一种自组装DNA水凝胶的制备方法及其应用与流程

文档序号:13431094阅读:959来源:国知局
一种自组装DNA水凝胶的制备方法及其应用与流程

本发明涉及生物医药领域,具体涉及一种自组装dna水凝胶的制备方法及其应用。



背景技术:

脱氧核糖核酸(dna)作为存储、编码和传递遗传信息的生物大分子,在生命进程中发挥着极为重要的作用。此外,dna具有序列可设计性和响应性等特点,可程序化组装为二维或三维结构,用于构建静态和动态dna机器、纳米器件等。

水凝胶是一种具有三维网状结构的亲水性高分子聚合物。其中,dna水凝胶作为一种仿生功能材料,具有生物相容性好、结构可控性强等优点。dna水凝胶主要可分为三类:(1)dna作为水凝胶骨架侧链的dna水凝胶。将dna共价接枝到水凝胶的高聚物链骨架上,利用功能dna识别靶标分子后结构发生变化,实现水凝胶的响应功能;(2)以dna链为交联剂形成的dna水凝胶。将dna接枝到高聚物链上,基于watson-crick碱基互补配对原则实现水凝胶的交联;(3)纯dna超分子水凝胶。该类水凝胶直接以dna为构造单元,基于dna自组装技术实现水凝胶的形成。与前两种dna水凝胶相比,纯dna超分子水凝胶可通过精确的序列设计调控dna水凝胶的组装过程,耗时较短,生物相容性好,且避免了采用高分子聚合物(如聚丙烯酰胺)为骨架构建dna水凝胶时繁琐的修饰步骤,已被应用于药物释放、细胞培养和体外蛋白质表达等,在生物医学等领域具有潜在的应用前景。

针对以上现有技术以及纯dna水凝胶的优点,目前亟需研究一种新型的仅由dna分子自组装的水凝胶及其制备方法。



技术实现要素:

针对现有技术,本发明的目的是提供一种自组装dna水凝胶的制备方法及其应用,具有成本低廉、操作简单、反应快速、通用性强等优点。

为实现上述目的,本发明采用的技术方案如下:

本发明的第一个方面,提供了一种自组装dna水凝胶的制备方法,该制备方法包括以下步骤:

首先将三条dna单链y1、y2、y3进行退火处理,形成三叉结构y-dna;

然后将y-dna与三种dna发夹hp1、hp2、hp3混合,基于watson-crick碱基互补配对原则,形成“三叉-茎环”中间体;

加入引发链后,基于“toehold”介导的链取代反应,引发链与“三叉-茎环”中间体中的hp1的toehold区域互补杂交,引发链迁移进程,使hp1的发夹结构打开;

溶液中“三叉-茎环”中间体中的hp2的toehold区域与hp1打开后裸露的单链dna序列互补杂交,引发链迁移进程,使hp2的发夹结构打开;

溶液中“三叉-茎环”中间体中的hp3的toehold区域与hp2打开后裸露的单链dna序列互补杂交,引发链迁移进程,使hp3的发夹结构打开,从而形成由三个“三叉-茎环”相交联的杂交体,同时将引发链取代下来释放到溶液中引发新一轮反应,实现引发链的循环,此过程即为一个催化茎环组装反应;

同理,经过一系列的催化茎环组装反应,最终使“三叉-茎环”中间体交联形成大的支化结构,生成dna水凝胶。

本发明还保护通过上述方法制备得到的dna水凝胶以及其在制备药物载体用于药物缓释中的应用。

本发明的第二个方面,提供了一种负载药物的自组装dna水凝胶的制备方法,包括以下步骤:

首先将三条dna单链y1、y2、y3退火处理,形成三叉结构y-dna;

然后将y-dna与三种dna发夹hp1、hp2、hp3混合,基于watson-crick碱基互补配对原则,形成“三叉-茎环”中间体;

