第一x射线成像系统和第二x射线成像系统。以与前述示例中描述的第一成像系统和第二成像系统相似的方式,第二对成像系统使用与第三检测器1326耦合的第三成像源1316和到与第四检测器1328耦合的第四成像源1318。本文中,第二对成像系统可选地并且优选地使用第二成像技术,例如荧光透视。可选地,第二对成像系统是单个单元,诸如耦合到第三检测器1326的第三成像源1316,而不是一对单元。可选地,一组成像源1310中的一个或多个被静态地定位,而一组成像源1310中的一个或多个与台架960共同旋转。成对的成像源/检测器可选地具有共用的和不同的距离,诸如第一距离d1,例如用于第一源检测器对,以及第二距离d2,例如用于第二源-检测器或第二源检测器对。如图所示,断层摄影检测器或闪烁材料710处于第三距离d3。明显的差异允许源-检测器元件以不同于台架960的旋转的速率在单独的旋转系统上旋转,这允许在用带正电粒子进行肿瘤治疗时收集完整的三维图像。

示例iii

为了清楚呈现,现在参考图6c,本文所述的任何束或束路径可选地是所示的锥形束1390。患者支撑件152是用于相对于任何轴线定位、旋转和/或约束肿瘤720和/或患者730的任何部分的机械和/或机电装置。

断层摄影检测器系统

断层摄影系统将闪烁材料光学耦合到检测器。如上所述,断层摄影系统可选地并且优选地使用一个或多个检测片材、束追踪元件和/或追踪检测器,来确定/监控在束路径中样本、成像元件、患者或肿瘤之前和/或之后的带电粒子束的位置、形状和/或方向。本文中,在不失一般性的情况下,检测器被描述为位于闪烁材料旁边的检测器阵列或二维检测器阵列;然而,检测器阵列可选地使用一个或多个光学器件与闪烁材料光耦合。可选地并优选地,检测器阵列是对闪烁材料710成像的成像系统的部件,其中成像系统解决由剩余带电粒子束267的通行的结果而发射的二次光子的观察平面上的原始体积或原点位置。如下所述,可选地使用多于一个检测器阵列来从多于一个方向对闪烁材料710成像,这有助于原始的光子点、带正电的粒子束路径和/或断层摄影图像的三维重建。

成像

通常,使用成像仪执行医学成像,以产生身体的内部组成部分的视觉和/或符号表示,用于诊断、治疗和/或作为身体状态的记录。通常,使用一个或多个成像系统对肿瘤和/或患者进行成像。例如,如上所述的x射线成像系统和/或带正电的粒子成像系统可选地单独使用、一起使用和/或与任何附加成像系统一起使用,例如使用x射线照相术、磁共振成像、医学超声成像、热成像仪、医学摄影、正电子发射断层摄影(pet)系统、单光子发射计算机断层摄影(spect)和/或另一种核/带电粒子成像技术。

基准记号

可选地使用基准记号和基准检测器来定位、定位、追踪、避免和/或调整治疗室中相对于带电粒子束系统100的喷嘴或喷嘴系统146和/或相对于彼此移动的物体。这里,为了清楚呈现并且不失一般性,依据可移动或静态定位的治疗喷嘴和可移动或静态的患者位置来说明基准记号和基准检测器。然而,通常,基准标记和基准检测器被用来标记和识别治疗室(例如癌症疗法治疗室1222)中的任何物体的位置或相对位置。这里,基准指示符指的是基准记号或基准检测器。本文中,光子从基准记号行进到基准检测器。

这里,基准是指对照的固定基础,例如点或线。基准记号或基准是放置在成像系统的视场中的物体,其可选地出现在用于作为参考点或作为度量而产生的场景、区域或体积的生成图像或数字表示中。本文中,基准记号是放置在治疗室对象或患者上但不进入治疗室对象或患者的物体。特别地,本文中,基准记号不是患者体内的植入设备。在物理学中,基准是参考点:场景中的固定点或线,其他对象可以与其关联地或相对地被测量。使用用于确定方向或测量角度的照准设备观察基准记号,例如照准仪或现代的数字检测系统。现代位置确定系统的两个例子是passivepolarisspectra系统和polarisvicra系统(加拿大安大略湖的ndi)。

现在参考图7a,描述了基准记号系统3200的使用。通常,将基准记号放置在对象上3210,检测来自基准记号的光3230,确定相对对象位置3240,并执行后续任务,例如治疗肿瘤3270。为了清楚呈现并且不失一般性,下文提供了基准记号与x射线和/或带正电的粒子断层摄影成像和/或使用带正电粒子的治疗的非限制性实例。

示例i

现在参考图8,图8示出和描述了基准记号辅助的断层摄影系统3300。通常,一组基准记号检测器3320检测从一组基准记号3310发射和/或反射的光子,并且所得到的确定的距离和计算出的角度用于确定多个物体或元件例如在治疗室1222中的相对位置。

仍然参考图8,最初,将一组基准记号3310放置在一个或多个元件上。如图所示,第一基准记号3311、第二基准记号3312和第三基准记号3313位于优选刚性的第一支撑元件3352上。如图所示,第一支撑元件3352支撑闪烁材料710。由于第一基准记号3311、第二基准记号3132、第三基准记号3333和闪烁材料710中的每个被固定或静态地定位在第一支撑元件3352上,所以基于第一支撑元件的运动自由度,如果第一基准记号3311、第二基准记号3312和/或第三基准记号3313的位置是已知的,则闪烁材料710的相对位置也是已知的。在这种情况下,第一支撑元件3352和第三支撑元件3356之间的一个或多个距离被确定,如下面进一步描述的。

仍然参考图8,一组基准检测器3320用于检测从该组基准记号3310的一个或多个基准记号发射和/或反射的光。如图所示,来自照明源的环境光子3221和/或光子被第一基准记号3311反射,沿着第一基准路径3331行进,并且被该组基准检测器3320的第一基准检测器3321检测到。在这种情况下,来自第一基准检测器3321的第一信号被用来确定到第一基准记号3311的第一距离。如果支撑闪烁材料710的第一支撑元件3352仅相对于喷嘴系统146沿z轴平移,则第一距离的信息足以确定闪烁材料710相对于喷嘴系统146的位置。类似地,例如从嵌入到第二基准记号3312中的发光二极管发射的光子沿着第二基准路径3332行进,并且当被该组基准检测器3320的第二基准检测器3322检测时产生第二信号。第二信号可选地用于确认第一支撑元件3352的位置,减小所确定的第一支撑元件3352的位置误差,和/或用于确定第一支撑元件3352的第二轴线运动的程度,例如第一支撑元件3352的倾斜。类似地,从第三基准记号3313通过的光子沿着第三基准路径3333行进,并且当被该组基准检测器3320的第三基准检测器3323检测时产生第三信号。第三信号可选地用于确认第一支撑元件3352的位置,减少确定的第一支撑元件3352的位置误差,和/或用于确定第一支撑元件3352的第二或第三轴线运动的范围,例如第一支撑元件3352的旋转。

