超声波诊断装置的制作方法

文档序号:20273961发布日期:2020-04-03 19:24阅读:160来源:国知局
超声波诊断装置的制作方法

本发明涉及超声波诊断装置。



背景技术:

在超声波诊断装置中,存在被称为组织谐波成像(tissueharmonicimaging,thi)的将在生物体内产生的失真成分图像化的摄像方法,与通常的亮度(brightness,b)模式摄像相比,利用高次谐波成分,因此,能够降低在基本波产生的旁瓣、伪影等的影响,能够实现高画质化。在thi中,具有利用滤波器仅取出在生物体内产生的2次失真成分的滤波器法、以及将正负对称波相加来去除基本波成分的脉冲反相法这两种方法。滤波器法能够通过收发一次来进行摄像,但需要分离基本波成分与高次谐波成分,所以需要窄频带的发送波形,空间分辨率下降。另一方面,脉冲反相法在摄像中需要收发两次,但不需要基本波成分与高次谐波成分的分离,所以已知能够实现宽频带的发送且提高空间分辨率,在近来的超声波诊断装置中,使用脉冲反相法的thi逐渐成为主流。

在先技术文献

专利文献

专利文献1:国际公开第2016/114018号



技术实现要素:

发明要解决的课题

在使用脉冲反相法的thi中,重要的是发送波形的正负对称性。由于将正负的收发信号相加,因此,当发送波形的上升、下降不同时,相加后产生抵消残留,导致图像劣化。尤其是在产生high/low的离散信号的脉冲发送电路中,已知由于使用晶体管的极性不同的pmos晶体管和nmos晶体管来生成离散信号,因此会因半导体的工艺偏差而形成正负非对称。

在专利文献1中记述了如下的技术:针对由低电压晶体管和高电压晶体管构成的发送电路驱动部,准备相同结构的复本,通过使流过其中的电流之和恒定,从而相对于工艺偏差,使驱动电流恒定。但是,在专利文献1中,虽然复本部的低电压晶体管与高电压晶体管的电流的合计恒定,但由于半导体工艺偏差,向低电压晶体管和高电压晶体管流动的电流比(镜像比)发生变动,因此向发送电路驱动部的高电压晶体管流动的电流、即驱动电流无法恒定,难以高精度地形成正负对称的波形。

对此,本发明的目的在于,提供一种振子的驱动电流相对于半导体工艺偏差成为恒定的超声波诊断装置。

用于解决课题的手段

若举出用于解决上述课题的本发明的“超声波诊断装置”的一例,则为一种超声波诊断装置,具备振子、生成驱动信号的驱动信号生成部、以及输出与所述驱动信号相应的驱动电流并且驱动所述振子的发送电路,所述发送电路由振子驱动部和电流源构成,该振子驱动部由低电压晶体管和高电压晶体管的电流镜构成,在所述振子连接所述高电压晶体管,该电流源向所述振子驱动部的低电压晶体管供给与所述驱动信号相应的动作电流,所述驱动信号生成部具备:发送电路驱动部复本,其是与所述振子驱动部相同的结构;以及反馈控制部,其检测向所述发送电路驱动部复本的高电压晶体管流动的电流,将所述电流控制为恒定,将从所述反馈控制部施加到向所述发送电路驱动部复本的低电压晶体管供给动作电流的电流源的信号作为所述驱动信号而供给到向所述振子驱动部的低电压晶体管供给动作电流的电流源。

发明效果

根据本发明,能够相对于半导体工艺偏差将振子的驱动电流保持为恒定。

上述以外的课题、结构及效果通过以下实施方式的说明而变得清楚。

附图说明

图1是本发明的实施例1的驱动信号生成部和发送电路的模块结构图。

图2是图1的详细电路图的一例。

图3是示出图1的发送电路的控制信号和发送波形的图。

图4是示出实施例1的超声波诊断装置的结构例的图。

图5是本发明的实施例2的驱动信号生成部和发送电路的模块结构图。

图6是图5的详细电路图的一例。

图7是示出图5的发送电路的控制信号和发送波形的图。

图8的(a)是示出没有驱动信号生成部的情况下的脉冲反相的发送波形和残留成分的图,此外,图8的(b)是示出具有驱动信号生成部的情况下的脉冲反相的发送波形和残留成分的图。