最后加入引发链和能够特异性嵌插至dna碱基序列中的药物,形成负载药物的自组装dna水凝胶。

本发明的第三个方面,提供一种上述负载药物的自组装dna水凝胶用于药物缓释的方法,包括以下步骤:

向上述的负载药物的自组装dna水凝胶中加入脱氧核糖核酸酶i(dnasei),在二价金属离子(如ca2+、mg2+)存在的条件下发挥水解作用,将负载药物的自组装dna水凝胶水解为寡核苷酸片段,释放药物,从而实现药物的缓释。

与现有技术相比,本发明的技术方案的有益效果如下:

(1)本发明提供了一种由引发链引发制备自组装纯dna超分子水凝胶的方法,该方法具有成本低廉、操作简单,反应快速、通用性强等优点。

(2)本发明制备得到的自组装dna水凝胶作为药物载体成功应用于药物缓释体系,每个“三叉-茎环”中间体约含有71个载药位点(以实施例中的阿霉素药物为例),由于优化条件中引发链和“三叉-茎环”中间体的比值为1:100,因此,理论上dna水凝胶最大载药位点数约为7100个,能够极大地提高药物的载药量,且克服药物原有的水溶性差、稳定性差等缺点,并能有效控制药物释放量。因此所制备的dna水凝胶为构建高度有序和精确控制的药物载体提供了新方法和新思路,在生物传感和生物医药等领域具有广阔的应用前景。

附图说明

构成本发明的一部分说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。

图1是dna水凝胶制备原理图。

图2是体系中加入引发链后自组装形成dna水凝胶的afm表征图。

图3是dna分子水凝胶用于药物缓释原理图。

图4是加入不同浓度dnasei标准溶液后,负载抗肿瘤药物阿霉素(dox)的自组装dna水凝胶体系的荧光光谱图。图中,dnasei的浓度(自下到上):0、1u/ml、2u/ml、4u/ml、6u/ml、8u/ml、10u/ml。

具体实施方式

应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作和/或它们的组合。

术语解释:

本发明中,toehold是一段悬挂在双链dna末端的、由6个碱基组成的单链dna片段。

正如背景技术所介绍的,纯dna超分子水凝胶在生物医学等领域具有一定的优势,基于此,本发明首先提出了一种制备自组装dna水凝胶的新方法,该方法包括以下步骤:

首先将三条dna单链y1、y2、y3进行退火处理,形成三叉结构y-dna;

然后将y-dna与三种dna发夹hp1、hp2、hp3混合,基于watson-crick碱基互补配对原则,形成“三叉-茎环”中间体;

最后加入引发链后,基于“toehold”介导的链取代反应,引发链与“三叉-茎环”中间体中的hp1的toehold区域互补杂交,引发链迁移进程,使hp1的发夹结构打开;

溶液中“三叉-茎环”中间体中的hp2的toehold区域与hp1打开后裸露的单链dna序列互补杂交,引发链迁移进程,使hp2的发夹结构打开;

溶液中“三叉-茎环”中间体中的hp3的toehold区域与hp2打开后裸露的单链dna序列互补杂交,引发链迁移进程,使hp3的发夹结构打开,从而形成由三个“三叉-茎环”相交联的杂交体,同时将引发链取代下来释放到溶液中引发新一轮反应,实现引发链的循环,此过程即为一个催化茎环组装反应;

同理,经过一系列的催化茎环组装反应,最终使“三叉-茎环”中间体交联形成大的支化结构,生成dna水凝胶。

在本发明中,三叉结构y-dna(y型dna)是由三条dna单链y1、y2、y3退火组成,它是本领域人员所熟知的y型dna结构,当知晓三条dna单链y1、y2、y3能够组成三叉结构y-dna时,本领域的技术人员可常规设计y1、y2、y3,故再此并不需要特别限定它们的序列。并且为形成后续的“三叉-茎环”中间体,本领域人员知晓三叉结构y-dna的末端留有与hp1、hp2、hp3末端碱基互补的单链dna序列,如图1所示的m′、n′、p′。

hp1、hp2、hp3为三种常规的发夹结构,其末端分别留有与三叉结构y-dna末端碱基互补的单链dna序列和toehold区域。根据以上描述,本领域的技术人员可以常规设计三种发夹dna序列,而并不需要特别的限定。