如果治疗室1222内的所有可移动元件一起移动,则根据可移动元件的自由度,确定了一个、两个或三个基准记号的位置就足以确定所有的可一起移动的可移动元件的位置。然而,可选地,治疗室1222中的两个或更多个物体彼此独立地或半独立地移动。例如,第一可移动物体可选地相对于第二可移动物体平移、倾斜和/或旋转。放置在每个可移动物体上的该组基准标记物3310中的一个或多个附加基准记号允许确定每个可移动物体的相对位置。

仍然参考图8,相对于闪烁材料710的位置来确定患者730的位置。如图所示,定位患者730的第二支撑元件3354可选地相对于定位闪烁材料710的第一支撑元件3352平移、倾斜和/或旋转。在这种情况下,附接到第二支撑元件3354的第四基准记号3314允许确定患者730的当前位置。如图所示,单个基准元件即第四基准记号3314的位置由第一基准检测器3321和第二基准检测器3322确定,第一基准检测器3321确定到第四基准记号3314的第一距离,第二基准检测器3322确定到第四基准记号3314的第二距离,其中距第一基准检测器3321的第一距离的第一弧和距第二基准检测器3322的第二距离的第二弧,在第四个基准记号3334的标记第二支撑元件3352的位置和患者730的支撑位置的一点处重叠。结合上述确定闪烁材料710的位置的系统,闪烁材料710相对于患者730及因此相对于肿瘤720的位置确定。

仍然参考图8,一个基准记号和/或一个基准检测器被可选地且优选地用来确定相距一个或多个物体的多于一个距离或角度。在第一种情况下,如图所示,来自第四基准记号3314的光由第一基准检测器3321和第二基准检测器3322两者检测。在第二种情况下,如图所示,由第一基准检测器3321检测的光从第一基准记号3311和第四基准记号3314经过。因此,(1)使用一个基准记号和两个基准检测器来确定物体的位置,(2)使用两个元件上的两个基准记号和一个基准检测器确定两个元件相对于单个检测器的距离,和/或如下面关于图10a所示和描述的,和/或(3)使用单个基准检测器检测单个物体上的两个或多个基准记号的位置,其中根据所得到的信号确定单个物体的距离和取向。通常,使用多个基准记号和多个基准检测器来确定或多种因素确定多个对象的位置,特别是当对象是刚性的(例如支撑元件)或半刚性的(例如人、头部、躯干或肢体)时。

仍参考图8,进一步描述了基准记号辅助的断层摄影系统3300。如图所示,该组基准检测器3320安装在第三支撑元件3356上,第三支撑元件3356相对于喷嘴系统146的位置和取向是已知的。因此,如上所述,通过使用该组基准记号3310,喷嘴系统146相对于肿瘤720、患者730和闪烁材料710的位置和取向是已知的。可选地,主控制器110使用来自该组基准检测器3320的输入来:(1)指示患者730或操作者的运动;(2)利用安装的基准记号和/或基准检测器来控制、调整和/或动态地调整任何元件的位置,和/或(3)控制带电粒子束的操作,例如用于成像和/或治疗或执行带正电粒子束的安全停止。此外,基于过去的运动,例如操作者穿过治疗室1222移动或两个物体的相对运动,主控制器可选地并且优选地被用于预示或预测处理束269和运动物体(在这种情况下操作员)之间的未来冲突,并采取适当的措施或防止两个物体的碰撞。

示例ii

现在参考图9,图9描述了基准记号辅助的治疗系统3400。为了阐明本发明并不失一般性,本实施例使用带正电的粒子来治疗肿瘤。然而,本文描述的方法和仪器适用于如上文所述的样本的成像。

仍然参考图9,图9示出了基准记号-基准检测器的组合的另外四种情况。在第一种情况下,如先前示例所述,使用第一基准检测器3321检测来自第一基准记号3311的光子。然而,由于第六基准路径3336被阻挡,在这种情况下被患者730阻挡,所以来自第五基准记号3315的光子被阻挡并阻止其到达第一基准检测器3321。发明人注意到没有预期的信号,先前观察到的信号随着时间推移、和/或新信号的出现(每个都增加关于存在的信息)、和/或物体的移动而消失。在第二种情况下,来自第五基准记号3315的沿第七基准路径3337通过的光子被第二基准检测器3322检测到,这示出了产生可用于找到柔性元件或具有许多自由度的元件(例如患者的手、手臂或腿部)的边缘的阻挡和未阻挡信号的一个基准记号。在第三种情况下,自第五基准记号3315和第六基准记号3316分别沿着第七基准路径3337和第八基准路径3338行进的光子被第二基准检测器3322检测到,这示出了一个基准检测器可选地检测来自多个基准记号的信号。在这种情况下,来自多个基准源的光子可选地具有不同的波长,在不同的时间发生,在不同的重叠时间段内发生和/或被相位调制。在第四种情况下,第七基准记号3317被固定在与基准检测器相同的元件上,在这种情况下是第三支撑元件3356的前表面平面。此外,在第四种情况下,观察沿着第九基准路径3339行进的光子的第四基准检测器3324被安装到第四支撑元件3358上,其中第四支撑元件3358定位患者730及其肿瘤720、和/或附接到一个或多个基准源元件。

仍然参考图9,图9进一步描述了基准记号辅助的治疗系统3400。如上所述,该组基准记号3310和该组基准检测器组3320被用于确定物体在治疗室1222中的相对位置,如图所示,物体有第三支撑元件3356、第四支撑元件3358、患者730和肿瘤720。此外,如图所示,第三支撑元件3356相对于喷嘴系统146的物理位置和取向是已知的。因此,使用来自该组基准检测器3320的、代表基准标记3310和室元件的的位置信号,主控制器110根据时间、喷嘴系统146的运动和/或患者730的运动的函数来控制治疗束269瞄准(靶向)肿瘤720。

示例iii

现在参考图10a,图10a描述了基准记号辅助的治疗室系统3500。不失一般性并为了清楚呈现,零向量3501是当扫描系统140的第一轴控制器143,例如竖直控制器,和第二轴控制器144,例如水平控制器,被关闭时,从喷嘴系统146出来的向量或线。不失一般性并未来清楚,零点3502是在喷嘴系统146的出口面的平面处的零向量3501上的点。通常,定义的点和/或定义的线被用作参考位置和/或参考方向,且基准记号在空间中相对点和/或线定义。

示出了基准记号-基准检测器的组合的另外六种情况,以进一步描述基准记号辅助的治疗室系统3500。在第一种情况下,患者730的位置确定。本文中,第一基准记号3311标记患者定位装置3520的位置,并且第二基准记号3312标记患者730的一部分皮肤(例如肢体、关节)的位置,和/或相对于肿瘤720的特定位置。在第二种情况下,该组基准记号3310的多个基准记号和该组基准检测器3320的多个基准检测器被用来确定单个物体的位置/相对位置,其中该过程可选地且优选地对于处理室1222中的每个物体重复。如图所示,用第二基准记号3312和第三基准记号3313标记患者730,使用第一基准检测器3321和第二基准检测器3322监测第二基准记号3312和第三基准记号3313。在第三种情况下,第四基准记号3314标记闪烁材料710,第六基准路径3336示出阻挡的基准路径的另一示例。在第四种情况下,第五基准记号3315标记不总是存在于治疗室中的物体,例如轮椅3540、步行器或推车。在第六种情况下,使用第六基准记号3316来标记操作员3550,操作员3550是可移动的并且必须防止其受到喷嘴系统146的不需要的照射。