图9是示出本发明的实施例3的超声波诊断装置的结构例的图。

图10是示出本发明的实施例4的超声波诊断装置的结构例的图。

图11是示出图10的发送电路的结构例的图。

图12是示出本发明的实施例5的超声波诊断装置的结构例的图。

图13是示出图12的超声波诊断装置的动作模式和消耗电力的图。

具体实施方式

在以下的实施方式中,为了方便,在需要时,分割为多个部分或实施方式而进行说明,但除了特别明示的情况之外,它们彼此之间并非没有关系,存在一方是另一方的一部分或全部的变形例、详情、补充说明等的关系。另外,在以下的实施方式中,在提及要素的数量等(包括个数、数值、量、范围等)的情况下,除了特别明示的情况以及原理上清楚地限定于特定数量的情况等之外,并不限定于该特定的数量,既可以是特定的数量以上,也可以是特定的数量以下。

此外,在以下的实施方式中,关于其构成要素(也包括要素步骤等),除了特别明示的情况以及原理上明显认为是必须的情况等之外,当然不一定是必须的。同样,在以下的实施方式中,当提及构成要素等的形状、位置关系等时,除了特别明示的情况以及原理上明显认为必须如此的情况等之外,包括实质上与该形状等近似或类似的情况等。这对于上述数值及范围也是同样的。

以下,基于附图对本发明的实施方式详细进行说明。需要说明的是,在用于说明实施方式的所有图中,对相同的构件原则上标注相同的标记,省略其重复说明。

超声波诊断装置被广泛用作能够非侵入且实时地观察的医疗诊断装置。此外,近年来,除了以往的二维图像之外,三维立体图像等也能够显示,用途不断扩大。另一方面,关于画质,当与x射线ct(computedtomography,计算机断层扫描)装置、mri(magneticresonanceimaging,磁共振成像)装置比较时,为低解析度,因此,以往也要求增加的高画质化。以下,针对将本发明应用于超声波诊断装置的例子进行说明。

实施例1

图1是示出本发明的实施例1的驱动信号生成部和发送电路的模块结构图。驱动振子8的发送电路102内部的驱动部7输出与从驱动信号生成部9供给的驱动信号相应的驱动电流,来驱动振子8。此时,向发送电路102输入控制信号,通过该控制信号,使驱动信号有效、无效,由此,向输出流动驱动电流,从而能够生成high、low的信号。

驱动信号生成部9由基准电压生成部1、差分检测部2、电压电流转换部3、发送电路驱动部复本4、电流检测部5、电流电压转换部6构成。差分检测部2、电压电流转换部3、发送电路驱动部复本4、电流检测部5、电流电压转换部6构成反馈控制部,差分检测部2的输出电压通过电压电流转换部3而转换成电流,并传递到发送电路驱动部复本4。在发送电路驱动部复本4中,与发送电路驱动部7同样地产生驱动电流,经由电流检测部5,由电流电压转换部6再次转换成电压信号,返回差分检测部2。此时,由于反馈效果,最终向差分检测部2的输入输入与基准电压相等的电压。即,意味着电流电压转换部6的输出电压与基准电压生成部1的基准电压相等。向电流电压转换部6流动的电流是从电流检测部5传递来的驱动电流,因此,驱动电流成为恒定值。用于产生该驱动电流的电流是电压电流转换部3的输出电流,通过将该电流作为驱动信号向发送电路102输入,能够将从发送电路102输出的驱动电流保持为恒定。

