水性组织胶粘剂的制作方法

文档序号:21409583发布日期:2020-07-07 14:44阅读:676来源:国知局
水性组织胶粘剂的制作方法
相关申请的交叉引用本申请依据35u.s.c.§119要求取得2017年10月2日提交的美国临时专利申请62/566,730和2018年4月30日提交的美国临时专利申请62/664,739的优先权。本公开涉及水性胶粘剂,更具体地说,本公开的内容涉及水性组织胶粘剂。
背景技术
:传统的生物胶,尤其是衍生自工业用途的,例如基于氰基丙烯酸酯和基于聚氨酯的组织胶粘剂,在使用中通常会发生剧烈的化学反应,因其化学反应固有的放热特性,这类生物胶有损伤组织的风险。如今的研究热点是开发出这类工业化胶粘剂的替代品,其特性必需具备:在使用中利用较温和的理化反应来进行交联和组织的粘接。而研发仿生生物胶是其中最有效的方法之一。例如,最常用的组织胶是生物来源的纤维蛋白胶纤维蛋白胶的应用是模拟血液凝固的最后阶段。在此过程中,纤维蛋白原通过复杂的凝血途径转化为纤维蛋白凝血块。尽管纤维蛋白胶被公认为是硬脑膜修复的金标准,但它也有几个明显的缺点。这些缺点包括在潮湿环境下的组织粘附力弱,存在病毒传播和过敏反应的风险以及昂贵且繁琐的生产和制备过程。其他仿生胶包括受蓝贻贝强大粘合力启发的基于柠檬酸的可注射性生物胶粘剂(icmba)和抗菌仿生icmba。青贻贝分泌的一种生物胶可以在水中的碱性条件下利用邻苯二酚基团与胺、硫醇和羟基发生化学反应进行粘附。icmba的水性粘附强度比纤维蛋白胶高2.5-13.0倍。但是icmba具有相对较慢的固化速度(~10分钟),较低的内聚强度(69-242kpa)和较高的溶胀率(500-3,500%)。因此,进一步提高现有的仿生生物胶具有极大的市场前景。技术实现要素:一方面,胶粘剂的成分包含水性溶剂;以及分散在水性溶剂中的第一类纳米颗粒的组分,所述第一类纳米颗粒包括:负电荷或正电荷,以及平均粒径为1nm至1000nm。在一些实施方案中,本公开所述的胶粘剂组分可以包括分散在水性溶剂中不同于第一类纳米颗粒的第二类纳米颗粒。第二类纳米颗粒可带电荷,且其电荷与第一类纳米颗粒电荷相反。在一些情况下,本公开描述的第一类纳米颗粒包括其平均三维粒径,并且本公开描述的第二类纳米颗粒的平均粒径不同于第一类颗粒。第一类纳米颗粒的平均粒径可能在100nm至1000nm的范围内。而第二类纳米颗粒的平均粒径可能小于100nm。在一些情况下,第一类纳米颗粒的平均粒径可能在140nm至300nm的范围内,并且第二类纳米颗粒的平均粒径可以小于100nm。在一些实施方案中,第一类颗粒的平均粒径和第二类颗粒的平均粒径相差至少30nm。在其他实施方案中,第一类颗粒的平均粒径和第二类颗粒的平均粒径差别可以在30nm至900nm之间。在本公开描述的一些实施方案中,第一类纳米颗粒和第二类纳米颗粒可以是球形或近似于球形的。在一些情况下,第一类纳米颗粒和第二类纳米颗粒的形状可以是非球形的,包括杆状、立方形、圆锥形、矩形、三角形、棱柱形和其他几何形状。在一些实施方案中,本公开所述的第一类纳米颗粒和第二类纳米颗粒可包含单一形状,也可包含两种或更多种不同的形状。在一些实施方案中,第一类纳米颗粒和第二类纳米颗粒可各自具有-10到-65mv或10到65mv的平均zeta电位。在一些情况下,第一类纳米颗粒和第二类纳米颗粒可各自具有-10到-65mv或+10到+65mv,甚至-20到-60mv或+20到+60mv的zeta电位。在本公开描述的一些实施方案中,第一类纳米颗粒由聚合物构成。本公开所述的第一类纳米颗粒可由聚氨酯、聚酯或聚丙烯酸酯制备得到。在本公开描述的一些实施方案中,第二类纳米颗粒由聚合物构成。本公开所述的第二类纳米颗粒可由聚氨酯、聚酯或聚丙烯酸酯制备得到。在一些实施方案中,第一类纳米颗粒外表面含有第一种官能团。本公开所述的第一种官能团可包含多巴胺基团、单宁基团、可点击反应基团、n-羟基磺基琥珀酰亚胺基团、马来酰亚胺基团、乙烯基不饱和基团、醛基或氢硅烷基团。本公开所述的可点击反应基团可以是叠氮基或炔基。本公开所述的乙烯基不饱和基团可以是烯丙基、丙烯酸酯基或甲基丙烯酸酯基。在一些实施方案中,本公开所述的第二类纳米颗粒外表面含有第二种官能团。在某些情况下,第二官能团可以与第一类纳米颗粒外表面的第一种官能团选择性地反应。本公开所述的第二种官能团可以是多巴胺基团、单宁基团、可点击反应基团、n-羟基磺基琥珀酰亚胺基团、马来酰亚胺基团、乙烯性不饱和基团、醛基团或氢硅烷基团。本公开所述的可点击反应基团可包含叠氮基或炔基。本公开所述的乙烯性不饱和基团可以是烯丙基、丙烯酸酯基或甲基丙烯酸酯基。在本公开描述的一些实施方案中,基于重量百分比的胶粘剂组分固含量可以高达55%。在某些情况下,本公开所述的胶粘剂组分动态粘度可以小于等于10,000cp。在某些情况下,本公开所述的胶粘剂组分可通过离子交联、共价交联、组织交联或其任何组合形成机械互锁。在一些实施方案中,本公开所述的胶粘剂组分包含化妆品可接受的试剂,其包含以下一种或多种:结构剂、胶凝剂、填充剂、乳化剂、固体或液体脂肪剂或其任何组合。在某些情况下,化妆品可接受剂包括着色剂、颜料、光保护剂、第二成膜剂、化妆品活性剂或化妆品助剂或其任何组合。化妆品佐剂可以是润肤剂、保湿剂、纤维、防腐剂、螯合剂、香料、中和剂或其任意组合。填料可以是聚酰胺颗粒、尼龙纤维、聚乙烯粉末、基于微球的丙烯酸共聚物、三聚氰胺-甲醛树脂颗粒、脲-甲醛树脂颗粒、聚四氟乙烯颗粒、乙烯-丙烯酸酯共聚物粉末、膨胀粉末、淀粉粉末、硅树脂微珠或其任何组合。在一些实施方案中,本公开所述的胶粘剂成分可以是非压缩粉底粉或棒、压缩粉底粉或棒、化妆品膏、睫毛膏、唇膏、唇彩、润唇膏、指甲油或美妆油。在一些实施方案中,本公开所述的胶粘剂成分可以是用于组织闭合的组织胶粘剂,或者是用于固定在体内使用的网眼或薄膜的胶粘剂,或者是组织密封剂和止血剂,或其他应用例如药物缓释、逐层涂层、伤口敷料、植物种子涂层、液体绷带、3d打印、内窥镜黏膜切除术(emr)和化妆品应用。化妆品应用包括将本公开所述的胶粘剂应用于皮肤、嘴唇、眼睛、头发、指甲或牙齿上以增强、修饰或改变美学品质的方法。本公开在一些实施方案中描述了粘附生物材料的方法,其中该方法包括将本公开所述的胶粘剂成分应用在第一种生物材料的表面和第二种生物材料的表面之间;其中所述胶粘剂成分将所述第一种生物材料的表面粘附至所述第二种生物材料的表面。在本公开所述的一些实施方案中,将化妆品成分粘附至角质组织的方法包括了将本公开所述的胶粘剂成分应用在一个或多个角质组织的表面上。附图说明本公开将以附图并通过示例的方式描述本发明,其中:图1是仿生化学和组织机械粘合机理的示意图。图2a是自发的氨基炔基点击反应的化学反应示图。图2b是迈克尔加成的化学反应示图。图2c是二醇基-炔基点击反应的化学反应示图。图2d是二醇基叠氮化物点击反应的化学反应示图。图3是一张表格,列举聚合纳米a和b组分示例,以及胶粘剂成分ab配方的不同组合。图4展示了带/不带官能团的阳离子或阴离子水性聚氨酯(wpu)的合成。图5展示了带/不带官能团的阳离子或阴离子聚酯分散液(ped)的合成。图6展示了多巴胺改性的阳离子水性聚氨酯(wpu)的合成。图7展示了单宁酸(ta)改性的阴离子水性聚氨酯(wpu--ta)的合成;图8展示了炔基功能化的阳离子水性聚氨酯(wpu+-al)的合成。图9展示了叠氮功能化阴离子水性聚氨酯(wpu--n3)的合成。图10展示了具有丙酸酯(pl,-coc≡ch)基团的可点击二醇的合成。图11展示了将可点击的二醇与图10中所述的丙酸酯一起引入wpu+或wpu-中。图12展示了带/不带官能团的阴离子水性或水溶性基于柠檬酸的聚合物(cbp)的合成图13展示了带/不带官能团的阴阳离子聚丙烯酸酯乳液(pae)的合成。图14展示了具有钙离子的水性icmba(icmba-ca2+)的合成示例。图15展示了使用图3中所述的不同官能团的不同交联和组织粘合机制。图16a-16d以图例展示了使用和不使用pi交联的wpu+-dp聚合物膜的力学和吸水率数据。图17a-17d以图例展示了使用和不使用pi交联的wpu--ta聚合物膜的力学和吸水率数据;图18a展示了通过离子相互作用和离子相互作用加点击反应交联的wpu+-al和wpu--n3的吸水率;图18b展示了通过离子相互作用和离子相互作用加点击反应交联的wpu+-al和wpu--n3的拉伸剪切强度;图19是用于同时密封硬脑膜和颅骨缺损以修复脑脊液(csf)渗漏的胶粘剂成分示意图。图20展示了在csf鼻漏模型中将胶粘剂成分用作密封剂以防止csf渗漏的实验过程。图21展示了wpu+/-分散密封剂的破裂压强与脊柱内csf压强和颅骨内csf压强的比较。图22a展示了粒径非匹配颗粒的堆积密度。图22b展示了非匹配颗粒粒径对胶粘剂破裂强度的影响(s+:粒径=120.9nm,zeta电位=55mv;s-:粒径=76.52nm,zeta电位=-52mv;m+:粒径=146.2nm,zeta电位=18mv;m-:粒径=113.4nm,zeta电位=-34mv;l+:粒径=367.1nm,zeta电位=46mv;l-:粒径=120nm,zeta电位=-24mv)。图23展示了在12天后刚制备的和完全干燥的wpu+/-密封胶的尺寸变化。具体实施方式通过参考以下详细描述,示例和附图,可以更容易地理解本公开描述的实施例。然而,本公开描述的元件、装置和方法不限于在详细描述、示例和附图中呈现的特定实施例。这些实施例仅是本发明原理的说明。在不脱离本发明的精神和范围的情况下,许多修改和改编对于本领域普通技术人员将是显而易见的。另外,本公开公开的所有范围应理解为涵盖其中包含的任何和所有子范围。例如,规定的范围“1.0到10.0”应被视为包括任何和所有子范围,这些子范围以最小值1.0或更大开始,以最大值10.0或更小结束,例如1.0到5.3或4.7到10.0,或3.6到7.9。除非另有明确说明,否则本公开公开的所有范围也应被认为包括该范围的端点。例如,通常应将范围“5到10之间”,“5到10”或“5-10”包括端点5和10。