引发链中的5′末端序列能与hp1中的toehold区域碱基互补杂交,引发链迁移进程,从而打开hp1的发夹结构。hp2中的toehold区域与hp1打开后裸露的单链dna序列碱基互补杂交,引发链迁移进程,从而打开hp2的发夹结构。hp3中的toehold区域与hp2打开后裸露的单链dna序列碱基互补杂交,引发链迁移进程,从而打开hp3的发夹结构。根据以上描述,本领域的技术人员可以常规设计引发链的序列,而并不需要特别的限定。

为能够成功形成三叉结构y-dna以及后续的“三叉-茎环”中间体和dna水凝胶,本发明提供一种较优选的序列组合,所述y1如seqidno:1所示,y2如seqidno:2所示、y3如seqidno:3所示,hp1如seqidno:4所示,hp2如seqidno:5所示,hp3如seqidno:6所示,引发链如seqidno:7所示。

在本发明优选的实施例中,三叉结构y-dna的制备包括以下步骤:将等体积相同浓度的三条dna单链y1、y2、y3混合进行退火处理;优选的退火条件为:将样品加热至95℃5min,随即以0.1℃/s冷却至25℃,25℃下继续稳定2h,形成结构稳定的y-dna。

在本发明优选的实施例中,“三叉-茎环”中间体的制备包括以下步骤:首先将hp1、hp2、hp3分别用te缓冲液稀释(te缓冲液的组成为:10mmtris-hcl,1mmedta-2na,12.5mmmgcl2,ph=8.0),然后将hp1、hp2、hp3分别进行退火处理,最后将三叉结构y-dna与退火后的hp1、hp2、hp3混合反应,制备得到“三叉-茎环”中间体。

其中,优选的,退火条件为:将发夹dna溶液加热至95℃5min,随即以0.1℃/s冷却至25℃,25℃下继续稳定2h。

优选的,三叉结构y-dna与退火后的hp1、hp2、hp3的浓度比为1:1:1:1。

优选的,混合反应的条件为:25℃反应2.5h。

在本发明优选的实施例中,所述dna水凝胶的制备包括以下步骤:将“三叉-茎环”中间体和引发链混合反应制备得到dna水凝胶。

其中,优选的,“三叉-茎环”中间体和引发链的浓度比为100:1。

优选的,混合反应的条件为:25℃反应3h。

本发明还提供一种通过上述方法制备得到的dna水凝胶,以及上述dna水凝胶在制备药物载体用于药物缓释中的应用。

其次,本发明提出了一种负载药物的自组装dna水凝胶的制备方法,包括以下步骤:

首先将三条dna单链y1、y2、y3退火处理,形成三叉结构y-dna;

然后将y-dna与三种dna发夹hp1、hp2、hp3混合,基于watson-crick碱基互补配对原则,形成“三叉-茎环”中间体;

最后向“三叉-茎环”中间体中加入引发链和能够特异性嵌插至dna碱基序列中的药物,形成负载药物的自组装dna水凝胶。

在本发明优选的实施例中,将“三叉-茎环”中间体、引发链和药物混合,加入磷酸缓冲液进行反应,反应结束后,将反应液进行离心,分离除去没有嵌插至dna碱基序列的游离药物,即得到负载药物的自组装dna水凝胶。

优选的,“三叉-茎环”中间体、引发链和药物的终浓度分别为1μm、0.01μm、10μm,25℃反应3h。

通过上述方法制备得到了负载药物的自组装dna水凝胶,其中药物的种类并没有特别的限定,只要能够特异性嵌插至dna碱基序列即可。可为抗肿瘤药物,比如阿霉素(dox)。