仍然参考图10a,图10a描述了通畅的场治疗向量和不通的场治疗向量。通畅的场治疗向量包括不与非标准物体相交的治疗束269的路径,其中标准对象包括用于测量治疗束269的属性的治疗束269的路径中的所有元件,例如第一片材760、第二片材770、第三片材780和第四片材790。非标准物体或干涉物体的示例包括患者沙发的扶手、患者沙发的背面和/或支撑杆,这样的机器人手臂。在任何潜在的干扰物体上使用例如基准记号的基准指示符,允许主控制器110在通畅的场治疗向量的情况下仅对患者730的肿瘤720进行治疗。例如,基准记号可选地沿着患者沙发或患者定位系统的边缘或角落,或实际上位于患者沙发上的任何位置放置。结合对非标准对象的几何的已知知识,主控制器可以推导/计算当前或将来的通畅的场治疗向量中非标准物体的存在、形成不通的场治疗向量、并执行任一:增加治疗束269的能量以补偿、移动干涉的非标准物体、和/或将患者730和/或喷嘴系统146到新的位置以产生通畅的场治疗向量。类似地,对于给定的确定的通畅场治疗向量,使用质子束的扫描,对于给定的喷嘴-患者沙发位置的总可治疗区域可选地且优选地被确定。此外,通畅的场向量可选地并且优选地被预先确定,并且用于放射治疗方案的开发。

再次参考图7a、图8、图9和图10a,通常,一个或多个基准记号和/或一个或多个基准检测器被附接到治疗室1222中的任何可移动和/或静态定位的物体/元件,其允许确定治疗室1222中的任何组的物体之间的相对位置和取向。

任选地使用声发射器和检测器、雷达系统和/或任何范围和/或方向寻找系统代替本文所述的源-光子-检测器系统。

2d-2d的x射线成像

仍然参考图10a,为了清楚呈现并且不失一般性,图10a示出了二维-二维(2d-2d)的x射线成像系统3560,其代表任何基于源-样本-检测器传输的成像系统。如图所示,2d-2d成像系统3560包括在患者730的第一侧上的2d-2d源端3562和在患者730的第二侧(相对侧)上的2d-2d检测器端3564。2d-2d源端3562保持/定位和/或对准源成像元件,诸如:(1)一个或多个成像源;(2)第一成像源1312和第二成像源1322;和/或(3)第一锥形束x射线源1392和第二锥形束x射线源1394;同时,2d-2d检测器端3564分别保持、定位和/或对准:(1)一个或多个成像检测器3566;(2)第一成像检测器和第二成像检测器;和/或(3)第一锥形束x射线检测器和第二锥形束x射线检测器。

在实践中,可选地且优选地,作为单元的2d-2d成像系统3560围绕患者围绕第一轴线(例如治疗束269的轴线)旋转,如在第二时间t2所示。例如,在第二时间t2,2d-2d源端3562向上移出所示平面,同时2d-2d检测器端3564向下移出所示平面。因此,2d-2d成像系统可以通过围绕第一轴线旋转而在一个或多个位置处操作,同时在治疗束269的操作中治疗束269的路径不会受到干涉。

可选地且优选地,2d-2d成像系统3560不物理地阻碍来自喷嘴系统146的治疗束269或相关联的剩余能量成像束。通过喷嘴系统146和2d-2d成像系统3560的相对运动,治疗束269的平均路径和来自2d-2d成像系统3560的x射线源的x射线的平均路径形成从0°到90°的角度,更优选地大于10°、20°、30°或40°的角度、且小于80°、70°或60°。仍然参考图10a,如在第二时间t2所示,平均治疗束和平均x射线束之间的角度为45°。

2d-2d成像系统3560可选地围绕第二轴线旋转,例如垂直于图10a并穿过患者和/或穿过第一轴线的轴线。因此,如图所示,当输出喷嘴系统146的出口端口沿弧形移动并且治疗束269从另一角度进入患者730时,2d-2d成像系统3560围绕垂直于图10a的第二轴线旋转,2d-2d成像系统3560的第一轴线继续围绕第一轴线旋转,其中在用质子成像的情况下,第一轴线是治疗束269或剩余带电粒子束267的轴线。

可选地且优选地,2d-2d的x射线成像系统3560的一个或多个元件用一个或多个基准元件标记,如上所述。如图所示,2d-2d检测器端3564配置有第七基准记号3317和第八基准记号3318,而2d-2d源端3562配置有第九基准记号3319,其中使用任何数量的基准记号。

在许多情况下,由于两个基准指示符是物理连接的,一个基准指示符的移动需要第二基准指示符移动。因此,考虑到计算多个基准记号的相对位置的复杂代码,第二基准指示符并不是严格需要的,基准记号通常围绕患者730旋转、经过患者730平移、和/或相对于一个或多个附加的基准记号移动。代码被非机械连接和/或可独立移动的障碍物进一步复杂化,障碍物例如沿着第一同心路径移动的第一障碍物体和沿着第二同心路径移动的第二障碍物体。发明人注意到,在治疗肿瘤720的至少一个并且优选地每个体素之前,如果通过使用基准指示符确定治疗束269到患者730的路径无障碍,则复杂的位置确定代码被大大简化。因此,放置在潜在障碍物体上的多个基准记号简化了代码,并减少了治疗相关的错误。通常,根据所有可能障碍物体(例如患者沙发的支撑元件)的当前位置,确定治疗区域或治疗锥形区,其中从输出喷嘴系统146到患者730的治疗锥形区不穿过任何障碍物。在沿关于患者730的弧形移动时,随着治疗锥形区重叠,治疗束269的路径和/或剩余带电粒子束267的路径可选地从治疗锥形区移动到治疗锥形区,而无需连续使用成像/治疗束。因此,标准断层摄影算法的变换因此允许对成像/治疗束的物理障碍被避免。

非等中心系统

发明人注意到,基准记号辅助的成像系统、基准记号辅助的断层摄影系统3300和/或基准记号辅助的治疗系统3400可适用于没有治疗束等中心的治疗室1222、没有肿瘤等中心的治疗室1222、和/或不依赖于使用和/或依赖于等中心的计算的治疗室1222。此外,发明人注意到,公众视野中的所有带正电粒子束治疗中心都是基于使用等中心来计算束位置和/或治疗位置的数学系统,并且本文所述的基准记号辅助的成像和治疗系统不需要等中心,并未必基于使用等中心的数学系统,如下文进一步描述的。形成鲜明对比的是,定义的点和/或定义的线被用作参考位置和/或参考方向,并且在空间中相对于点和/或线定义基准记号。