此外,当使用“最多”来连接数或量时,应理解为该数量至少是可检测的数量或数量。例如,材料按“最多”指定的量可以理解为可检测到的最多的量并包括特定的量。英国常春藤以其附着表面和极强的粘合力而闻名,以至于它可以从墙壁上撕裂砖块并磨损建筑物的外墙。直到最近其机理才被研究清楚。因为常春藤能分泌带负电荷的纳米球状糖蛋白颗粒,该颗粒嵌入并聚集在目标表面上。这些渗透纳米颗粒在表面形成一层膜,该膜通过与钙离子的离子相互作用而交联从而进一步增强强度,从而使常春藤的根与其附着的表面之间能够机械互锁。在本公开更详细描述的一些实施方案中,合成的水性聚合物,例如水性聚氨酯(wpu)、聚酯分散体(ped)、聚丙烯酸酯乳液(pae)和其他水性聚合物纳米分散体(wpnd)系统可以拥有正电荷和负电荷,因此可以提供与英国常春藤分泌的纳米球形糖蛋白颗粒类似的功能。例如,这些合成水性聚合物的离子交联可通过与多价反电荷离子、聚合物溶液或另一种带相反电荷离子的合成水性聚合物发生离子反应来实现。如本公开的一些实施方案中所述,离子交联型的ab胶组合体系,可由一种、两种或多种wpnd组成,或由具有相反电荷的两种聚合物溶液组成。例如,如图1所示,ab胶组合体系的a和b成分可以通过水性聚合物的离子交联来模仿常春藤的机械互锁机理。水性聚合物的这种离子交联在某些情况下可以增强所形成的胶粘剂的力学强度、粘合强度、耐水性(降低吸水率)和/或耐久性。此外,离子交联主要是一种物理相互作用,它消除了化学交联所引起的负面问题,例如许多当前可用的生物胶(包括基于氰基丙烯酸酯的生物胶和聚氨酯类生物胶中存在的毒性和放热问题。在一些情况下,本公开描述的一些可离子交联ab胶由包含具有不同电荷的纳米颗粒的一种、两种或更多种组分形成。本公开所述的带相反电荷的纳米粒子有时可以形成离子交联,其增强了所形成的胶粘剂的力学强度、粘附强度、耐水性(降低吸水率)和/或耐久性。此外,在一些实施方案中,纳米颗粒具有两个或更多个不同的平均粒径时可以增加颗粒的堆积密度。因此可以使用双峰(粒径组分),三峰或多峰方法来增强本公开所述的纳米颗粒的力学性能。如图22a所示,通过使用粒径非匹配颗粒,可以将纳米颗粒堆积密度最大化,从而增加粒子在组织表面上的嵌入和聚集。在一些实施方案中,可以使用带相反电荷的水性聚合物代替带相反电荷的纳米颗粒,或与带相反电荷的纳米颗粒组合使用,并且可以表现出相同或相似的粘附性和物理性质。常春藤机械互锁的粘附机制有一个缺点是缺乏与生物组织或材料表面产生化学粘合的能力。在某些情况下,这可能会影响可离子交联型ab胶在生物组织上使用时的粘合强度。在本公开所述的一些实施方案中,可以通过用能与组织结合或交联的官能团官能化纳米颗粒或水性聚合物来减少或消除该弱点。如本公开的一些实施方案中所述,可以通过多巴胺或其衍生物,类单宁酸(“ta”,一种植物衍生的多酚)的含邻苯二酚的化合物或没食子酸酯类化合物引入ab胶。氧化的邻苯二酚羟基或没食子单宁基团在某些情况下不仅可以使ab胶与生物界面上可用的亲核基团(例如–nh2、-sh、-oh和-cooh基团)形成共价键,还可以触发分子链间作用,使纳米粒子或聚合物本身之间发生交联,从而改善了纳米粒子或聚合物网络的内聚力,如图1所示。其他化学反应或官能团也可被引入ab胶中,以与组织发生化学反应,例如自发的氨基-炔点击反应(图2a)、迈克尔加成(图2b)、二醇-炔点击反应(图2c)、二醇叠氮化物点击反应(图2d)、n-羟基琥珀酰亚胺(nhs)活化的羧基和醛;或用于聚合物网络的化学交联,例如点击反应(例如铜催化的1,3-偶极叠氮化物-炔烃环加成(cuaac))和氢化硅烷化反应;或生物活性分子,例如胶原蛋白模拟肽p15。本公开所述的胶粘剂可用于多种组织粘合应用,例如伤口闭合剂、密封剂和止血剂。另外,本公开所述的胶粘剂可用于覆盖牛皮癣、叮咬或刺痛、烧伤、疮、痔疮、肛门括约肌撕裂、割伤或刮擦。但是,胶粘剂不仅限于基于组织的应用,而且在某些情况下还可以用于药物释放、逐层涂层、伤口敷料、植物种子涂层、液体绷带、3d打印、内窥镜黏膜切除术(emr)和化妆品应用。因此,在本公开更详细描述的一些实施方案中,展示了水性生物胶通过离子交联的机械互锁机制,并且在某些情况下结合反应性表面官能团,克服了传统生物胶的一个或多个缺点。i胶粘剂成分i(a)纳米颗粒生物胶成分一方面,胶粘剂成分包含分散在水溶液中的第一类纳米颗粒。在一些实施方案中,胶粘剂成分包含分散在水性溶剂中的第二类纳米颗粒,第二类纳米颗粒不同于第一类纳米颗粒。本公开所述的第一类和第二类纳米颗粒可包含水性聚合物纳米乳液(wpnd)。在一些情况下,第一类和第二类纳米颗粒可以是水性聚氨酯(wpu)、聚酯(ped)、聚丙烯酸酯乳液(pae)或与本公开目的不矛盾的其他wpnd体系。在某些情况下,第一类纳米颗粒可以由与第二类纳米颗粒由相同类型的材料构成。在其他情况下,第一类纳米颗粒可以由与第二类纳米颗粒不同类型的材料构成。本公开所述的第一类和/或第二类纳米颗粒可以具有以下平均粒径:1nm至1000nm、1nm至900nm、1nm至800nm、1nm至700nm、1nm至600nm、1nm至500nm、1nm至400nm、1nm至300nm、1nm至200nm、70nm至1000nm、90nm至1000nm、100nm至1000nm、125nm至1000nm、150nm至1000nm、175nm至1000nm、200nm至1000nm、225nm至1000nm、250nm至1000nm、275nm至1000nm、300nm至1000nm、325nm至1000nm、350nm至1000nm、375nm至1000nm、400nm至1000nm、425nm至1000nm、450nm至1000nm、475nm至1000nm、500nm至1000nm、550nm至1000nm、600nm至1000nm、650nm至1000nm、700nm至1000nm、750nm至1000nm、800nm至1000nm、850nm至1000nm、900nm至1000nm、70nm至900nm、70nm至800nm、70nm至700nm、70nm至650nm、70nm至600nm、70nm至550nm、70nm至500nm、70nm至450nm、70nm至400nm、70nm至350nm、70nm至300nm、80nm至280nm、90nm至260、100nm至260nm、100nm至220nm、100nm至200nm、90nm以上、100nm以上、120nm以上、140nm以上、160nm以上、180nm以上、200nm以上、220nm以上1nm至100nm、10nm至100nm、20nm至100nm、30nm至100nm、40nm至100nm、50nm至100nm、60nm至100nm、70nm至100nm、80nm至100nm、90nm至100nm、40nm至80nm、50nm至70nm、60nm至80nm、70nm至80nm、10nm以下、20nm以下、40nm以下、60nm或小于、小于等于70nm、小于等于80nm、小于等于90nm、小于等于100nm、小于等于110nm、小于等于120nm、小于等于130nm或小于等于140nm、1nm至90nm、1nm至80nm、1nm至70nm、1nm至60nm、1nm至50nm、1nm至40nm、1nm至30nm、1nm至20nm、1nm至10nm、50nm至300nm、100nm至250nm、100nm至225nm、250nm以下、225nm以下、200nm以下、175nm以下、150nm以下、125nm以下、100nm以下、85nm以下、70nm以下或55nm以下。在一些优选的实施方案中,本公开所述的胶粘剂成分可包含双峰型平均粒度分布。例如,在一些实施方案中,本公开描述的第一类纳米颗粒可以包括第一种粒径分布,本公开描述的第二类纳米颗粒可以不同于第一种平均粒度分布。在一些实施方案中,第一类纳米颗粒或第二类纳米颗粒可以是双峰的,其中第一类纳米颗粒或第二类纳米颗粒大约一半可以具第一种平均粒度分布,而另一半可以不同。第一种平均粒度可以是70nm至1000nm、90nm至1000nm、100nm至1000nm、125nm至1000nm、150nm至1000nm、175nm至1000nm、200nm至1000nm225nm至1000nm、250nm至1000nm、275nm至1000nm、300nm至1000nm、325nm至1000nm、350nm至1000nm、375nm至1000nm、400nm至1000nm、425nm至1000nm、450nm至1000nm、475nm至1000nm、500nm至1000nm、550nm至1000nm、600nm至1000nm、650nm至1000nm、700nm至1000nm、750nm至1000nm、800nm至1000nm、850nm至1000nm、900nm至1000nm、70nm至900nm、70nm至800nm、70nm至700nm、70nm至650nm、70nm至600nm、70nm至550nm、70nm至500nm、70nm至450nm、70nm至400nm、70nm至350nm、70nm至300nm、80nm至280nm、90nm至260、100nm至260nm、100nm至220nm、100nm至200nm、90nm或更大、100nm或更大、120nm或更大、140nm或更大、160nm或更大、180nm或更大、200nm或更大220nm以上。第二种平均粒度可以是1nm至100nm、10nm至100nm、20nm至100nm、30nm至100nm、40nm至100nm、50nm至100nm、60nm至100nm、70nm至100nm、80nm至100nm、90nm至100nm、40nm至80nm、50nm至70nm、60nm至80nm、70nm至80nm、10nm以下、20nm以下、40nm以下、60nm以下、70nm以下、80nm以下、90nm以下、100nm以下、110nm以下、120nm以下、130nm以下或140nm以下。