图2示出具体的结构例。发送电路102由将驱动信号改变为电流的nmos晶体管19、通过控制信号使驱动信号有效、无效的开关18、驱动部7、负载电阻20构成。驱动部7为了施加高电压的电源vdd1而由作为nmos晶体管保护用电平移位的高电压nmos晶体管15、低电压pmos晶体管16及高电压pmos晶体管17的电流镜构成。将驱动信号改变为电流的nmos晶体管19能够称为使与驱动电流相应的动作电流向低电压pmos晶体管16流动的电流源。

关于驱动信号生成部9,基准电压生成部1由电阻10和电流源11构成。差分检测部2由opamp13构成,opamp13的输出与电压电流转换部3连接。电压电流转换部3通过nmos晶体管14将来自opamp13的输出电压转换成电流并向驱动部复本4输入。从驱动部复本4输出的驱动电流从由nmos晶体管21、22的电流镜构成的电流检测部5输出。该电流通过作为电流电压转换部6的电阻12再次转换成电压,并向差分检测部2输入。nmos晶体管14能够称为使动作电流向发送电路驱动部复本4的低电压pmos晶体管16流动的电流源。

进一步对详细动作进行说明。opamp13的负端子连接到与电流源11及电源vdd连接的电阻10的单侧,正端子连接到与电源vdd连接的电阻12的单侧端子和电流检测部5的nmos晶体管22的漏极端子。此时,将opamp13的负端子的电压设为vo,在初始状态下,opamp13的正端子在nmos晶体管22的电流为零时成为vdd。opamp13的输出成为high,nmos晶体管14导通,因此,从nmos晶体管14的漏极端子供给电流ic并向驱动部复本4输入。从驱动部复本4的输出输出idrive’,并向电流检测部5输入。电流检测部5的nmos晶体管21与22是镜像比为n:1的电流镜,从nmos晶体管22的漏极端子向作为电流电压转换部6的电阻12施加idrive’/n的电流。此时,由于一系列动作进行负反馈动作,因此,自动地控制为opamp13的正端子与负端子成为相同的电位。即,opamp13的正端子成为vo。当电阻10与电阻12的电阻值相等时,从nmos晶体管22的漏极供给与电流源11相等的ib。由于电流检测部5的nmos晶体管的电流镜比为n:1,因此,idrive’成为式(1)。

[式1]

idrive’=ib/n(1)

此时,当将驱动部复本4的低电压晶体管16与高电压晶体管17的镜像比设为m时,从nmos晶体管14向驱动部复本4的pmos晶体管16供给的电流成为式(2)。

[式2]

ic=idrive’/m=ib/(n×m)(2)

在发送电路102的nmos晶体管19中,在开关18接通时,将与驱动信号生成部9的nmos晶体管14相同的电位作为驱动信号向栅极端子输入。因此,与从nmos晶体管14的漏极端子向驱动信号生成部9的驱动部复本4输入的ic相同的电流也向发送电路驱动部7输入。发送电路驱动部7也由与驱动部复本4相同的低电压pmos晶体管16和高电压pmos晶体管17构成,因此,镜像比成为m,idrive成为式(3)。

[式3]

idrive=m×ic=ib/n(3)

即,仅通过电流源11的电流值ib与电流检测部5的镜像比来决定驱动电流,即便因工艺偏差等而使驱动部复本4的低电压pmos晶体管16与高电压pmos晶体管17的镜像比m变动,驱动电流idrive也恒定。