传统上,基于台架的带电粒子癌治疗系统的等中心263是空间中输出喷嘴的旋转所围绕的点。理论上,等中心263是空间中一个无限小的点。然而,传统的台架和喷嘴系统是大的且非常重的设备,每个元件关联有机械误差。在现实生活中,台架和喷嘴围绕中心体积而非一点旋转,并且在台架-喷嘴系统的任何给定位置处,治疗束269的平均或未改变的路径穿过中心体积的一部分,但是不一定是等中心263的单点。因此,为了区分理论和现实,本文将中心体积称为机械定义的等中心体积,其中在最佳工程实践下,等中心具有几何中心、等中心263。此外,理论上,当台架-喷嘴系统围绕患者旋转时,治疗束269的平均或未改变的线在第一时间和第二时间、优选地所有时间,都相交于一点,该点即为等中心点263,其位置未知。然而,在实践中,线通过机械识别的等中心体积3512。发明人注意到,在所有台架支撑的可移动喷嘴系统中,使用数学假设的等中心263的点来计算使用的束的状态,例如带电粒子束的能量、强度和方向。发明人进一步注意到,如实践中,治疗束269通过机械定义的等中心体积,但错过等中心263,在每个时间点的患者730的肿瘤720的实际治疗体积与计算出的治疗体积之间存在误差。发明人还注意到,误差导致治疗束269:(1)不以规定的能量冲击给定体积的肿瘤720,和/或(2)冲击在肿瘤外的组织。从机械方面,这个错误是不能消除的,只能减小。然而,如上所述,使用基准记号和基准检测器消除了使用未知位置的等中心263的限制,因为使用基准记号和基准检测器的输出而不使用等中心263、不假设等中心263和/或没有基于等中心263的空间治疗计算,来确定患者定位系统、肿瘤720和/或患者730的实际位置,确定治疗束269正冲击的位置,以实现医生提供的治疗处方。相反,物理上定义的点和/或线(例如零点3502和/或零向量3501)与基准相结合用于:(1)确定对象相对于点和/或线的位置和/或取向,和/或(2)执行诸如放射治疗方案之类的计算。

再次参考图7a并再次参考图10a,可选地且优选地,确定相对对象位置3240的任务使用安装在治疗室1222中(例如在台架或喷嘴系统)的基准元件(如光学跟踪器),并被校准到束269的“零”向量3501,该向量被定义为当束输送系统135中的一个或多个最终磁体的电磁和/或静电转向、和/或附接到其终点的输出喷嘴系统146被关闭时处理束的路径。零向量3501是当扫描系统140的第一轴控制器143(例如竖直控制)和第二轴控制器144(例如水平控制)被关闭时,治疗光束269的路径。零点3502是任何点,例如零向量3501上的点。本文中,不失一般性并为了清楚呈现,零点3502是穿过喷嘴系统146的喷嘴的终点所限定的平面的零向量3501上的点。最终,使用零向量3501和/或零点3502是直接和可选地将治疗室1222中的物体(例如移动物体和/或患者730及其肿瘤720)的坐标彼此主动关联的方法;不是将它们被动地关联空间中的想象点(如理论的等中心)相关联,该理论的等中心不是机械地在实践中作为空间点实施,而是总是作为等中心体积,例如包括良好设计的系统中等中心点的等中心体积。示例进一步区分基于等中心和基于基准记号的瞄准系统。

示例i

现在参见图10b,描述了图10a的基准记号辅助的治疗室系统3500的非等中心系统3505。如图所示,喷嘴/喷嘴系统146相对于诸如第三支撑元件3356的参考元件定位。参考元件可选地是固定到喷嘴系统146的任何部分的参考基准记号和/或参考基准检测器和/或固定在喷嘴系统146上的刚性的位置已知的机械元件。如上所述,患者730的肿瘤720的位置也使用基准记号和基准检测器确定。如图所示,在第一时间t1,治疗束269的第一平均路径通过等中心263。在第二时间t2,由于与喷嘴系统146的移动相关联的固有机械误差,第二平均路径治疗束269不通过等角点263。在传统的系统中,这将导致治疗体积误差。然而,使用基于基准记号的系统,在第二时间t2已知喷嘴系统146和患者730的实际位置,这允许主控制器使用扫描系统140的第一轴控制器143(例如竖直控制)和第二轴控制器144(例如水平控制),使治疗束269指向目标和处方规定的肿瘤体积。再次,由于使用基准记号系统已知治疗时的实际位置,所以去除了喷嘴系统146的移动带来的机械误差,并且使用喷嘴系统146和肿瘤720的实际已知位置进行治疗束269的x/y轴调整,与假设治疗束269通过等中心263的传统系统中进行的x/y轴调整形成鲜明对比。实质上:(1)传统瞄准系统的x/y轴调整是错误的,因为未修正的治疗束269不穿过假定的等中心,(2)基于基准记号的系统的x/y轴调整知道治疗束269相对于患者730及其肿瘤720的实际位置,其允许不同的x/y轴调整,调整治疗束269以规定的剂量治疗规定的肿瘤体积。

示例ii

现在参考图10c,提供了示出具有固定束线位置的等中心263和移动患者定位系统中的误差的示例。如图所示,在第一时间t1,平均/未改变的治疗束路径269通过肿瘤720,但是错过等中心263。如上所述,传统的治疗系统假设平均/未改变的治疗束路径269通过等中心263并将治疗束调整到肿瘤720的规定体积以进行治疗,其中通过中心的假设路径和基于等中心点的调整路径都是错误的。形成鲜明对比的是,基准标记系统:(1)确定实际平均/未改变的治疗束269的路径不通过等中心263,(2)确定平均/未改变的治疗束269相对于肿瘤720的实际路径,和(3)使用诸如零线3501和/或零点3502的参考系统来调整实际的平均/未改变的治疗束269,以使用扫描系统140的第一轴控制器143(例如竖直控制器)和第二轴控制器144(例如水平控制器)来撞击规定的组织体积。如图所示,在第二时间t2,平均/未改变的治疗束路径269再次错过等中心263,导致传统的基于等中心的靶向系统的治疗误差,但是如上所述,在第二时间t2重复以下步骤直到第n次治疗时间,其中n是至少5、10、50、100或500的正整数:(1)确定以下各项的相对位置:(a)平均/未改变的治疗束269和(b)患者730及其肿瘤720,以及(2)使用第一轴控制器143、第二轴控制器144调整平均/未改变的治疗光束269相对于肿瘤720实际确定位置,以撞击规定的组织体积。

再次参考图8和图9,通常在第一时间,为对象(诸如患者730、闪烁材料710、x射线系统和喷嘴系统146)被绘图并确定相对位置。在第二时间,绘图的对象的位置被用于成像(例如x射线和/或质子束成像)和/或治疗(例如癌症治疗)。此外,可选地使用或不使用等中心。此外,由于不需要知道束等中心限制,只要使用基准标记系统,治疗室1222可选地设计有静态或可移动喷嘴系统146沿任何一组轴与任何患者定位系统相结合。