在一些情况下,第一种平均粒度分布在100nm至220nm的范围内,第二种平均粒度分布在50nm至100nm的范围内,或小于100nm。在一些双峰型平均粒度分布中,第一种平均粒度可以大于第二种平均粒。在一些实施例中,第一种平均粒度和第二种平均粒度之间的差值可以是至少30nm,至少50nm,至少75nm,至少100nm,至少125nm,至少150nm,至少175nm,至少200nm,至少225nm,至少250nm,至少275nm,至少300nm,至少400nm,至少500nm,至少600nm,至少700nm,至少800nm,至少900nm,介于30nm与900nm之间,30nm与700nm,30nm与500nm,30nm与300nm,30nm与275nm,30nm与250nm,30nm与225nm30nm和200nm,30nm和175nm,30nm和150nm,30nm和125nm,30nm和100nm,30nm和90nm,30nm和80nm,30nm和70nm,30nm和60nm,35nm至65nm,40nm至60nm,35nm至55nm或40nm至50nm。在一些优选的实施方案中,本公开所述的阳离子纳米颗粒可为第一种平均粒径分布,阴离子纳米颗粒可为第二种平均粒径分布,其中第一种平均粒径大于第二种平均粒径。在其他实施方案中,本公开描述的带负电荷的纳米颗粒可为第一种平均粒径分布,本公开描述的带正电荷的纳米颗粒可为第二种平均粒径分布,其中第一种平均粒径大于第二种平均粒径。本公开所述的纳米颗粒的平均粒径不限于单峰或双峰分布,还可以包括三峰或更高的多峰分布。在这些多峰实施方案中,本公开所述的纳米颗粒多个分布可以包括第一种平均粒径,第二种平均粒径,第三种平均粒径等,其中每种平均粒径与其他平均粒径不同。在一些多峰实施方案中,纳米颗粒可以包括本公开先前描述的一个或多个第一种平均粒径和第二种平均粒径的分布,并且每个平均粒径之间的差值可以是第一种平均粒径和第二种平均粒径之间差值中的一个或多个。本公开描述的纳米颗粒可以是与本公开的目的不矛盾的任何形状。在一些情况下,纳米颗粒是球形或近似球形的。在其他情况下,本公开描述的纳米颗粒是非球形的,例如棒状、立方形、圆锥形、矩形、三角形、棱柱形和其他几何形状。本公开所述的一些纳米颗粒可以包含单个形状,或者可以包含两个或更多个不同的形状。在一些实施方案中,本公开所述的胶粘剂成分可包含具有双峰型平均粒径分布的第一种纳米颗粒,其中每个双峰的第一种纳米颗粒具有相同的电荷。例如,每个不同粒径分布的第一种纳米颗粒可均为正或负电荷。如下文更详细地描述,有双峰的具有相同电荷的第一种纳米颗粒的体系可以被应用到表面,并且两种不同粒径分布的颗粒可以嵌入并聚集在组织的表面上,并通过共价键或物理交联机理形成机械互锁结构。在一些优选的实施方案中,本公开所述的胶粘剂成分可包含具有带第一种电荷的第一类纳米颗粒和具有与带第一种电荷相反的第二种电荷的第二类纳米颗粒。在一些情况下,第一类纳米颗粒可以包含具有负电荷或正电荷的组分a,第二类纳米颗粒可以包含具有负电荷或正电荷且与组分a相反的组分b。本公开所述的组分a和组分b可以包含负电荷和正电荷并一起构成ab胶。对于本公开所述的一些实施方案,组分a可以是具有第种一电荷的纳米颗粒,例如正电荷(a+),组分b可以是具有不同于第一种电荷的第二种电荷的纳米颗粒,例如负电荷(b-)。但是指定给a和b的电荷可以是任意彼此相反的电荷的组合,例如a+b-或a-b+。在一些实施方案中,组分a可与组分b电苛相反,使组分a和b混合时能在纳米颗粒之间形成离子交联。如图1所示,当将本公开所述的胶粘剂施用于组织表面时,包含组分a和b的纳米颗粒嵌入并聚集在组织表面上,并通过离子交联机理形成机械互锁结构。本公开所述纳米颗粒的电荷可以以不与本公开的目的相抵触的任何方式制得,例如第一种纳米颗粒、第二种纳米颗粒、第一种纳米颗粒和第二种纳米颗粒的混合物以及包含a和b组分的纳米颗粒。图3示例展示了带负电和带正电的纳米颗粒a和b组分的变化,其中圆形图标代表纳米颗粒的a和b组分,而蜿蜒线代表水性聚合物的a和b组分。这些水性聚合物组分在以下第i(b)节中进行了更详细的讨论,但可以包含基于柠檬酸的聚合物,例如聚(1,8-辛二醇柠檬酯)(poc),poc-可点击可生物降解的荧光聚合物(bpl),可注射的贻贝型生物胶(icmba)或其他化学基团等,均可通过将柠檬酸衍生的侧羧基转化为–coo-离子,或通过引入具有负电荷的柠檬酸分子或二醇来转化为阴离子聚合物。这些聚合物可用作a成分或b成分。通过使用带负电荷的二醇,例如β-甘油磷酸酯(β-gp)与柠檬酸和/或其他单体反应,阴离子柠檬酸聚合物可以进一步增强其负电性。在某些情况下,可以通过基于柠檬酸的聚合物与诸如n-甲基二乙醇胺(mdea)(参见b5配方)和n-乙基二乙醇胺(参见b6配方)与柠檬酸和/或其他单体来制备本公开所述带电荷的a或b组分的柠檬酸聚合物纳米颗粒。在本公开描述的一些实施方案中,纳米颗粒的表面可以被官能化,其中组分a和b被可化学配对的官能团官能化。术语“可配对的官能团”是指两个官能团可以选择性地相互反应,或者至少彼此相容。例如,在某些情况下,两个可配对的官能团分别被引入到第一种纳米颗粒和第二种纳米颗粒上,并且当这些纳米颗粒紧密接触(例如通过离子交联)时,两个可配对的官能团能彼此反应并形成第一种和第二种纳米颗粒之间的共价交联。具有可配对的、可点击官能团的组分a和b可以提供点击交联作为除离子相互作用交联之外的第二种交联机理,例如组分a上的炔基同组分b上叠氮基的反应。点击交联可以改善生物胶的拉伸剪切强度和耐水性(参见实施例9)。残留的可点击官能团,如炔基或叠氮基可通过点击反应用于结合功能分子,例如仿胶原蛋白的p15肽段或抗菌聚合物/小分子,从而为生物胶提供生物功能,对此下面将进行更详细的描述。用wpu、ped和pae合成阴阳离子型官能化/非官能化的第一种和第二种纳米颗粒的示例展示于以下附图。wpu和ped是通过多元异氰酸酯或多元醇与多元酸之间的逐步聚合反应合成的。图4展示了官能化/非官能化的阴离子型或阳离子型wpu的合成,图5展示了官能化/非官能化的阴离子型或阳离子型ped的合成。阴离子或阳离子可以通过在聚合过程中引入带电基团的二/多元醇或二/多元酸来获得,例如二羟甲基丙酸(dmpa,用于阴离子wpu或ped)、n-甲基-二乙醇胺(mdea,用于阳离子wpu或ped)、β-甘油磷酸二钠(β-gp)、n,n-双(2-羟基-乙基)-2-氨基乙磺酸(bes)或bes钠盐。官能团可以是含邻苯二酚类,可点击官能团(例如炔基、叠氮基和炔酰基)、双键(烯丙基、烯酰基、烯基或甲基)、硅氢键(-si-h)或其他官能团,如图3中所述。本公开所述的用于wpu合成的多元异氰酸酯可包含六亚甲基二异氰酸酯(hdi)、异佛尔酮二异氰酸酯(ipdi)、双(4-异氰酸根合环己基)甲烷或适用于生物相关应用的其他脂肪族多元异氰酸酯。也可以适当地使用芳香族多元异氰酸酯。在一些实施方案中,用于wpu合成的多元异氰酸酯可以采用配方(a1)、(a2)、(a3)、(a4)和/或(a5)表示。在某些情况下,hdi和ipdi可以单独或组合用于wpu合成。其中p是指1到10、1到9、1到8、1到7、1到6、1到5、1到4、1到3、2到10、3到10、4到10、5到10、6到10、7到10、8到10、2到8或4到6的整数。在wpu合成中,多元异氰酸酯的用量可根据聚氨酯的固含量调整为重量百分比的15%至65%。在一些实施方案中,多元异氰酸酯的用量可根据聚氨酯的固含量调整为的重量百分比的20%至60%、25%至55%、30%至50%、35%至45%、20%至50%、20%至40%、20%至30%、30至60%、40至60%、50至60%。在本公开所述的一些实施方案中,多元醇可以是具有两个或多个羟基端基的可降解的聚合物,例如聚(ε-己内酯)(ε-pcl)、聚(乳酸)(pla)、聚(乳酸-共乙醇酸)(plga)、聚丁二酸丁二酯(pbs)、聚己二酸丁二酯(pba)、聚乙二醇(peg)、聚丙二醇(ppg)、聚(四亚甲基醚二醇)(也称为聚四氢呋喃(poly(thf)))、聚二甲基硅氧烷(pdms)或重均分子量小的多元醇,例如辛二醇、丁二醇或甘油。在本公开所述的一些实施方案中,多元醇是双官能化合物,尽管在某些情况下可以使用少量的三/四官能化合物。聚合多元醇的重均分子量可以是200至5000da、200至4000da、200至3000da、200至2000da、200至1000da、500至3000da、1000至2000da、1000da或更大、1500da或更大、2000da或更大、3000da或更大、4000da或更大或5000da或更大。在wpu合成中,聚合物二醇的用量可根据聚氨酯的固含量调整为重量百分比的20%至80%。在一些实施方案中,聚合物二醇的用量可根据聚氨酯的固含量调整为重量百分比的20%至70%、30%至70%、40%至70%、50%至70%、60%至70%、20%至60%、20%至50%、20%至40%、20%至40%或30%至60%。在ped合成中,聚合物二醇的用量可根据聚酯的固含量调整为重量百分比的0%至80%。在一些实施方案中,聚合物二醇的用量可根据聚酯的固含量调整为重量百分比的0%至70%、0%至60%、0%至50%、0%至40%、0%至30%、0%至20%、0%至10%、10%至70%、20%至60%、30%至50%、10%至60%、10%至50%、10%至40%、10%至30%、10%、20%、15%至50%、20%至50%、25%至50%、35%至50%或40%至50%。在本公开描述的一些实施方案中,用于ped合成的多元醇可以是低重均分子量二醇。低重均分子量二醇可包括1,2-乙二醇、二甘醇、三甘醇、四甘醇、1,2-丙二醇、二丙二醇、三丙二醇、1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、新戊二醇、1,4-环己烷二甲醇、1,4-环己二醇、丁烯二醇、丁炔二醇或1,8-辛二醇。在一些情况下,低重均分子量二醇可单独或以两种或更多种的组合使用,例如1,4-丁二醇、1,2-丙二醇、1,3-丁二醇、1,5-戊二醇和1,6-己二醇的组合。