此时,驱动部复本4与驱动部7被施加相同的电源vdd1,且具有高电压nmos晶体管15,由此,能够施加高电压,因此,也能够抑制由于驱动电压的电压依赖而引起的变化。

驱动电流能够通过变更nmos晶体管21与22的镜像比n或电流源11的电流值ib来调整,但也可以调整电阻12与电阻10的电阻比。

图3示出本实施例的控制动作。控制信号是向开关18输入的信号,在low(l)中,开关断开,nmos晶体管19的栅极端子成为gnd,在high(h)中,将开关接通,将栅极端子与从驱动信号生成部9输出的驱动电压连接。与驱动电压连接的nmos晶体管19从驱动部7的高电压pmos晶体管17输出驱动电流idrive并施加于负载电阻20和振子8。驱动电流的大部分向振子8流动。输出电压vout与驱动电流的施加一起上升,当上升至vdd1附近时,驱动部7的高电压pmos晶体管17成为线性区域,因此,仅进行向负载电阻的电流供给。另一方面,在控制信号成为l的情况下,ic成为零,驱动电流idrive成为零。因此,充电到振子8的电荷被负载电阻20放电,输出电压成为零。由此,能够生成超声波发送信号。在本实施例中,从高电压pmos晶体管17输出的驱动电流idrive恒定,因此,输出电压vout的斜率恒定。

图4示出将本实施例的驱动信号生成部9和发送电路102应用于超声波诊断装置300的结构例。来自控制部101的驱动信号控制信号被传输到驱动信号生成部9,决定驱动信号值。发送控制信号被传输到发送电路102,通过开关的接通、断开而形成发送信号。从发送电路102输出的发送信号被超声波振子103转换成超声波信号并照射到生物体。来自生物体的反射信号再次被超声波振子103接收,并转换成电信号,由收发分离部104、接收电路105、图像处理部106进行信号处理,由显示部103作为超声波图像进行显示。此时,发送电路102、收发分离部104、接收电路105配置与多个超声波振子103相同的数量。驱动信号生成部9也可以相对于多个发送电路102公共地仅配置一个。多个发送电路102和驱动信号生成部9也可以形成在同一半导体上。

低电压晶体管和高电压晶体管由于半导体的制造工艺不同而偏差变大,但根据本实施例,能够提供超声波振子的驱动电流相对于低电压晶体管和高电压晶体管的半导体工艺变动成为恒定的超声波诊断装置。

实施例2

图5示出本发明的实施例2。在实施例2中,能够向振子8供给正负反转的驱动电流。发送电路102具备正侧的驱动部7a和负侧的驱动部7b,向正侧驱动部7a输入正电源vdd1、控制信号a以及驱动信号a,向负侧驱动部7b输入负电源vdd2、控制信号b以及驱动信号b。驱动信号a、b分别由驱动信号生成部9a、9b生成。发送电路102的驱动部7a、7b的输出彼此与振子8连接。

图6是图5的内部结构图。生成正侧的驱动信号a的驱动信号生成部9a及正侧驱动部7a在实施例1中进行了说明。生成负侧的驱动信号b的驱动信号生成部9b通过反馈控制自动地调整从pmos晶体管31向电阻23流动的电流,使得与实施例1同样地,在差分检测部2b的负端子,电流源33的基准电流ib与由电阻34产生的基准电压vob成为相同的电位。当电阻34与电阻23相等时,向电阻23流动的电流成为ib,当将负侧电流检测部5b的电流镜比设为1:n时,向负侧发送电路复本部4b的高电压nmos晶体管28流动的电流成为ib/n。当将负侧发送电路复本部4b的低电压nmos晶体管27与高电压nmos晶体管28的电流镜比设为mb时,向低电压nmos晶体管27的漏极流动ib/(n×mb),与正侧同样地,使该电流流动的pmos晶体管25的栅极电位成为驱动信号b,因此,向发送电路102的负侧驱动部7b流动ib/n的驱动电流idrive2。该驱动电流与正侧相同,由pmos晶体管31与32的电流镜比n决定,因此,不受到半导体的工艺变动的影响。

接着,使用图7对图6的动作进行说明。通过控制信号的有效、无效而使驱动电流idrive1、idrive2流动,这与实施例1的说明相同。与实施例1的不同点在于,能够将输出为vdd1、vdd2、零这3个值输出。在图7(a)中,最初,控制信号a成为high,输出从零成为vdd1。接着,控制信号a成为low,控制信号b成为high。此时,输出从vdd1转变到vdd2。之后,当控制信号a、控制信号b都成为low时,输出成为零。在图7(b)中,控制信号a与控制信号b相反,输出也反转。通过交替地发送该对称波形并将接收波形相加,能够去除基本波成分。需要说明的是,例如,vdd1能够为+50v,vdd2能够为-50v,电流源33和施加于电流检测部5b的vdd能够为+5v。