在本发明优选的实施例中,提供了一种负载阿霉素(dox)的自组装dna水凝胶的制备方法,包括以下步骤:

首先将三条dna单链y1、y2、y3退火处理,形成三叉结构y-dna;

然后将y-dna与三种dna发夹hp1、hp2、hp3混合,基于watson-crick碱基互补配对原则,形成“三叉-茎环”中间体;

最后向“三叉-茎环”中间体中加入引发链和药物dox,由于dox能够嵌插至dna双链结构的5′-gc-3′或5′-cg-3′碱基对中,因此dox能够嵌插到所制备的dna水凝胶相应的碱基对中,且引起dox的荧光猝灭,最终形成负载dox的自组装dna水凝胶。

此外,本发明还提供了一种上述负载药物的自组装dna水凝胶用于药物缓释的方法,包括以下步骤:

向上述的负载药物的自组装dna水凝胶中加入脱氧核糖核酸酶i(dnasei),在二价金属离子(如ca2+、mg2+)存在的条件下发挥水解作用,将负载药物的自组装dna水凝胶水解为寡核苷酸片段,释放药物,从而实现药物的缓释。

向上述的负载药物的自组装dna水凝胶中加入不同浓度的dnasei,能够有效控制药物的释放量。

在本发明优选的实施例中,所述二价金属离子为ca2+和mg2+

进一步的,ca2+和mg2+以消化缓冲液的形式加入从而发挥水解作用,其中消化缓冲液是含有0.5mmca2+和2.5mmmg2+的10mmtris溶液,ph=7.4。

为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。

实施例1

一种自组装dna水凝胶的制备方法,实验步骤如图1所示,首先将三条dna单链y1、y2、y3退火处理,形成三叉结构(y-dna);然后将y-dna与三种dna发夹(hp1、hp2、hp3)混合,基于watson-crick碱基互补配对原则,形成“三叉-茎环”中间体;当体系中不存在引发链时,“三叉-茎环”结构可稳定存在于溶液中;加入引发链后,基于“toehold”介导的链取代反应,引发链序列a'与“三叉-茎环”中的hp1的toehold区域a互补杂交,引发链迁移进程,使hp1的发夹结构打开,裸露出z'-c'-y'-b'-x'序列;溶液中“三叉-茎环”结构中的hp2的toehold区域b与hp1打开后裸露的b'互补杂交,引发链迁移进程,使hp2的发夹结构打开;同理,溶液中“三叉-茎环”结构中的hp3的toehold区域c与hp2打开后裸露的c'互补杂交,引发链迁移进程,形成由三个“三叉-茎环”相交联的杂交体,同时将引发链取代下来释放到溶液中引发新一轮反应,实现引发链的循环,此过程即为一个催化茎环组装反应。同理,经过一系列的催化茎环组装反应,最终使“三叉-茎环”中间体交联形成大的支化结构,生成dna水凝胶。

具体的制备方法如下:

一、发夹dna的预处理

将hp1、hp2、hp3分别用te缓冲液(10mmtris-hcl,1mmedta-2na,12.5mmmgcl2,ph=8.0)稀释至10-5m。为使hp1、hp2、hp3形成较好的发夹结构,将hp1、hp2、hp3分别进行退火处理,退火条件为:将发夹dna溶液加热至95℃5min,随即以0.1℃/s冷却至25℃,25℃下继续稳定2h,备用。

二、y-dna的制备

取微量离心管,向其中加入等体积且浓度均为10-5m的y1、y2、y3;将混合物进行退火处理,即将样品加热至95℃5min,随即以0.1℃/s冷却至25℃,25℃下继续稳定2h以形成结构稳定的y-dna,备用。