在ped合成中使用的低重均分子量二醇可根据聚酯的固含量调整为重量百分比的10%至50%、15%至45%、15%至40%、15%至35%、15%至30%、15%至25%、15%至20%、20%至45%、25%至45%、30%至45%、35%至45%、40%至45%、20%至40%、25%至40%、30%至40%、20%至35%、20%至30%、15%或以下、20%或以下、25%或以下、30%或以下、35%或以下、40%或以下或45%或以下。在一些实施方案中,用于wpu或ped合成的离子型多元醇由b1-b6展示如下:其中用于wpu或ped合成的离子型二醇重均重量百分比可以在1%至20.0%、1%至15%、1%至10%、1%至8%、1%、至6%、5%至20%、8%至20%、10%至20%、15%至20%或5%至15%的范围内。用于wpu合成的离子型多元醇可根据固含量调整为重量百分比的0.5%至10%。在某些情况下,用于wpu合成的多元醇的含量可为1%至5%、1%至4%、1%至3%、2%至8%、3%至8%、4%至8%、5%到8%或6%到8%。用于ped合成的离子型多元醇可根据固含量调整重量百分比为2%至40%、2%至35%、2%至30%、2%至25%、5%至25%、2%至20、2%至15%、2%至10%、10%至30%、15%至30%、20%至30%或25%至35%的范围内。在本公开所述的一些实施方案中,ped合成中使用的多元酸包括天然来源的多元酸,例如乳酸、柠檬酸、苹果酸、以及其他无毒的多元酸,例如琥珀酸、己二酸和其他无毒的多元酸,其与本公开的目的没有矛盾。按本公开所述用于ped合成的多元酸可根据固含量调整重量百分比为2%至65%、5%至50%、10%至45%、15%至40%、20%至35%、25%至30%、2%至10%、2%至15%、2%至20%、2%至25%、2%至30%、2%至35%、2%至40%、5%至60%、10%至60%、10%至60%、15%至60%、20%至60%、30%至60%、35%至60%或40%至60%。本公开所述的纳米颗粒的平均zeta电位的范围可以为-10mv至-65mv、-10mv至-60mv、-10mv至-50mv、-10mv至-45mv、-10mv至-40mv、-10mv至-35mv、-10mv至-30mv、-10mv至-25mv、-10mv至-20mv、-10mv至-15mv、-15mv至-65mv、-20mv至-65mv、-25mv至-65mv、-30mv至-65mv、-35mv至-65mv、-40mv至-65mv、-45mv至-65mv、-50mv至-65mv、-55mv至-65mv、-25mv至-50mv、-35mv至-45mv、至少-10mv、至少-25mv、至少-35mv至少-45mv、至少-55mv、大于-30mv或小于-30mv。在本公开所述的一些实施方案中,纳米颗粒的平均zeta电位的范围可以为10mv至65mv、10mv至60mv、10mv至50mv、10mv至45mv、10mv至40mv、10mv至35mv、10mv至30mv、10mv至25mv、10mv至20mv、10mv至15mv、15mv至65mv、20mv至65mv、25mv至65mv、30mv至65mv、35mv至65mv、40mv至65mv、45mv至65mv、50mv至65mv、55mv至65mv、25mv至50mv、35mv至45mv、至少10mv、至少25mv、至少35mv、至少45mv、至少55mv、大约30mv或大于30mv。在一些实施方案中,可以引入邻苯二酚或没食子丹宁类化合物对纳米颗粒进行功能化改性,以改善其与组织的化学键合能力,该能力是对离子交联机械互锁机制的补充,并且与之完全不同的方法。本公开所述的邻苯二酚类化合物可包括与本公开的目的不矛盾的任何含邻苯二酚的物质。在某些情况下,可以通过异氰酸酯与-nh2/-oh之间的反应将邻苯二酚化合物(例如包含氨基的多巴胺或包含多个(共25个)酚基的单宁酸)(对于wpu)或-cooh和-nh2/-oh之间的反应(对于ped或pea)引入wpu或ped中例如,在某些情况下,含邻苯二酚化合物可包含醇/胺结构、羧酸部分或天然来源的化合物例如单宁酸或其他单宁分子。在另外一些情况下,含邻苯二酚化合物包含不属于邻苯二酚的羟基结构。在一些实施方案中,含邻苯二酚化合物包括多巴胺。在其他实施方案中,含邻苯二酚化合物包括l-3,4-二羟基苯丙氨酸(l-dopa)或d-3,4-二羟基苯丙氨酸(d-dopa)。在另外的实施方案中,含邻苯二酚化合物包括大蒜酸或咖啡酸。在一些情况下,含邻苯二酚化合物包含3,4-二羟基氢肉桂酸。在一些情况下,含邻苯二酚化合物包括基于天然的化合物,例如单宁酸或其他单宁分子。此外,在一些实施方案中,含邻苯二酚化合物通过脲或酰胺键与wpu或ped聚合物的主链偶联。在其他实施方案中,含邻苯二酚的物质通过氨基甲酸酯或酯键偶联至聚合物的主链。本公开所述的含邻苯二酚的物质通过图(c)展示:其中r1可以是oh,r1、r2、r3和r4可以分别为-h、-ch2(ch2)xyh、-ch2(chr5)yh、(y可以是-o-或-nh-)或-ch2(ch2)xcooh;r5是-cooh或-(ch2)ycooh;r1、r2、r3和r4中的一个或多个基团也可以是聚合物链;x是0至10的整数;y是1至10的整数。本公开所述的没食子单宁化合物可以包括与本公开的目的不矛盾的任何没食子单宁化合物。在某些情况下,可以通过异氰酸酯与-nh2/-oh之间的反应(对于wpu)或-cooh与-nh2/-oh之间的反应(对于ped)将没食子单宁引入wpu或ped中。适用于化合到纳米颗粒上的没食子单宁化合物的实例包括单宁酸、没食子酸、黄酮、间苯三酚、假单宁、鞣花单宁、邻苯三酚鞣花酸、二没食子酸、糖苷配基、葡糖倍苷、二没食子酰基葡萄糖、三没食子酰基葡萄糖、四没食子酰基葡萄糖、戊五醇基酸、地洛洛尔奎尼酸、三缩水甘油奎尼酸、没食子莽草酸或其任何组合。用于wpu合成中的含儿茶酚或含没食子单宁化合物可根据聚氨酯固含量调整重量百分比为0%至20%、0%至15%、0%至10%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%14%、15%、16%、17%、18%、19%、20%、1%到10%、2%到10%、3%到10%、4%到10%、5%到10%、6%到10%、7%到10%、8%到10%、5%或更少、10%或更少。在ped或pea合成中使用的含儿茶酚或没食子单宁化合物可根据聚酯固含量调整重量百分比为0%至70%、0%至60%、0%至50%、0%至40%、0%至30%、0%至20%、0%至10%、30%以下、25%以下、20%以下、15%以下、10%以下、5%以下、5%至25%、5%至20%、5%至15%、5%至10%、10%至30%或20%至30%。图2a示例展示了一种用于制备含炔基或叠氮基的小分子可点击二醇的方法。通过逐步增长的聚合反应将具有炔基或叠氮基的二醇引入到水性聚合物主链中,能制得带有侧链炔烃或叠氮基可点击的水性聚氨酯(wpu)或聚酯分散体(ped)。非限制性示意图如下为可以用于官能化wpu和ped(包括柠檬酸聚合物)的二醇例子,其分子式分别为d1-d9:其中x和y分别为-o-或-nh-;r6、r7、r8、r9和r10分别为-ch3或-ch2ch3;r11为-h或-ch3。本公开所述用于wpu合成中含官能团的二醇可根据聚氨酯固含量调整重量百分比为0%至15%、0%至10%、0%至5%、2%至10%、2%至8%、2%至6%、2%至4%、5%至10%、10%或更少、8%或更少、5%或更少、3%或更少、2%或更少或1%或更少。本公开所述用于ped合成中含官能团的二醇可根据聚酯固含量调整重量百分比为0%至40%、0%至30%、0%至20%、0%至10%、1%至20%、1%至15%、1%至10%、1%至5%、5%至25%、5%至20%、5%至15%、5%至10%、2%以下、4%以下、6%以下、8%以下、10%以下、12%以下、14%以下、16%以下、18%以下、或20%以下。图2c示例展示了含炔基可点击二醇的炔丙基2,2-双(羟甲基)丙酸酯的合成。如本公开所述,含炔基的可点击二醇应不仅限于该类化合物,而且可以包括与本公开的目的相一致的任何含炔基可点击二醇。如以下实施例1中所示,2,2-双(叠氮甲基)丙烷-1,3-二醇的制备是通过不同的含叠氮基可点击二醇得到的,这也显示了备选含炔基可点击二醇的多种多样。在一些实施方案中,胶粘剂成分可以包含单价或多价离子盐,以作为阴离子或阳离子型纳米颗粒的反离子。叔胺(例如三甲胺(tea),二甲基氨基乙醇(dmae)和无机碱)可以将wpu、ped或pae上的侧羧基转化为负离子,而酸(例如盐酸,乙酸)可以将wpu,ped或pae上的叔胺基团转化为正离子。带相反离子的盐如下图e1-e5所示,在某些情况下,每个分子均可用于wpu、ped或pae聚合物的电离:其中m是na+或k+。本公开所述带相反电荷的分子在wpu中通常不超过(表示为摩尔当量)其对应的离子多元醇的量。例如,本公开所述wpu中带相反电荷的分子可根据聚氨酯固含量调整重量百分比为0.1%至5%、0.1%至4%、0.1%至3%、0.1%至2.5%、0.1%至2%、0.1%到1%、0.2%到2.5%、0.3%到2.5%、0.4%到2.5%、0.5%到2.5%、0.6%到2.5%、0.7%到2.5%、0.8%到2.5%、0.9%至2.5%或1%至2.5%。在一些情况下,本公开所述带相反电荷的分子在ped中可以不超过(表示为摩尔当量)其对应的离子多元醇或多元酸的量。在其他情况下,带相反电荷的分子在ped中有时会超过其对应的离子多元醇或多元酸的量。在一些实施方案中,ped中使用的带相反电荷的分子可根据聚酯固含量调整重量百分比为以1%至40%、1%至30%、1%至20%、1%至10%、1%或更少、3%或更少、5%或更少、7%或更少、9%或更少、10%或更少、12%或更少、14%或更少、16%或更少、18%或更少或20%或更少。