现在参考图7b,描述了基准标记系统3200的可选用途。在放置基准标记3210的初始步骤之后,基准标记被可选地例如用环境光或外界光照射3220,如上文所述。检测来自基准标记的光3230,并用于确定对象的相对位置3240,如上所述。此后,可选地调整对象位置3250,例如在主控制器的控制下110。照射基准标记的步骤3220和/或检测来自基准标记的光的步骤3230以及确定相对对象位置的步骤3240被迭代地重复,直到对象被正确定位。同时地或分别地,调整基准检测器位置3280,直到对象被正确放置,例如用于治疗特定肿瘤体素。通过使用上述任何步骤:(1)可选地对准一个或多个图像3260,例如使用所确定的位置所收集的x射线图像和质子断层摄影图像;(2)治疗肿瘤720的3270;和/或(3)追踪肿瘤720的变化3290以获得动态治疗变化,和/或记录治疗阶段(session)以便后续分析。

参考带电粒子路径

现在参考图11,图11描述了带电粒子参考束路径系统4000,其与上文所述的台架系统的等中心参考点形成鲜明的对比。带电粒子参考束路径系统4000相对于带正电粒子的参考路径和/或其变换定义在治疗室1222、患者730和/或肿瘤720中的体素。带正电粒子的参考路径包括以下中的一个或多个:零矢量、非重定向(unredirected)束线、非导向(unsteered)束线、束线的标称路径、和/或例如在可旋转台架的情况下、和/或可移动喷嘴、零矢量的可平移和/或可旋转位置、第一非重定向束线2841、第二非重定向束线2842和/或第三非重定向束线2843。为了清楚呈现并不失一般性,本文中使用的参考束路径的术语指的是在已知的一组控制下由带电粒子束限定的轴系统,例如进入治疗室1222的已知位置、进入治疗室1222中的已知矢量、应用在第一轴控制器143中的第一已知场和/或应用在第二轴控制器144中的第二已知场。此外,如上所述,参考零点或零点3502是参考束路径上的点。更一般地,参考束路径和参考零点可选地指的是校准的参考束路径和束路径的校准参考零点的数学变换,例如带电粒子束路径限定的轴系统。校准的参考零点是任何点;然而,优选地,参考零点在校准的参考束路径上,并且如本文所使用的,为了清楚呈现且不失一般性,是经过喷嘴系统146的喷嘴的终点限定的平面的校准参考束路径上的点。可选地并且优选地,在先前的校准步骤中,根据第一已知场和第二已知场中的一个或多个应用的场,以及可选的带电粒子束(例如沿治疗束269的路径)的能量和/或流量/强度,对照一个或多个系统位置标记,校准参考束路径。参考束路径可选地并且优选地用基准标记系统实现。下文将进一步描述。

示例i

仍然参考图11,在第一示例中,使用传统的等中心轴系统4022开发的放射治疗方案进一步描述带电粒子参考束路径系统4000。医生批准的放射治疗方案4010,例如使用传统的等中心轴系统4022开发的放射治疗方案,被转换为使用参考束路径-参考零点治疗方案的放射治疗方案。当耦合到校准的参考束路径时,转换步骤使用理想的等中心;因此,使用校准的参考束和基准指示器4040的后续治疗消除了等中心体积的误差。例如,在肿瘤治疗4070之前,使用基准指示器4040来确定患者730的位置和/或确定到患者730的通畅的治疗路径。例如,由此获得的参考束路径和/或治疗束路径269被投射在软件中,以确定治疗束路径269是否未受治疗室中的设备阻碍,这使用治疗室对象的已知几何形状和指示一个或多个且优选地所有可移动治疗室对象的位置和/或方位的基准指示器4040来确定。软件可选地在虚拟治疗系统中实施。优选地,在每次使用治疗束路径269之前小于5、4、3、2、1和/或0.1秒内,和/或在患者定位系统、患者730和/或操作者的运动之后的小于5、4、3、2、1和/或0.1秒内,软件系统相对于标记有基准指示器4040的实际物理障碍物验证通畅的治疗路径。

示例ii

在第二示例中,再次参考图11,进一步描述了带电粒子参考束路径系统4000。

通常,开发放射治疗方案4020。在第一种情况下,使用等中心轴系统4022来开发放射治疗方案4020。在第二种情况下,使用带电粒子的参考束路径的系统4024被用于开发放射治疗方案。在第三种情况下,在医生批准放射治疗方案4010之前,使用参考束路径开发的放射治疗方案4020被转换到等中心轴系统4022,以符合呈现给医生的传统格式,其中转换使用实际的等中心点,而不是机械定义的等中心体积和与体积大小相关联的误差,如上所述。在任何情况下,使用基准指示器4040,在软件和/或无肿瘤治疗的空运行中测试放射治疗方案。空运行允许现实生活中的误差检查,以确保在建议或开发的放射治疗方案4020中没有机械元件穿过治疗束。可选地,在空运行中使用放置在患者治疗位置的物理虚拟物。

在医生批准放射治疗方案4010之后,肿瘤治疗4070开始,可选地和优选地采用一中间步骤,该步骤为使用基准指示器4040来验证通畅的治疗路径4052。如果主控制器110使用参考束路径和基准指示器4040确定治疗束269将与治疗室1222中的对象或操作员相交叉,则存在多个选项。在第一种情况下,在确定治疗束269的治疗路径被阻挡和/或妨碍时,主控制器110暂时或永久地停止放射治疗协议。在第二种情况下,可选地在中断放射治疗协议之后,开发修正的治疗方案4054,随后医生批准修正的放射治疗方案4010。在第三种情况下,可选地在中断放射治疗方案之后,执行递送轴系统的物理转换4030,例如通过移动喷嘴系统146、旋转和/或平移喷嘴位置4034、和/或切换到另一个束线4036。随后,肿瘤治疗4070被恢复和/或修正的治疗方案被提交给医生批准放射治疗方案。

自动癌症疗法成像/治疗系统

使用带正电粒子的癌症治疗包括多维成像、多轴肿瘤照射治疗方案、多轴束的粒子束控制、治疗期间的多轴的患者运动、以及患者和/或治疗喷嘴系统之间的间歇性介入对象。使用健壮代码的整体癌症治疗系统的子集的自动化简化了使用混合变量的工作,这有助于医疗专业人员的监督。本文中,自动化系统可选地是半自动化的,例如由医疗专业人员监督。