三、“三叉-茎环”中间体的制备

取微量离心管,向其中加入所制备的y-dna和退火后的hp1、hp2、hp3,使其浓度比为1:1:1:1,25℃反应2.5h,制备得到“三叉-茎环”中间体,备用。

四、dna水凝胶的制备

取微量离心管,加入一定量的“三叉-茎环”中间体和引发链,使其浓度比为100:1,25℃反应3h,制备得到dna水凝胶。

五、原子力显微镜表征

将制备得到的dna水凝胶用二次去离子水洗涤,在10000rmp条件下离心3min,重复该步骤两次以除去体系中的盐离子。将洗涤后的产物均匀滴在云母片上,晾干后在轻敲模式下进行原子力表征。

本实施例中采用的寡核苷酸序列见表1。

表1所用寡核苷酸序列

实验结果与讨论:

为制备dna水凝胶,向已制备的“三叉-茎环”溶液中加入一定量的引发链,25℃反应3h。为验证dna水凝胶的成功制备,利用原子力显微镜对其进行表征,结果如图2所示。当体系中加入引发链后,引发“三叉-茎环”中间体自组装,生成支状dna水凝胶(图2)。

实施例2

一种负载阿霉素(dox)的自组装dna水凝胶的制备方法,具体包括以下步骤:

一、发夹dna的预处理

将hp1、hp2、hp3分别用te缓冲液(10mmtris-hcl,1mmedta-2na,12.5mmmgcl2,ph=8.0)稀释至10-5m。为使hp1、hp2、hp3形成较好的发夹结构,将hp1、hp2、hp3分别进行退火处理,退火条件为:将发夹dna溶液加热至95℃5min,随即以0.1℃/s冷却至25℃,25℃下继续稳定2h,备用。

二、y-dna的制备

取微量离心管,向其中加入等体积且浓度均为10-5m的y1、y2、y3;将混合物进行退火处理,即将样品加热至95℃5min,随即以0.1℃/s冷却至25℃,25℃下继续稳定2h,以形成结构稳定的y-dna,备用。

三、“三叉-茎环”中间体的制备

取微量离心管,向其中加入所制备的y-dna和退火后的hp1、hp2、hp3,使其浓度比为1:1:1:1,25℃反应2.5h,制备得到“三叉-茎环”中间体,备用。

四、负载dox的dna水凝胶(dox-dna水凝胶)的制备

1、取微量离心管,向其加入“三叉-茎环”中间体、引发链和dox,加入杜氏磷酸缓冲液使各组分的终浓度分别为1μm、0.01μm、10μm,25℃反应3h;

2、将反应液于10000rpm离心15min,分离除去上清液中未嵌插至dna水凝胶的dox。将制备的负载dox的dna水凝胶(dox-dna水凝胶)分散于杜氏磷酸缓冲液中,4℃保存备用。

其中所用的寡核苷酸序列同表1。

实施例3

该实施例提供了一种该dna水凝胶作为药物载体用于药物缓释的方法。实验原理如图3所示,基于“toehold”介导的dna链取代反应,由引发链引发“三叉-茎环”中间体自组装制备dna水凝胶。由于抗肿瘤药物阿霉素(dox)可嵌插到dna双链结构的5′-gc-3′或5′-cg-3′碱基对中,因此dox可嵌插到所制备的dna水凝胶相应的碱基对中,且引起dox的荧光猝灭,最终制备得到负载抗肿瘤药物dox的dna水凝胶(dox-dna水凝胶)。脱氧核糖核酸酶i(deoxyribonucleasei,简称dnasei)是一种非特异性dna水解酶,在二价金属离子(如ca2+、mg2+)存在的条件下发挥水解作用,非特异性的切割单链或双链dna的磷酸骨架,生成5′磷酸末端和3′羟基末端的寡核苷酸。因此向体系中加入dnasei后,dnasei将负载dox的dna水凝胶水解为寡核苷酸片段,释放dox,从而实现药物的缓释。

具体的制备方法如下:

所用的寡核苷酸序列同表1。

一、发夹dna的预处理

将hp1、hp2、hp3分别用te缓冲液(10mmtris-hcl,1mmedta-2na,12.5mmmgcl2,ph=8.0)稀释至10-5m。为使hp1、hp2、hp3形成较好的发夹结构,将hp1、hp2、hp3分别进行退火处理,退火条件为:将发夹dna溶液加热至95℃5min,随即以0.1℃/s冷却至25℃,25℃下继续稳定2h,备用。

二、y-dna的制备

取微量离心管,向其中加入等体积且浓度均为10-5m的y1、y2、y3;将混合物进行退火处理,即将样品加热至95℃5min,随即以0.1℃/s冷却至25℃,25℃下继续稳定2h,以形成结构稳定的y-dna,备用。

三、“三叉-茎环”中间体的制备

取微量离心管,向其中加入所制备的y-dna和退火后的hp1、hp2、hp3,使其浓度比为1:1:1:1,25℃下反应2.5h,制备得到“三叉-茎环”中间体,备用。

四、负载dox的dna水凝胶(dox-dna水凝胶)的制备

1、取微量离心管,向其加入“三叉-茎环”中间体、引发链和dox,加入杜氏磷酸缓冲液使各组分的终浓度分别为1μm、0.01μm、10μm,25℃反应3h;

2、将反应液于10000rpm离心15min,分离除去上清液中未嵌插至dna水凝胶的dox。将制备的负载dox的dna水凝胶(dox-dna水凝胶)分散于杜氏磷酸缓冲液中,4℃保存备用。

五、释药量的检测

分别取50μl上述制备的dox-dna水凝胶于7个离心管中,分别向其中加入5μl不同浓度的dnasei标准溶液(浓度依次为0、1u/ml、2u/ml、4u/ml、6u/ml、8u/ml、10u/ml),分散于1×消化缓冲液(含有0.5mmca2+和2.5mmmg2+的10mmtris溶液,ph=7.4),加入杜氏磷酸缓冲液补充终体积至100μl,25℃反应1h,测定荧光强度。

结果与讨论:

将等体积不同浓度dnasei标准溶液(浓度依次为0、1u/ml、2u/ml、4u/ml、6u/ml、8u/ml、10u/ml)加入到dox-dna水凝胶中,25℃反应1h。反应结束后,检测其荧光信号,结果如图4所示。随着加入dnasei浓度的增大,其对应的反应液在595nm处的荧光强度依次升高,说明dox的释放量与dnasei的浓度呈正相关。因此,本方法制备的dna水凝胶可成功用于药物缓释。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

sequencelisting

<110>青岛大学

<120>一种自组装dna水凝胶的制备方法及其应用

<130>2017

<160>7

<170>patentinversion3.5

<210>1

<211>38

<212>dna

<213>人工序列

<400>1

atggttggtgggtggatccgcatgacattcgccgtaag38

<210>2

<211>38

<212>dna

<213>人工序列

<400>2

gtgtgtctggtgcttacggcgaatgaccgaatcagcct38

<210>3

<211>38

<212>dna

<213>人工序列

<400>3

cgagaggaagggaggctgattcggttcatgcggatcca38

<210>4

<211>66

<212>dna

<213>人工序列

<400>4

cccaccaaccatctaatcgtgataggggtacaacactaaccttacccctatcacgattag60

cattaa66

<210>5

<211>66

<212>dna

<213>人工序列

<400>5

caccagacacacggggtacaacactaacctttaatgctaatcaggttagtgttgtacccc60

tatcac66

<210>6

<211>66

<212>dna

<213>人工序列

<400>6

cccttcctctcgtaacctttaatgctaatcgtgataggggtagattagcattaaaggtta60

gtgttg66

<210>7

<211>23

<212>dna

<213>人工序列

<400>7

ttaatgctaatcgtgataggggt23

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1