wpu或ped分散系的固含量可以高达总物重量的55%,例如按重量百分比计的10%至55%、15%至50%、20%至45%、25%至45%、10%至50%、10%至45%、10%至40%、10%至35%、10%至30%、10%至25%或10%至20%。在图6所示的实施方案中,阳离子多巴胺改性的wpu(wpu+-dp)是通过用多巴胺盐酸盐封端支化聚氨酯的末端异氰酸酯(-nco)基团来合成的。释放的盐酸(hcl)可以与聚合物链上的叔胺反应(由mdea(式b5)引入),并形成季铵盐酸盐。在某些情况下,不需要额外的hcl即可使获得的水性聚合物。实施例2中描述了wpu+-dp的详细配方和合成方法。在如图7所示的另一个实施方案中,单宁酸(ta)(一种衍生自诸如橡木和茶叶等植物的单宁形式)可以通过-nco基团与ta上的酚基的反应被引入wpu中以制备阴离子型wpu(wpu--ta)。ta作为支化剂还能使wpu具有支化结构。实施例3中描述了wpu--ta的详细配方和合成过程。在如图8所示的另一个实施方案中,带有炔基可点击的二醇(合成过程如图2a所示)可以被引入wpu以制备阳离子wpu+-a1。实施例4中描述了wpu+-a1的详细配方和合成方法。在如图9所示的另一个实施方案中,带有叠氮基可点击的二醇(合成过程如图2d所示)可以被引入引入wpu以制备阴离子wpu--n3。wpu--n3的详细配方和合成过程在实施例5中进行了描述。在某些情况下,也可以将本公开所述的炔基可点击二醇引入wpu中以获得阴离子wpu--al,也可以将叠氮基可点击二醇引入wpu中以获得阳离子wpu+-n3。本公开所述的可点击wpu可以具有与组织发生化学反应的能力,例如wpu含可点击-coc≡ch(丙酸酯)基的二醇。以分子d5为例,可以合成具有吡啶硫醚基团的可点击二醇(图10),然后将其引入wpu+或wpu-(图11)。实施例6中描述了具有丙酸酯基(wpu--pl)的wpu的合成。在图12所示的实施方案中,可以通过将柠檬酸中的羧基转化为-coo-离子,或通过引入本公开所述的阴离子柠檬酸分子或二醇,将柠檬酸聚合物转化为水性或水溶性聚合物。本公开所述合成中使用的柠檬酸或柠檬酸单体可以是柠檬酸、-oh基团修饰的c1至c22烷氧基化或烯氧基化的柠檬酸、柠檬酸单/三碱金属盐、带有一价金属阳离子,例如na+或k+,或二价金属阳离子,例如ca2+或mg2+的柠檬酸盐。柠檬酸盐分子化学结构在以下分子式f1-f5中表示:如上所述,在基于柠檬酸的聚合物合成中使用的阴离子二醇可以是分子式b2-b4中所述的一种或多种,包括β-甘油磷酸二钠盐(β-gp,b2)、bes(b3)、和bes钠盐(b4)。根据本公开描述的聚丙烯酸酯乳液(pae)可以通过烷基酰化物单体、丙烯酸(阴离子pae)或烯丙胺(阳离子pae)、3-磺丙基(甲基)丙烯酸钾盐或其带有/不带有官能团的其他离子型乙烯基单体进行自由基聚合制得。在一些实施方案中,可以使用图13所示的合成方案合成pae,其中官能团(fg)可以是可点击的官能团,例如炔烃和叠氮化物,或本公开所述的其他官能团。合适的甲基丙烯酸烷基酯可以是与本公开的目的一致的任何烷甲基丙烯酸基酯。非限制性实例包括甲基丙烯酸甲酯,甲基丙烯酸乙酯或甲基丙烯酸丙酯,甲基丙烯酸月桂酯及其混合物。用于pae合成的甲基丙烯酸烷基酯可根据聚丙烯酸酯固含量调整重量百分比为20%至60%、25%至55%、30%至50%、35%至45%、32%至48%、34%至46%、36%至44%、38%至42%、30%至45%、30%至40%、30%至35%、35%至50%或40%至50%。合适的丙烯酸烷基酯可以是不与本公开的目的矛盾的任何丙烯酸烷基酯。非限制性实例包括丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙酯、丙烯酸丁酯、丙烯酸戊酯、丙烯酸己酯和丙烯酸乙基己酯、及其混合物。在一些情况下,丙烯酸烷基酯是丙烯酸乙酯,丙烯酸丁酯,丙烯酸乙基己酯或它们的组合。pae合成中使用的丙烯酸烷基酯可根据聚丙烯酸酯固含量调整重量百分比为为20%至65%、25%至60%、30%至55%、35%至50%、40%至45%、20%至60%、20%至55%、20%至50%、20%至45%、20%至40%、20%至35%、20%至30%、20%至25%、25%至65%、30%至65%、35%至65%、40%至65%、45%至65%、50%至65%或55%至65%。用于pae合成的丙烯酸/甲基丙烯酸(阴离子pae)或烯丙胺(阳离子pae)可以根据聚丙烯酸酯固含量调整重量百分比为为1%至5%、2%至5%、3%至5%、1%至4%、1%至3%或2%至4%。在本公开描述的一些实施方案中,离子型官能化的乙烯基单体可以是具有金属磺酸盐或金属磷酸盐的乙烯基单体,例如对苯乙烯磺酸钠。示例g1-g6展示了可用于本公开所述的一些实施方案中的具有不同官能化的乙烯基单体:其中r14、r15、r16、r17和r18均可为h或ch3;a=2或3。用于pae合成中的含有官能团的乙烯基单体可根据聚丙烯酸酯固含量调整重量百分比约为1%至25%、2%至20%、3%至15%、4%至15%、5%至15%、6%至15%、7%至15%、8%至15%、9%至15%、10%至15%或15%以下。水性聚丙烯酸酯颗粒可以最多占65%的固含量,例如1%至65%、5%至65%、10%至65%、15%至65%、20%至65%、25%至65%、30%至65%、35至55%、40%至50%、1%至10%、10%至20%、20%至30%、40%至50%、或50%至60%。本公开所述的胶粘剂成分可具有低动态粘度。在某些情况下,低动态粘度可以增强纳米颗粒渗透到粗糙基材表面中的能力,从而通过颗粒聚结或相互扩散以及溶剂蒸发形成机械互锁颗粒。如本公开先前所述,可以将纳米颗粒混合,聚结或扩散在一起以形成聚合物膜,该聚合物膜通过离子相互作用在胶粘剂和材料界面机械互锁。在一些实施方案中,胶粘剂成分具有的动态粘度如:10,000cp或以下、9000cp或以下、8000cp或以下、7000cp或以下、6000cp或以下、5000cp或以下、4000cp或以下、3000cp或以下、2000cp或以下、1000cp至10000cp、1000cp至9000cp、1000cp至8000cp、1000cp至7000cp、1000cp至6000cp、1000cp至5000cp、1000cp至4000cp、1000cp至3000cp、1000cp至2000cp、2000cp至10000cp、3000cp至10000cp、4000cp至10000cp、5000cp至10000cp、6000cp至10000cp、7000cp至10000cp、8000cp至10000cp、9000cp至10000cp、2000cp至8000cp或4000cp至6000cp。尽管在用于形成带电纳米颗粒或共价交联剂的各种实施方案中已经描述了不同的官能团,但是官能团不仅仅限于那些实施方案。在本公开所述的一些实施方案中,官能团可以具有治疗作用或机理,并且可以用作纳米颗粒上的唯一官能团,或与本公开所述的任何其他官能团组合使用。在一些情况下,本公开所述的纳米颗粒可以通过抗微生物组分进行改性,例如抗细菌、抗病毒、抗真菌、抗寄生虫或其任何组合。当将胶粘剂成分应用于组织时,此类抗微生物成分可帮助伤口愈合和灭菌。在一些实施方案中,抗微生物组分可以作为单独组分包含在本公开所述的胶粘剂成分中,而不是与纳米颗粒交联。抗菌剂的例子包括氨基糖苷、安沙霉素、羧苄青霉素、碳青霉烯、头孢菌素、糖肽、林可酰胺、脂肽、大环内酯类、单杆菌、硝基呋喃、恶唑烷酮、青霉素、抗微生物多肽(amp)、磺酰胺、四联霉素或任何组合。抗病毒药的例子包括金刚烷抗病毒药、抗病毒加强剂、抗病毒干扰素、趋化因子受体拮抗剂、整合酶链转移抑制剂、神经氨酸酶抑制剂、非核苷逆转录酶抑制剂、非结构蛋白5a(ns5a)抑制剂、核苷逆转录酶抑制剂、蛋白酶抑制剂、嘌呤核苷或其任何组合。抗真菌剂的例子包括克霉唑、硝酸益康唑、咪康唑、特比萘芬、氟康唑、酮康唑、两性霉素或其任何组合。抗寄生虫药包括苄芬宁、二乙基卡巴嗪、伊维菌素、烟酰胺、哌嗪、吡喹酮、吡咯烷、吡喃鎓、苯并咪唑、阿苯达唑、氟苯达唑、甲苯达唑、噻苯达唑或其任何组合。此外在某些情况下,纳米颗粒本身就具有抗菌特性。如实施例11中更详细描述到的,阳离子wpu(wpu+)或阴离子wpu(wpu-)也可具备抗菌性能。有研究表明这是因为wpu纳米颗粒的表面电荷破坏了细菌的细胞膜而引起的。参照实施例11,wpu+和wpu-乳液均表现出针对革兰氏阳性和革兰氏阴性细菌,金黄色葡萄球菌(s.aureus,atccno.6538)和大肠杆菌(大肠杆菌,e.coli,atccno.8739)的某些抗菌特性。水性溶剂包含水,其既可作为单独的溶剂,或与其他水溶性溶剂组合,例如低重均分子量的醇(甲醇、乙醇、丙醇、丁醇等),低重均分子量分子量的酸(乙酸等)和/或低重均分子量的氮基溶剂(乙腈,三乙胺等)。在一些实施方案中,水占总物组分的10%、20%、30%、40%、50%、60%、70%或80%。另外,有一个特定条件不包括在表3中,却代表了本公开所述的另一实施例。即,ab胶的组分之一可以是盐溶液,其能够使另一组分(例如,wpnd或聚合物溶液)从水中沉淀出来。该盐可以具有带多价电荷的离子,例如金属离子为mg2+,ca2+或fe3+,负电荷离子为磷酸盐或三聚磷酸盐。盐浓度可以在总物重量百分比的0.01%至5%的范围内。在某些情况下,盐浓度可以为总物重量百分比的0.1%至2%。i(b)聚合物基胶粘剂成分在另一方面,本公开所述的胶粘剂成分包含分散在水性溶剂中的第一类水性聚合物。在一些优选的实施方式中,胶粘剂成分包含分散在水性溶剂中的第二种水性聚合物的成分,第二种水性聚合物不同于第一种水性聚合物。在某些情况下,第一类和第二类水性聚合物的组分可以是在聚合物链上带有正电荷或负电荷的水性(水溶性)聚合物。第一类和第二类水性聚合物可以是带正电荷或负电荷的天然或合成聚合物。