图8示出脉冲反相的概念图。图8(a)示出将没有驱动信号生成部且由于半导体工艺的偏差而使正侧驱动电流小于负侧驱动电流时的发送波形相加后的残留成分。当正侧驱动电流减小、上升时间延迟时,残留有残留成分,这牵扯到诊断图像的劣化。另一方面,在通过图5的驱动信号生成部9a、9b而生成了驱动电流的情况下,驱动电流成为恒定,因此,如图8(b)所示,成为正负对称的发送波形,不存在残留成分。由此,能够实现超声波图像的高画质化。

实施例3

图9示出本发明的实施例3。实施例3是针对本发明的超声波诊断装置的应用例。超声波诊断装置300由主框架201、经由缆线202而连接的超声波探头203、以及图像显示部107构成。在超声波探头203配置有超声波振子103,配置于主框架201内部的发送电路102与超声波振子103经由缆线202内部的布线而连接。此时,发送电路102和驱动信号生成部9配置在主框架201内部。也可以配置多个超声波振子103、发送电路102。

实施例4

图10示出本发明的实施例4。实施例4是针对本发明的超声波诊断装置的第二应用例。超声波诊断装置300由主框架201、经由缆线202而连接的超声波探头203、以及图像显示部107构成。在超声波探头203配置有超声波振子103、发送电路102、驱动信号生成部9。

此时,配置于超声波探头203的超声波振子103排列为m×n个的二维阵列。如图11所示,在超声波振子103分别连接模拟前端电路41,通过调整发送及接收的定时,能够获取三维的超声波图像。模拟前端电路41与超声波振子103分别对应地构成为包括发送电路102及接收电路105。m×n个模拟前端电路41形成在同一半导体上,与未图示的延迟控制部、振幅电压生成部一起作为波束成形ic40而集成化。此时,如图11所示,驱动信号生成部9配置在m×n个模拟前端电路41的二维阵列的外部,向多个发送电路102公共地供给驱动信号。此时,驱动信号也可以通过同一布线以布线的形式输送到集成电路上,也可以一次性转换成电流,以电流输送之后,再次返回到驱动信号并输入到发送电路102。

实施例5

图12示出本发明的实施例5的超声波诊断装置。实施例5使驱动信号生成部9的动作与发送电路102的动作同步。

如图13的动作示意图所示,在超声波诊断装置中,交替地重复使发送电路动作而发送超声波的发送区间tx与接收反射后的超声波的接收区间rx,生成超声波图像。在本实施例中,向驱动信号生成部9输入使电路有效、无效的动作控制信号。驱动信号生成部9仅在输入了有效的动作控制信号的情况下进行动作(校准动作),在无效的情况下停止动作。如图13所示,使驱动信号生成部9的校准动作与发送电路102的动作同步,将驱动信号生成部9的动作仅设为发送区间tx,由此,能够使驱动信号生成部9的平均电力下降,降低消耗电力。

附图标记说明:

1基准电压生成部;

2差分检测部;

3电压电流转换部;

4发送电路驱动部复本;

5电流检测部;

6电流电压转换部;

7发送电路驱动部;

8振子;

9驱动信号生成部;

10、12电阻;

11恒流源

13opamp;

14、19晶体管;

15高电压晶体管;

16低电压晶体管;

17高电压晶体管;

18开关;

20负载电阻;

21、22晶体管;

40波束成形ic;

41模拟前端电路;

101控制部;

102发送电路;

103超声波振子;

104收发分离部;

105接收电路;

106图像处理部;

107显示部;

201主框架;

202缆线;

203超声波探头;

300超声波诊断装置。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1