示例i

在第一示例中,仍然参考图11并且现在参考图12,描述了半自动癌症疗法治疗系统4200的第一示例,并且进一步描述了带电粒子参考束路径系统4000。带电粒子参考束路径系统4000可选地且优选地用于自动或半自动地:(1)识别即将到来的治疗束路径;(2)确定对象在即将到来的治疗束路径中的存在;和/或(3)重定向带电粒子束的路径以产生替代的即将到来的治疗束路径。此外,主控制器110可选地并且优选地包含规定的肿瘤照射方案,例如由处方医生提供。在该示例中,主控制器110被用于确定替代治疗方案,以实现与规定的治疗方案相同的目的。例如,主控制器110在确定即将到来的处理束路径或逼近的治疗路径中的介入对象的存在时,指示和/或控制:介入对象的运动;患者定位系统的运动;和/或喷嘴系统146的位置,以在每个体素和/或肿瘤萎缩方向的放射剂量达到对肿瘤720相同或基本相同的治疗,其中基本相同的是处方的90%、95%、97%、98%,99%,或99.5%内的剂量和/或方向。本文中,逼近的治疗路径是对当前版本的放射治疗方案的肿瘤的带电粒子束的下一个治疗路径,和/或在接下来的1、5、10、30或60秒内预定使用的治疗束路径/矢量。在第一种情况下,修改的肿瘤治疗协议被发送给医生,例如在就近控制室中的医生和/或远程实验室或外部建筑物中的医生,以供医生批准。在第二种情况下,当前的或远程的医生监督(例如使用主控制器所生成的)肿瘤治疗协议的自动或半自动的修改。可选地,医生停止治疗、暂停治疗以等待对修改后的肿瘤治疗协议的分析、减慢治疗程序、或允许主控制器继续遵循计算机建议修改的肿瘤治疗方案。可选地且优选地,诸如上文所述的成像数据和/或成像信息被输入到主控制器110,和/或被提供给监督的医生或授权修改肿瘤治疗照射方案的医生。

示例ii

现在参考图12,图12描述了半自动癌症疗法治疗系统4200的第二示例。最初,诸如肿瘤学家的医生提供了一个批准的放射治疗方案4210,在递送带电粒子到患者730的肿瘤720的治疗步骤4228中实施。与治疗步骤的实施并行,(例如由来自成像系统和/或经由基准指示器4040的更新图像/新图像)收集附加数据。随后,在自动过程或半自动过程,主控制器110可选地调整所提供的医生批准的放射治疗方案4210,以形成当前的放射治疗方案。在第一种情况下,癌症治疗停止,直到医生批准建议/调整后的治疗方案,并继续使用医生批准的当前放射治疗方案。在第二种情况下,计算机生成的放射治疗方案自动地按照当前治疗方案继续。在第三种情况下,计算机生成的治疗方案被发送以进行批准,但癌症治疗以降低的速率进行,从而给予医生时间来监控变更的方案。降低的速率可选地小于原始治疗速率的100%、90%、80%、70%、60%或50%,和/或大于原始治疗速率的0、10%、20%、30%、40%或50%。在任何时候,监督的医生、医疗专业人员或工作人员可以增大或减小治疗的速率。

示例iii

仍然参考图12,图12描述了半自动癌症疗法治疗系统4200的第三示例。在该实施例中,实施半自动癌症治疗4220的过程。与前面的由医生提供原始的癌症治疗方案4210的示例形成鲜明对比的是,在本示例中,癌症治疗系统110自动生成放射治疗方案4226。随后,自动生成的治疗方案(即当前的放射治疗方案),例如由递送带电粒子到患者730的肿瘤720的处理步骤4228来实施。可选地并且优选地,自动生成的放射治疗方案4226在中间的和/或并行的医生监督步骤4230中进行审查,其中自动生成的放射治疗方案4226被批准为当前治疗方案4232或被批准为替代治疗方案4234;一旦批准,称为当前治疗方案。

通常,在被实施时,原始的医生批准的治疗方案4210、自动生成的放射治疗方案4226或变更的治疗方案4234被称为当前的放射治疗方案。

示例iv

仍然参考图12,图12描述了半自主癌症疗法治疗系统4200的第四示例。在该示例中,在对患者730的肿瘤720的一组特定体素实施之前,根据如上所述的通畅路径分析来分析当前的放射治疗方案。更具体地,在沿着对于患者的肿瘤720的一个或多个体素的逼近的束治疗路径治疗之前,基准指示器4040用于确定通畅的治疗路径。在实施时,逼近的治疗矢量是在递送带电粒子步骤4228中的治疗矢量。

示例v

仍然参考图12,图12描述了半自动癌症疗法治疗系统4200的第五示例。在该示例中,使用主控制器110和半自动癌症治疗系统的过程来半自动或自动地生成癌症治疗方案。更具体地,半自动癌症治疗4220的过程使用输入来自:(1)半自动患者定位步骤4222;(2)半自动肿瘤成像步骤4224;和/或用于基准指示器4040;和/或(3)具有可选加权参数指令的放射治疗的软件编码集合。例如,治疗指令包括一组标准以:(1)治疗肿瘤720;(2)同时减少带电粒子束在肿瘤720外部的能量传递;最小化或大大减少带电粒子束进入诸如眼睛、神经中枢或器官的重要部位,半自动癌症治疗4220的过程可选地自动生成原始的放射治疗方案4226。自动生成的原始放射治疗方案4226可选地自动实施,例如通过递送带电粒子步骤4226,和/或可选地由医生进行审查,例如在上述的医生监督4230过程中。可选地且优选地,半自动成像步骤4224生成和/或使用来自以下的数据:(1)来自成像系统的一个或多个质子扫描,该成像使用质子对肿瘤720成像;(2)使用一个或多个x射线成像系统的一个或多个x射线图像;(3)正电子发射系统;(4)计算机断层摄影系统;和/或(5)本文描述的任何成像技术或系统。

发明人注意到,传统上,在肿瘤学家团队制定放射方案的同时,肿瘤成像和治疗肿瘤之间间隔数天。形成鲜明对比的是,使用本文描述的自动成像和治疗步骤(例如由主控制器110实施),患者可选地从成像时、到制定放射方案时以及到至少第一次肿瘤治疗期(session),都留在治疗室中和/或患者定位系统中的治疗位置。

示例vi

仍然参考图12,图12描述了半自动癌症疗法治疗系统4200的第六示例。在该示例中,利用当前放射治疗方案,使用来自半自动成像系统4224(如解释的)的并行和/或散布图像,例如经由半自动癌症治疗4220的过程和来自基准指示器4040和/或半自动患者位置系统4222的输入,自动或半自动地调整递送带电粒子步骤4228。

现在参考图13,图13描述了一种用于使用带正电粒子来制定放射治疗方案4310的系统。更具体地,描述了半自动放射治疗方案制定系统4300,其中半自动系统可选地为完全自动或为包含完全自动的子过程。

在自动放射治疗方案制定系统4300中,例如使用主控制器110实施的计算机实施的算法生成得分、子得分和/或输出,以对一组自动产生的潜在放射治疗方案进行评分,其中得分用于确定最佳放射治疗方案、建议的放射治疗方案和/或自动实施的放射治疗方案。

仍然参考图13,半自动或自动放射治疗方案制定系统4300可选地并且优选地为放射治疗开发代码提供一组输入、指南和/或权重,所述放射治疗开发代码处理输入以产生最优放射治疗方案和/或基于输入、指南和/或权重的优选放射治疗方案。输入是目标规范,但不是绝对的固定要求。输入目标可选地且优选地被加权和/或与硬性限制相关联。通常,放射治疗开发代码使用算法、优化协议、智能系统、计算机学习、监督和/或无监督的算法方案来生成建议的和/或立即实施的放射治疗方案,其通过上述的评分进行比较。半自动放射治疗方案制定系统4300的输入包括患者730的肿瘤720的图像、治疗目标、治疗限制、每个输入的相关权重和/或每个输入的相关联的限制。为了便于描述和理解本发明,又不失一般性地,在图13中示出可选输入,并且本文将通过一组示例进一步描述。