在某些情况下,第一类水性聚合物可以由与第二类水性聚合物由相同类型的材料构成。在其他情况下,第一类水性聚合物可以由与第二类水性聚合物不同的材料构成。在某些情况下,本公开所述的水性聚合物可包含负电荷或正电荷以形成ab胶,类似于本公开先前针对纳米颗粒所述的ab胶。例如,在本公开描述的一些实施方案中,组分a可以是具有第一种电荷的第一类水性聚合物,例如阳离子组分a(例如a+),并且组分b可以是具有第二种电荷的第二类水性聚合物,其与第一中电荷相反,例如阴离子组分b(例如b-)。但是如前所述,指定给组分a和b的特定电荷可以是任意一种,例如a+b-或a-b+,只要a和b组分的电荷彼此相反。在本公开所述的一些实施方案中,包含组分a的第一类水性聚合物和包含组分b的第二类水性聚合物在水性聚合物的成分相同(材料组成),唯一的区别是带电的官能团。在其他实施方案中,第一类水性聚合物组分a和第二类水性聚合物组分b由具有相反电荷的不同成分(材料组成)的水性聚合物组成。类似于先前讨论的纳米颗粒,第一类水性聚合物将具有与第二类水性聚合物相反的电荷,以便当第一类水性聚合物和第二类水性聚合物混合在一起时,在分子之间形成离子交联。如图1所示,当将本公开所述的胶粘剂成分应用于组织表面时,第一类和第二类水性聚合物成分可嵌入并聚集在组织的表面上,并通过离子交联机理形成机械互锁结构。第一类和第二类水性聚合物的电荷可以以与本公开的目的不矛盾的任何方式制备得到。图3示例展示了阴阳离子型的第一类和第二类水性聚合物的变化,其中圆形图标代表上面第i(a)节中讨论的纳米颗粒的a和b组分,而曲线代表水性聚合物的a和b组分。在一些实施方案中,可以按部分i(a)中描述的任何方式将电荷引入到第一类和第二类聚合物a和b组分上。参考图3,在一些实施例中,本公开所述的阳离子水性聚合物可以包含壳聚糖,聚(l-赖氨酸)(pll)、ε-聚赖氨酸(ε-pl)、聚乙烯亚胺(pei)或聚烯丙胺(paa)。用作ab配方其中一种组分的阳离子水性聚合物溶液的浓度按重量百分比的范围为0.1%至50%、1%至50%、5%至50%、10%至50%、15%至50%、20%至50%、25%至50%、30%至50%、35%至50%、40%至50%、5%至40%、10%至30%、15%至25%、10%至20%。在一些实施方案中,本公开所述的水性聚合物可包含重均分子量1,000至5,000da(1k至5k)、5,000至200,000da(5k至200k)、5k至150k、5k至125k、5k至100k、5k至90k、5k至80k、5k至70k、5k至60k、5k至50k、5k至40k、5k至30k、5k至20k、10k至100k、10k至75k、10k至50k、10k至25k、20k至150k、30k至150k、40k至150k、50k至150k、60k至150k、70k至150k、80k至150k、90k至150k、100k至150k或100k至200k或200k至400k。再次参考图3,阴离子水性聚合物可以是离子化的柠檬酸聚合物,羧甲基纤维素(cmc),羧甲基壳聚糖(cmcs),羧甲基淀粉(cms),藻酸钠(sa),硫酸软骨素,琥珀酰明胶(sg)。在ab配方中一种阴离子水性聚合物溶液组分的浓度范围按重量百分比计算可为0.1%至50%、1%至50%、5%至50%、10%至50%、15%至50%、20%至50%、25%至50%、30%至50%、35%至50%、40%至50%、5%至40%、10%至30%、15%至25%、10%至20%。在一些实施方案中,离子化的柠檬酸聚合物的重均分子量可为800至6kda、800至5kda、800至4kda、800至3kda、800至2kda、800至1.5kda、800至1kda、1k至6kda、1.5k至6kda、2k至6kda、3k至6kda、4k至6kda或5k至6kda。在一些实施方案中,诸如cmc、cmcs、cms、sa、sg和硫酸软骨素的天然聚合物的重均分子量可为50k至400kda、50k至200kda、100k至200kda、200k至300kda、至少50kda、至少100kda、至少150kda、至少200kda、至少250kda、至少300kda、至少350kda、至少400kda或大于400kda。阴阳离子水性聚合物可以按上文第i(a)节所述的任何方式引入可点击的官能团(炔,叠氮化物,-coc≡ch),双键(烯丙基,-cocr=ch2,r=h或ch3)和-si-h键。在图3示例中还展示了不同官能团的列表。这些官能团的重量百分比可以在与本公开的目的不矛盾的任何范围内。示例范围包括按重量百分比计算的0%至20%、0%至18%、0%至16%、0%至14%、0%至12%、0%至10%、0%至8%、0%至6%、0%至4%、1%至20%、2%至20%、4%至20%、6%至20%、8%至20%、10%至20%、12%至20%、14%至20%、16%至20%、18%至20%。在本公开所述的一些实施方案中,本公开所述的第一类水性聚合物和第二类水性聚合物上的官能团可以按上文第i(a)节中所述的相似或相同的方式进行配对。“可配对的”是指第一类水性聚合物和第二类水性聚合物上的不同官能团可以彼此反应(相对于成分内的其他可能的反应,包括(在某些情况下,以选择性或优选的方式)形成共价键或离子键)或至少彼此相容或彼此不影响反应。当本公开所述的ab胶中的两种组分均为具有相反电荷的官能化/非官能化水溶性聚合物溶液时,组分a和组分b的水性聚合物浓度之和按重量百分比可以为1%至100%、1%至90%、1%至80%、1%至70%、1%至60%、1%至50%、1%至40%、1%至30%、1%至20%、1%至10%、10%至45%、10%至40%10%至35%、10%至30%、10%至25%、10%至20%、15%至50%、20%至50%、25%至50%、30%至50%、35%至50%或40%至50%。在一些实施方案中,胶粘剂成分可包含单价或多价离子盐以作为带负电或带正电的纳米颗粒的相反离子,例如相反离子盐由部分i(a)中的分子e1-e5表示,在某些情况下,它们中的每一个都可用于使本公开所述的水性聚合物电离。水性聚合物的分散系的固含量可高达总物重量的55%,例如10%至55%、15%至50%、20%至45%、25%至45%、10%至50%、10%至45%、10%至40%、10%至35%、10%至30%、10%至25%或10%至20%。本公开所述的水性聚合物胶粘剂成分具有低动态粘度,例如第i(a)节中所述的低动态粘度。在一些情况下,本公开所述的水性聚合物既可以用抗微生物组分如i(a)中所述的抗菌剂、抗病毒药、抗真菌剂、抗寄生虫药或其组合进行官能化,也可以与这些抗微生物组分共混而不需要与之反应。水性溶剂可包含水作为唯一溶剂,或与其他水溶性溶剂组合,例如低重均分子量的醇(甲醇、乙醇、丙醇、丁醇等),低重均分子量的酸(乙酸等)和/或低重均分子量的氮基溶剂(乙腈,三乙胺等)。在一些实施方案中,水占总物重量百分比的10%、20%、30%、40%、50%、60%、70%或80%。另外,一个不包括在表3中特定条件,但却代表本公开所述的另一个实施例。即,ab胶的组分之一可以是盐溶液,其能够将另一组分(例如wpnd或聚合物溶液)从水中沉淀出来。该盐可以含有带多价电荷的离子,例如金属离子可以是mg2+,ca2+或fe3+,负电荷离子可以是磷酸盐或三聚磷酸盐。盐浓度可以在0.01%至5%的范围内。在某些情况下,盐浓度也可以是0.1%至2%。图14显示了含钙离子的水性icmba(icmba-ca2+)的合成示例。icmba-epe-ca2+(使用peg-ppg-peg二醇的icmba-ca2+)是通过柠檬酸(ca),聚(乙二醇)-聚(丙二醇)-聚(乙二醇)(peg-ppg-peg)二醇和多巴胺缩聚而成,然后用碳酸钙(caco3)处理。该合成的详细方法可以在实例7中找到。i(c)多组分胶粘剂成分在另一方面,本公开描述的胶粘剂成分包含分散在水性溶剂中的第一类纳米颗粒;以及分散在水性溶剂中的第二类纳米颗粒,第二类纳米颗粒的类型不同于第一类纳米颗粒。第一和第二类纳米颗粒可以具有在部分i(a)中描述的结构。例如,如图3所示,第一类纳米颗粒可以是wpnd,例如wpu、ped或pae,第二类纳米颗粒可以是不同的wpnd。例如,在某些情况下,当第一类纳米颗粒是wpu时,第二类纳米颗粒可以是ped或pae;当第一类纳米颗粒是ped时,第二类纳米颗粒可以是wpu或pae,等等。第一类和第二类纳米颗粒也可以具有相反的电荷,使得第一和第二类纳米颗粒可以进行离子交联。第一类纳米颗粒和第二类纳米颗粒可以通过以上在部分i(a)中描述的任何方式带电。此外,在本公开所述的一些实施方案中,第一类纳米颗粒和第二类纳米颗粒可包含可配对的官能团,其中第一类纳米颗粒上的官能团可与第二类纳米颗粒上的官能团配对。在一些实施方案中,第一类纳米颗粒可具有附接到第一类纳米颗粒的外表面的第一种官能团,并且第二类纳米颗粒可具有附接到第二类纳米颗粒的外表面的第二种官能团。第二种官能团可以与附接到第一类纳米颗粒的外表面的第一种官能团选择性地反应,并且可以形成使第一类纳米颗粒交联到第二类纳米颗粒的共价键。例如,第一类纳米颗粒可以用炔基官能化,并且第二类纳米颗粒可以用叠氮基官能化。当第一类纳米颗粒由于其相反的电荷而与第二类纳米颗粒进行离子交联时,紧密靠近的炔基和叠氮基会引发“点击”反应,从而在纳米颗粒之间形成共价键。因此,第一和第二类纳米颗粒将通过离子和共价交联而机械互锁。另外,如以上在部分i(a)中所述,第一和第二类纳米颗粒可以被能与组织反应的官能团(例如邻苯二酚或没食子单宁的组分)官能化。在一些实施例中,第一类纳米颗粒和第二类纳米颗粒可以仅包含有能与组织反应的官能团,或者也可以包含有既能与组织反应的官能团和又可配对的官能团。在这些情况下,胶粘剂成分既能在纳米颗粒之间形成离子和共价交联,以能在颗粒与组织之间共价交联。然而在某些情况下,第一和第二类纳米颗粒仅具有相反的电荷以形成离子交联,并且不具有任何官能团。类似于描述第一和第二类纳米颗粒,本公开所述的胶粘剂成分包含分散在水性溶剂中的第一种水性聚合物,以及大量分散在水性溶剂中的第二种水性聚合物。第二种水性聚合物不同于第一种水性聚合物。第一和第二种水性聚合物可以具有在部分i(b)中描述的结构,带有电荷、可配对的官能团、可与组织结合的官能团和其他所有特征。如第i(b)节所述和图3所示,第一种水性聚合物可以是水性聚合物,例如icbp、cmc、cmcs、cms、sa或sg,第二种水性聚合物可以是不同的水性聚合物。例如在某些情况下,当第一种水性聚合物是icbp时,第二种水性聚合物可以是cmc、cmcs、cms、sa或sg;当第一种水性聚合物是sg时,第二种水性聚合物可以是icbp、cmc、cmcs、cms或sa,等等。类似于第一和第二类纳米颗粒,第一和第二种水性聚合物也可以具有相反的电荷,使得第一和第二种水性聚合物可以形成离子交联。第一和第二种水性聚合物可以通过i(a)和i(b)部分中所述的任何方式加入。另外在本公开所述的一些实施方案中,第一和第二种水性聚合物可包含如上文针对第一和第二类纳米粒子所述的可配对的官能团,其中第一种水性聚合物上的官能团可与第二种水性聚合物上的官能团配对。另外在一些实施方案中,第一和第二种水性聚合物可以用可与组织反应的官能团进行官能化,例如邻苯二酚或没食子单宁的组分。如i(a)和i(b)所述。最后在另一方面,本公开所述的胶粘剂成分可包含分散在水性溶剂中的如i(a)描述的纳米颗粒和如i(b)描述的水性聚合物的组合。纳米颗粒和水性聚合物都可以带电,其中纳米颗粒可以具有与水性聚合物相反的电荷。纳米颗粒和水性聚合物可以在结合时进行离子交联。在本公开描述的一些实施方案中,纳米颗粒和水性聚合物可具有可配对的官能团,其中纳米颗粒上的官能团可与水性聚合物上的官能团配对。当各自的纳米颗粒和水性聚合物紧密相邻时,例如通过离子交联,这些可成对的基团可以选择性地反应以形成共价交联,例如在部分i(a)和i(b)中所述。在本公开描述的一些实施方案中,纳米颗粒和水性聚合物能被可以与组织反应的官能团官能化,例如邻苯二酚或没食子单宁的组分。在一些情况下,官能化仅限于纳米颗粒或水性聚合物两者之一。在其他情况下,官能化同时包括纳米颗粒和水性聚合物。而在某些情况下,纳米颗粒被一种类型的可与组织反应的官能团官能化,而水性聚合物则被另一种类型的可与组织反应的官能团官能化。尽管就两种单独的组分描述了胶粘剂成分,但是胶粘剂成分不仅限于两种单独的组分。在一些实施方案中,本公开所述的胶粘剂成分可具有一种,两种,三种,四种,五种,六种或更多种的组分。例如,本公开所述的胶粘剂成分可以具有一种、两种,三种或多种具有互补电荷和官能团的纳米颗粒或水性聚合物。ii胶粘剂成分的使用方法另一方面,本公开描述了使用i(a)至i(c)描述的胶粘剂成分的方法。在一些实施方案中,一种粘附生物材料的方法包括:将在i(a)至i(c)中描述的任何胶粘剂成分涂抹在第一种生物材料的第一个表面和第二种生物材料的第二个表面之间。所涂抹的成分将第一种生物材料的第一个表面粘附至第二种生物材料的第二个表面。在一些实施方案中,i(a)描述的纳米颗粒之间可以通过离子交联,共价交联或两者结合的方式进行交联。在一些实施方案中,i(b)的水性聚合物之间可以通过离子交联,共价交联或两者结合的方式进行交联。在一些实施方案中,i(a)描述的第一类纳米颗粒与i(a)描述的第二类纳米颗粒进行交联,或i(b)描述的第一种聚合物通过离子交联、共价交联或两者结合的方式与i(b)描述的第二种聚合物进行交联。在一些情况下,i(a)描述的纳米颗粒通过离子交联、共价交联或两者结合的方式与i(b)描述的水性聚合物进行交联。在一些情况下,粘附生物材料的方法包括利用可与组织反应的官能团在在i(a)至i(c)中描述的任何胶粘剂成分之间形成交联。图15展示的是使用图3所示官能团进行组合的列表,这些组合之间可以进行各种离子交联,与组织机械互锁和与组织化学键合。在某些情况下,可以通过单个注射器将成分注射并涂抹在在第一表面和第二表面之间或开放区域中。在其他情况下,涂抹胶的步骤可通过分别从一号注射器注射胶的第一组分和从二号注射器注射胶的第二组分。胶成分的第一和第二组分可以同时或按顺序注射。在一些实施方案中,应用胶的步聚是通过将胶成分的第一组分注射在第一种生物材料的第一表面上并且将胶成分的第二组分注射在在第二种生物材料的第二表面上,然后使第一和第二表面接触来完成。当生物材料与胶粘剂成分粘附时,本公开所述的胶粘剂成分可在第一表面和第二表面之间形或在开放区域之上形成水密密封胶。在一些实施方案中,介绍了一种应用生物胶于腹部成形术的方法,包括将i(a)至i(c)描述的成分涂抹在腹部组织的第一层的第一表面与腹部第二层的第二表面之间,然后生物胶将两层表面粘合。在一些实施方案中,介绍了一种应用生物胶于乳房切除术的方法,包括将i(a)至i(c)方案的成分涂抹在第一层乳房组织的第一表面与第二层乳房组织的第二表面之间,然后生物胶将两层表面粘合。在一些实施方案中,介绍了一种应用生物胶将一些生物材料粘附至医疗植入物的方法,包括将i(a)至i(c)描述的成分涂抹在第一种生物材料的第一表面和第一种医疗植入物的第一表面,或第二种医疗植入物的第二表面,或第二种生物材料的第二表面之间,然后生物胶将任意两层表面粘合。在一些实施方案中,介绍了一种应用生物胶于治疗皮肤疾病、病症或病状的方法,包括将i(a)至i(c)描述的成分涂抹于患者的皮肤表面。在一些实施方案中,介绍了一种应用生物胶为患者的皮肤伤口包扎的方法,包括将i(a)至i(c)描述的成分涂抹于伤口,从而形成液体绷带。在一些实施方案中,介绍了一种应用生物胶治疗脑脊液经蝶窦渗漏的方法,包括将i(a)至i(c)描述的成分涂抹于蝶窦渗漏所对应的颅腔中,该成分可形成水密密封胶以堵住渗漏。在一些实施方案中,介绍了一种应用生物胶将治疗因子递送至生物环境的方法,包括将实施方案1-27中任一项的成分用于生理环境中,其中所述生物胶成分还包含分散在生物胶水性溶剂中的治疗因子。在一些实施方案中,介绍了一种应用生物胶于密封硬脑膜的开放区域和颅骨的开放区域的方法,包括将实施方案1-27中任一项的生物胶成分置于硬脑膜或颅骨的开放区域中,其中所述的成分能在硬脑膜和颅骨的开放区域形成水密密封胶。虽然已经在基于组织工程的应用的背景下讨论了使用本公开所述的胶粘剂组分的各种用途,但是此胶粘剂组分不仅限于这些领域,还可以用于药物释放、逐层涂层、伤口敷料、植物种子包衣、液体绷带、3d打印、内窥镜黏膜切除术(emr)和化妆品应用等。iii化妆品胶粘剂另一方面,化妆品成分包含水性溶剂、分散在水性溶剂中i(a)至i(c)描述的任一项的胶粘剂成分和化妆品可接受的助剂(其包含结构化剂、胶凝剂、粉末、填充剂、乳化剂、固体或液体脂肪剂或它们的任意组合中的一种或多种)。其中第一种聚合物可带负电或正电;并且其中第一种聚合物可以是颗粒或非颗粒的。结构化剂通常起到增稠或增加组分粘度的作用,并且通常包含蜡和非蜡聚合物。结构化剂的各种实例包括含聚有机硅氧烷的聚合物,非硅氧烷-聚酰胺共聚物,蜡及其混合物,或与本公开的目的不矛盾的任何其他结构化剂。含聚有机硅氧烷的聚合物重均分子量可为300至3×106,其包含1至约15,000个有机硅氧烷单元。非硅聚酰胺共聚物包括酯封端的聚酰胺(etpa)、叔酰胺封端的聚酰胺(atpas)、酯封端的聚酯酰胺(etpeas)、叔酰胺封端的聚酯酰胺(atpea)、聚亚烷基氧基封端的聚酰胺(paopa)、聚醚-聚酰胺(pepa)或任何其他与本公开目的不矛盾的聚酰胺。所述蜡包括天然动物,植物或矿物来源的蜡,例如蜂蜡、巴西棕榈蜡、小烛树蜡、养草蜡、日本蜡、软木纤维蜡、甘蔗蜡、石蜡、褐煤蜡、微晶蜡、羊毛脂蜡、褐煤蜡蜡、臭蜡石和氢化油(如氢化霍霍巴油)以及合成来源的蜡,例如衍生自乙烯聚合的聚乙烯蜡、费托合成获得的蜡、脂肪酸酯和甘油酯、硅酮蜡、以及来自于食品法典的所有蜡或其任何组合。胶凝剂可以是基于聚合物或矿物的亲水性或疏水性胶凝剂,其可通过化学成网或物理成网形成凝胶。疏水胶凝剂的示例包括改性粘土或矿物增稠剂,例如热解法二氧化硅,或与本公开的目的不矛盾的任何其他疏水胶凝剂。亲水胶凝剂的示例包括多糖和树胶,诸如淀粉或纤维素及其衍生物的多糖树脂、聚乙烯吡咯烷酮(pvp)、聚乙烯醇、交联的聚丙烯酸和丙烯酸酯、疏水改性的丙烯酸酯、聚丙烯酰胺或其任意组合、或任何其他与本公开的目的不矛盾的亲水性胶凝剂固体或液体脂肪剂可以是挥发性或非挥发性油,例如线性或支链的烃基类油,其结构中可以选择性包括氧、氮、硫和/或磷原子、硅油或氟油。烃基类油的实例包括辛酸、癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、油酸、蓖麻油酸、亚油酸、亚麻酸、花生四烯酸、鳕烯酸、廿二酸、芥酸、二十二烯酸、鲸蜡油酸、木质酸、神经酸、石蜡、凡士林、聚癸烯、氢化聚异丁烯、植物来源的饱和或不饱和脂肪酸或它们的任何组合、或与本公开的目的相一致的任何其他脂肪剂。还包括合成的酯和醚、例如紫胶精油、棕榈酸辛酯、月桂酸异丙酯、硬脂酸2-辛基十二烷基酯、芥酸2-辛基十二烷基酯或异硬脂酸异硬脂酯。羟基化的酯,例如异硬脂酸异硬脂酸酯、羟基硬脂酸辛酯、苹果酸辛基十二烷基酯、苹果酸二异硬脂基酯、柠檬酸三异鲸蜡酯或庚酸酯、脂肪醇的辛酸酯或癸酸酯、多元醇酯、季戊四醇酯、c10-c17烷基苯甲酸酯或它们的任何组合。醚与本公开的目的不矛盾。硅油通常包含具有1至10个碳原子的烷基或烷氧基的有机硅油,例如聚二甲基硅氧烷、八甲基环四硅氧烷、十甲基环五硅氧烷、十二甲基环六硅氧烷、七甲基己基三硅氧烷、七甲基辛基三硅氧烷、六甲基二硅氧烷、八甲基五硅氧烷、十甲基五硅氧烷、十二甲基混合物、或与本公开的目的不矛盾的任何其他硅油。氟油示例包括九氟甲氧基丁烷、全氟甲基环戊烷、以及它们的组合或与本公开的目的没有矛盾的任何其他氟油。阴离子两亲脂质可以是烷基醚柠檬酸酯、烷氧基化烯基琥珀酸酯、烷氧基化葡萄糖烯基琥珀酸酯、烷氧基化甲基葡萄糖烯基琥珀酸酯或任何其他与本公开的目的相矛盾的阴离子两亲脂质。在一些实施方案中,化妆品可接受的辅剂还包含着色剂、颜料、光保护剂、次级成膜剂、美容活性剂或美容助剂或其任何组合。