示例i

仍然参考图13,半自动放射治疗方案制定系统4300(用于生成放射治疗方案4310)的第一输入是剂量分配4320的要求。本文中,剂量分配包括一个或多个参数,例如待递送的处方剂量4321;放射剂量分配的均一或均匀分配4322;向患者730递送的减少总体剂量4323的目标;关于最小化或减少向患者730的关键体素递送的剂量4324的规格,关键体素例如患者的眼睛、大脑、神经系统和/或心脏的一部分;和/或在肿瘤的周边以外的剂量分配程度4325。自动放射治疗方案制定系统4300使用诸如经由计算机实施的算法的输入来计算和/或迭代最佳的放射治疗方案。

提供给自动放射治疗方案制定系统4300的每个参数可选地并且优选地包含权重或重要性。为了清楚呈现并不失一般性,将以两个案例来说明。

在第一种情况下,在最小化关键体素的剂量4324输入中设置的对眼睛的视神经的剂量减少或甚至完全消除放射剂量的要求/目标,被给予了比最小化对眼睛的外部区域(例如直肌)或眼睛的内部体积(例如眼睛的玻璃体液)的剂量的要求/目标更高的权重。该第一种情况是一个输入提供多于一个子输入的示例,其中每个子输入可选地包括不同的加权函数。

在第二种情况下,将第一输入的第一权重和/或第一子权重与第二输入的第二权重和/或第二子权重进行比较。例如,均匀放射剂量分配4322输入的分配函数、概率或精度可选地包括比为减少总剂量4323输入提供的权重更低的相关权重,以防止计算机算法尝试增加放射剂量,从而产生完全均一的剂量分配。

提供给自动放射治疗方案制定系统4300的每个参数和/或子参数可选地并且优选地包含界限,例如硬性界限、上限、下限、概率界限和/或分配界限。界限要求可选地被生成放射治疗方案4310的计算机算法使用,具有或不具有如上所述的加权参数。

示例ii

仍然参考图13,半自动放射治疗方案制定系统4300的第二输入是患者运动4330输入。患者运动4330输入包括:患者沿一个方向4332的输入、患者匀速运动4333的输入、总患者旋转4334的输入、患者旋转速率4335的输入和/或患者倾斜4336的输入。为了清楚呈现并且不失一般性,患者运动输入在以上几种情况下进一步描述。

仍然参考图13,在第一种情况下,自动放射治疗方案制定系统4300提供引导输入,例如沿着一个方向移动患者4332的输入,但是进一步相关联的指令是如果其他目标需要或者如果实现了放射治疗方案4310的更好的整体得分,则可选地自动放松(relax)引导输入。类似地,匀速移动患者4333的输入也提供有引导输入,诸如放射治疗方案4310的低关联权重可进一步被放松以产生高评分,但是将放松或实施仅限制在相关的固定或硬界限的次数。

仍然参考图13,在第二种情况下,在自动放射治疗方案制定系统4300中,计算机实施的算法可选地生成子分数。例如,患者舒适度分数可选地包括以下两个或更多个相关的度量的组合分数:在一个方向上移动患者4332的输入,匀速移动患者4333的输入,总患者旋转4334的输入,患者旋转速率4335的输入,和/或减少患者倾斜4336的输入。子分数(可选地具有预设界限)允许计算机实施的算法的灵活性,再次生成作为整体的患者运动参数,以使患者舒适。

仍然参考图13,在第三种情况下,自动放射治疗方案制定系统4300可选地包含用于多于一个子功能的输入。例如,减少治疗时间4331的输入可选地用作患者舒适度参数,并且还链接到剂量分配4320的输入。

示例iii

仍然参考图13,自动放射治疗方案制定系统4300的第三输入包括成像系统的输出,例如本文描述的任何成像系统。

示例iv

仍然参考图13,自动放射治疗方案制定系统4300的第四可选输入是存在于治疗室1222中的结构和/或物理元件。再次,为了清楚呈现且不失一般性,以两种情况来说明治疗室对象信息作为放射治疗方案4310的自动制定的输入。

仍然参考图13,在第一种情况下,自动放射治疗方案制定系统4300可选地设置有潜在介入支撑结构4422输入的预扫描,介入支撑结构例如患者支撑装置、患者沙发和/或患者支撑元件,其中预扫描是支撑结构对带正电粒子治疗束的图像/密度/重定向影响。优选地,预扫描是支撑结构的实际图像或断层相片,利用了实际的设备同步加速器、远程产生的实际图像和/或介入结构对带正电粒子束的计算的影响。下面进一步描述支撑结构对带电粒子束的影响的确定。

仍然参考图13,在第二种情况下,自动放射治疗方案制定系统4300可选地通过支撑结构4344的输入提供有减少的治疗。如上所述,相关联的权重、引导和/或界限可选地通过支撑结构4344的输入提供有减少的治疗,并且还如上所述,支撑结构输入可以相对于更为关键的参数,例如递送规定剂量4321输入或对患者730输入的关键体素4324的最小化剂量,进行折中。

示例v

仍然参考图13,自动放射治疗方案制定系统4300的第五可选输入是医生输入4236,例如仅在自动产生放射治疗方案之前提供。单独地,在方案正在制定时,为自动放射治疗方案制定系统4300可选地提供医生监督4230,例如进行干预以限制某个动作,进行干预以迫使某个动作,和/或进行干预以改变特定个体的放射方案的自动放射治疗方案制定系统4300的某个输入。

示例vi

仍然参考图13,自动放射治疗方案制定系统4300的第六输入包括治疗期间关于患者730的肿瘤720的萎缩和/或转移的信息。例如,在使用患者730的肿瘤720的图像的输入(该图像是在使用带正电粒子进行治疗时所收集的)进行治疗期间同时,使用自动放射治疗方案制定系统4300自动更新放射治疗方案4310。例如,随着肿瘤720的尺寸随着治疗而减小,肿瘤720向内萎缩和/或转移。自动更新的放射治疗方案可选地自动实施,例如患者不必从治疗位置移动。可选地,自动放射治疗方案制定系统4300追踪肿瘤720的未治疗体素的剂量,和/或追踪相对于规定剂量4321部分照射的体素,并动态地和/或自动地调整放射治疗方案4310,进而不考虑肿瘤720的移动,为每个体素提供完整的规定剂量。类似地,自动放射治疗方案制定系统4300追踪肿瘤720的治疗体素的剂量,并调整自动更新的肿瘤治疗方案,以减少和/或最小化进一步将放射递送到完全治疗和转移的肿瘤体素,同时继续治疗肿瘤720的部分已治疗的体素和/或未治疗的转移体素。

自动自适应治疗

现在参考图14,图14示出了用于自动更新放射治疗方案4500并优选自动更新和实施放射治疗方案的系统。在第一任务4510中,提供了初始放射治疗方案,例如上述的自动生成的放射治疗方案4226。第一个任务是任务迭代循环和/或任务循环组的启动,本文描述为包括任务二至四。在第二任务4520中,使用从同步加速器130递送的带正电粒子来治疗肿瘤720。在第三任务4530中,例如通过本文描述的任何成像系统,观察肿瘤形状的变化和/或肿瘤位置相对于患者730的周围组成部分的变化。成像可选地与第二任务同时、并行、周期地和/或间歇地发生,同时患者保持在患者定位系统中的定位。主控制器110使用来自成像系统的图像和所提供的和/或当前的放射治疗方案,来确定是否继续或修改治疗方案。当检测到肿瘤720相对于患者730的其他组成部分的相对运动和/或肿瘤730的形状改变时,可任选且优选地自动地实施更新治疗方案的第四任务4540,和/或实施如上所述的使用放射治疗方案制定系统4300。任务二至四的任务可选地优选重复n次,其中n为大于1、2、5、10、20、50或100的正整数,和/或直到肿瘤720的治疗阶段结束,患者730离开治疗室1222为止。

自动治疗

现在参考图15,图15示出了自动癌症疗法治疗系统4600。在自动癌症疗法治疗系统4600中,大多数任务根据基于计算机的算法和/或智能系统来实施。可选地且优选地,医疗专业人员监督自动癌症疗法治疗系统4600,并且在检测到错误时停止或变更治疗,但基本上使用机电元件(诸如本文所述的任何硬件和/或软件)观察系统的由计算机算法引导的实施过程。可选地且优选地,每个子系统和/或子任务是自动的。可选地,一个或多个子系统和/或子任务由医疗专业人员执行。例如,患者730可选地首先由医疗专业人员定位在患者定位系统中,和/或医疗专业人员将托盘插入物510装载到托盘组件400中。可选地且优选地,自动的(例如计算机算法实施的)子任务包括以下一个或多个并优选地以下全部:

·接收治疗方案输入4300,例如处方、指南、患者运动指南4330、剂量分配指南4320、介入对象4310的信息和/或肿瘤720的图像;

·使用治疗方案输入4300自动生成放射治疗方案4226;

·自动定位4222患者730;

·自动成像4224肿瘤720;

·实施医疗专业人员监督4238指令;

·自动实施放射治疗方案4520/将带正电粒子递送到肿瘤720;

·自动重新定位患者4521用于随后的放射递送;

·使喷嘴系统146的喷嘴位置相对于患者730自动旋转4522;

·使喷嘴系统146的喷嘴位置相对于患者730自动平移4523;

·使用成像系统自动验证通畅的治疗路径,例如经由x射线图像观察金属对象或不可预见的致密对象的存在;

·使用基准指示器自动验证通畅的治疗路径4524;

·自动控制带正电粒子束的状态4525,例如能量、强度、位置(x、y、z)、持续时间和/或方向;

·自动控制粒子束路径4526,例如到所选择的束线和/或到选定的喷嘴的路径;

·自动实施定位托盘插入物510和/或托盘组件400;

·自动更新肿瘤图像4610;

·自动观察肿瘤运动4530;和/或

·生成自动修正的放射治疗方案4540/新的治疗方案。

又一实施例包括本文所述的任何元件的任何组合和/或置换。

主控制器、本地通信装置、和/或用于信息通信的系统可选地包括存储在客户端上的一个或多个子系统。客户端是被配置为作为客户设备或其他计算设备的计算平台,例如计算机、个人计算机、数字媒体设备和/或个人数字助理。客户端包括可选地耦合到一个或多个内部或外部输入设备(诸如鼠标、键盘、显示设备、语音识别系统、运动识别系统等)的处理器。处理器还可通信地耦合到输出设备,诸如显示屏幕或数据链路,以分别显示或发送数据和/或已处理信息。在一个实施例中,通信装置是处理器。在另一个实施例中,通信装置是存储在存储器中、由处理器执行的一组指令。

客户端包括诸如存储器的计算机可读存储介质。存储器包括但不限于能够耦合到处理器(例如与计算机可读指令链接的触敏输入设备通信的处理器)的电子、光学、磁性或其他存储或传输数据存储介质。其它合适介质的示例包括例如闪存驱动器、cd-rom、只读存储器(rom)、随机存取存储器(ram)、专用集成电路(asic)、dvd、磁盘、光盘和/或存储芯片。处理器执行存储在存储器中的一组计算机可执行的程序代码指令。该指令可以包括来自任何计算机编程语言的代码,包括例如c(最初由贝尔实验室制定)、c++、c#、visual(microsoft,华盛顿州雷德蒙)、(mathworks,马萨诸塞州内蒂克),(oracle公司,加州雷德伍德城)和(oracle公司,加州雷德伍德城)。

本文中,任何数量例如1、2、3、4、5可选地大于该数、小于该数,或在该数的1%、2%、5%、10%、20%或50%内。

本文中,元件和/或对象可选地手动地和/或机械地移动,例如用电机和/或在主控制器的控制下沿引导元件移动。

示出和描述的具体实施方案是本发明及其最佳模式的说明,并不旨在以其他方式另外限制本发明的范围。实际上,为了简洁,可能不会详细描述系统的常规制造、连接、制备和其他功能方面。此外,各图中所示的连接线旨在表示各种元件之间的示例性功能关系和/或物理联接。许多替代或附加的功能关系或物理连接可存在于实际系统中。

在前面的描述中,已经参考具体示例性实施例描述了本发明;然而,应当理解,在不脱离本文所阐述的本发明的范围的情况下,可以进行各种修改和变化。说明书和附图应以示例性的方式来看待,而不是限制性的,并且所有这些修改旨在被包括在本发明的范围内。因此,本发明的范围应由本文所述的一般实施例及其合法等效物、而不是仅由上述具体实施例来确定。例如,任何方法或过程实施例中所述的步骤可以任何顺序执行,并且不限于在具体实施例中呈现的明确顺序。另外,在任何装置实施例中所述的部件和/或元件可以各种排列组装或以其他方式操作地配置,以产生与本发明基本相同的结果,因此不限于具体实施例中所述的具体配置。

以上已经关于具体实施例描述了益处、其他优点和问题的解决方案;然而,任何益处、优点或问题的解决方案,或可引起任何特定益处、优点或方案发生或变得更明显的任何元件不应被解释为关键的、必需的或基本的特征或部件。

如本文所使用的,术语“包括”、“包含”或其任何变型旨在引用非排他性的包含,使得包括元件列表的过程、方法、物品、组合物或装置不仅包括所述的那些元件,而且也可以包括未明确列出的或固有的主要的过程、方法、物品、组合物或装置。除了未具体叙述的那些之外,在本发明的实践中使用的上述结构、布局、应用、比例、元件、材料或部件的其它组合和/或修改可以被改变,或者以其他方式特别适用于特定的环境、制造规格、设计参数或其他操作要求,而不脱离其大体原则。

虽然本文已经参考某些优选实施例描述了本发明,但是本领域技术人员将容易理解,在不脱离本发明的精神和范围的情况下,其他应用可以替代本文所阐述的那些。因此,本发明仅由下述权利要求书限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1