着色剂和颜料可以是本领域技术人员已知的与本公开的目的不矛盾的任何着色剂或颜料。光保护剂可以是紫外线阻断剂、例如在普通防晒剂中使用的。美容活性剂可包括治疗剂、例如抗炎药或抗生素、维生素、类固醇、提取物、酶、精油或对角蛋白组织具有治疗作用的其他药剂。化妆品佐剂可以是润肤剂、保湿剂、纤维、防腐剂、螯合剂、香料、中和剂或其任意组合。角质组织在本公开中定义为含角蛋白的组织,例如头发或皮肤或其他具有角蛋白的组织。粉末和填料可以是聚酰胺颗粒、尼龙纤维、聚乙烯粉末、丙烯酸共聚物的微球、三聚氰胺-甲醛树脂颗粒、脲-甲醛树脂颗粒、聚(四氟乙烯)颗粒、乙烯-丙烯酸酯共聚物粉末、膨胀粉末、淀粉粉和有机硅树脂微珠。在一些实施方案中,化妆品成分和胶粘剂化妆品成分可以是非压缩粉底粉或棒、压缩粉底粉或棒、化妆品膏、睫毛膏、唇膏、唇彩、润唇膏、指甲油或美容霜。iv.化妆品胶粘剂的使用方法另一方面,一种制备用于角蛋白组织的化妆品成分的方法包括了配制第iii节中所述的化妆品成分。在一些实施方案中,将化妆品成分粘附至角质组织的方法包括了将第iii节中所述的化妆品成分涂在一个或多个角质组织表面上。在另一个实施例中,介绍了一种将延长睫毛粘附到人体的方法,包括了使用第iii节中描述的化妆品成分将延长睫毛附着到人体现有睫毛或其他角质组织。在一些实施方案中,将延长睫毛粘附至人体的方法包括将第iii节所述的化妆品成分涂抹用于延长睫毛;并将延长睫毛附着于人体的角质组织。另一方面,指甲油成分包含在第iii节中描述的化妆品成分。在某些情况下,指甲油成分可以进一步包含本领域技术人员已知的硬化剂。在另一方面,一种在指甲或趾甲表面上形成指甲油涂层的方法包括了将第iii节所述的化妆品成分涂抹于指甲或趾甲表面;并固化所涂抹的成分。在一些实施方案中,将指甲油涂层机械和化学地附着到指甲或趾甲表面的方法包括了将第iii节中描述的化妆品成分涂抹于指甲或趾甲表面;并固化所涂抹的成分。另一方面,液体化妆品成分包含第iii节中所述的化妆品成分,其中在将所述成分涂抹于角蛋白组织上并干燥后,所述液体化妆品成分的折射率为1.3至1.8。另一方面,使用化妆品成分的方法包括了将第iii节中描述的化妆品成分涂抹于人的角质组织后成膜。形成的薄膜可以透气。在一些实施方案中,所涂抹的膜在角质组织上原位形成。膜的原位形成可以在室温、高于室温或低于室温的环境下发生。所施加的膜可以是弹性的、柔性的、透湿的、透氧的或其任何组合。v.选定的实施方案尽管以上描述和所附权利要求公开了本发明的多个实施例,但是下面的实施例中将进一步的公开本发明的其他方面。实施方案1.一种胶粘剂成分,其包含:水性溶剂;和分散在水性溶剂中的第一类纳米颗粒其中第一类纳米颗粒带负电或正电;和其中所述第一类纳米颗粒具有1nm至1000nm的三维平均粒径。实施方案2。实施方案1的成分中所述纳米颗粒为球形或近似球形。实施方案3。实施方案1的成分中第一类纳米颗粒的平均zeta电位为小于-30mv或大于30mv。实施方案4。实施方案1的成分中第一类纳米颗粒由聚合物形成。实施方案5。实施方案4的成分中第一类纳米颗粒由聚氨酯,聚酯或聚丙烯酸酯形成。实施方案6。根据实施方案1所述的成分中所述第一类纳米颗粒的表面含有第一种官能团。实施方案7。实施方案6的成分中第一种官能团是多巴胺基、单宁基、可点击基、n-羟基磺基琥珀酰亚胺基、马来酰亚胺基、乙烯性不饱和基、醛基或氢硅烷基团。实施方案8。实施方案7的成分中所述可点击基团是叠氮基或炔基。实施方案9。实施方案7的成分中所述乙烯性不饱和基团是烯丙基、丙烯酸酯基或甲基丙烯酸酯基。实施方案10.一种胶粘剂成分,其包含:水性溶剂;和分散在水性溶剂中的第一种聚合物,其中第一种聚合物带负电或正电;和其中第一种聚合物是非颗粒的。实施方案11。实施方案10的成分中第一种聚合物的侧基包含有第一种官能团。实施方案12。实施方案11的成分中第一种官能团是多巴胺基团、单宁基团、可点击基团、n-羟基磺基琥珀酰亚胺基团、乙烯性不饱和基团、醛基或氢硅烷基团。实施方案13。实施方案12的成分中所述可点击基团是叠氮基或炔基。实施方案14。实施方案12的成分中所述乙烯性不饱和基团是烯丙基、丙烯酸酯基或甲基丙烯酸酯基。实施方案15。实施方案1的成分进一步包含了:分散在水性溶剂中的第二类纳米颗粒。第二类纳米颗粒不同于第一类纳米颗粒。实施方案16。实施方案15的成分中与第一类纳米颗粒相比,第二类纳米颗粒带相反电荷。实施方案17。实施方案10的成分进一步包含了:分散在水性溶剂中的第二类纳米颗粒,其中第二类纳米颗粒与第一种聚合物相比带相反电荷。实施方案18。实施方案1的成分进一步包含了:第二种聚合物分散在水性溶剂中,与第一类纳米颗粒相比,第二种聚合物为非颗粒且带相反电荷。实施方案19。实施方案10的成分进一步包含了:第二种聚合物分散在水性溶剂中,其中第二种聚合物是非颗粒的,其中第二种聚合物不同于第一种聚合物,并且其中第二种聚合物与第一种聚合物带相反的电荷。实施方案20。实施方案15或17的成分中第二类纳米颗粒由聚合物形成。实施方案21。实施方案15或实施方案17的成分中第二类纳米颗粒的外表面含有第二种官能团。实施方案22。实施方案21的成分中第二种官能团是多巴胺基团、丹宁基团、可点击基团、n-羟基磺基琥珀酰亚胺基团、亚乙基不饱和基团、醛基或氢硅烷基团。实施方案23。实施方案21的成分中第二种官能团与附接在第一类纳米颗粒的外表面的第一官能团可选择性地反应。实施方案24。实施方案17的成分中第二种官能团与作为侧基连接到第一种聚合物上的第一种官能团可选择性地反应。实施方案25。前述实施方案中任一项的成分进一步地包含了多价离子盐。实施方案26。前述实施方案中任一项的成分中固含量按重量百分比计为至多55%。实施方案27。前述实施方案中任一项的成分中所述成分具有小于等于10,000cp的动态粘度。实施例28。一种粘附生物材料的方法,该方法包括:将实施方案1-27中任一项的成分置于第一种生物材料的第一表面和第二种生物材料的第二表面之间,其中所述成分将两表面粘合。实施例29。一种密封或闭合人体组织内的开放区域的方法,该方法包括:将实施方案1-27中任一项的成分涂抹在开放区域中。实施例30。实施例28或实施例29的方法还包括:将成分的第一类纳米颗粒或第一种聚合物进行交联。实施方案31。实施方案30的方法中所述第一类纳米颗粒或第一种聚合物均可自身进行交联。实施方案32。实施方案30的方法中所述成分包含第二类纳米颗粒,并且所述第一类纳米颗粒与所述第二类纳米颗粒交联或所述第一种聚合物与所述第二类纳米颗粒交联。实施方案33。实施方案30的方法中所述成分包含第二种聚合物,并且所述第一类纳米颗粒与所述第二种聚合物交联或所述第一种聚合物与所述第二种聚合物交联。实施方案34。实施方案28或实施方案29的方法中通过从单个注射器将成分注射第一表面和第二表面之间或开放区域中。实施方案35。实施方案28或实施方案29的方法中通过从一号注射器注射胶的第一组分和二号注射器注射胶的第二组分于第一表面和第二表面之间或开放区域中。实施方案36。实施方案35的方法中所述成分的第一和第二组分是同时注射。实施方案37。实施方案35的方法中所述成分的第一和第二组分是被顺序注射。实施方案38。实施方案28的方法中胶的使用是在第一生物材料的第一表面上先涂上胶的第一组分,然后在第二表面上涂上胶的第二组分,然后使材料的第一和第二表面彼此接触以将其粘合在一起。实施例39。实施方案28的方法中胶的使用是在第一生物材料的第一表面上先涂上胶的第一组分,然后在此表面上继续涂上胶的第二组分,然后使材料的第一和第二表面彼此接触以将其粘合在一起。实施方案40。实施方案35-39中任一项的方法中所述的成分的第一组分包含了阴阳离子型的第一类纳米颗粒或阴阳离子型的第一种聚合物,且与第一类纳米颗粒或第一种聚合物带相反电荷的第二类纳米颗粒或第二种聚合物。实施方案41。实施方案28或实施方案29所述的方法是将所述成分涂抹在植入物的一个或多个表面或将植入物置于第一和第二表面之间或开放区域中,然后将所述成分涂抹在所述的第一和第二表面之间或开放区域中。实施方案42。实施方案28的方法中所述成分在第一表面和第二表面之间形成水密密封胶。实施方案43。实施方案29的方法中所述成分在所述开放区域上形成水密密封。实施方案44。实施方案28的方法中所述第一表面和/或第二表面包括骨或由骨构成。实施方案45。实施方案28的方法中所述第一表面和/或所述第二表面包括软组织或由软组织构成。实施方案46。实施方案28的方法中所述第一表面包括骨或由骨构成,并且所述第二表面包括软且织或由软组织构成。实施方案47。实施方案29的方法中所述的身体组织包括骨或由骨构成。实施方案48。实施方案28的方法中所述的身体组织包括软组织或由软组织构成。实施方案49。实施方案28的方法中所述的身体组织包括骨和软组织共同构成。实施方案50。一种进行腹部成形术的方法包括了:将实施方案1-27中任一项的成分涂抹于腹部组织的第一层的第一表面与腹部组织第二层的第二表面,并将两层组织表面相互粘合。实施方案51。实施方案50所述的方法是将所述成分涂抹在植入物的一个或多个表面或将植入物置于第一和第二表面之间,然后将所述成分涂抹在所述的第一和第二表面之间。实施方案52。一种进行乳房切除术的方法包括:将实施方案1-27中任一项的成分涂抹于乳房组织的第一层的第一表面与乳房组织第二层的第二表面,并将两层组织表面相互粘合。实施方案53。实施方案52所述的方法是将所述成分涂抹在植入物的一个或多个表面或将植入物置于第一和第二表面之间,然后将所述成分涂抹在所述的第一和第二表面之间。实施方案54。一种将生物材料粘附到植入物上的方法包括:将实施方案1-27中任一项的成分涂抹在植入物的一个或多个表面或将植入物置于第一和第二表面之间,然后将所述成分涂抹在所述的第一和第二表面之间,并将两层组织表面相互粘合。实施方案55。一种将生物材料粘附到植入物上的方法包括:将实施方案1-27中任一项的成分涂抹在植入物的一个或多个表面上;和使植入物的一个或多个表面与生物材料接触。实施方案56。实施方案54或实施方案55所述的方法中植入物是手术网或支架。实施方式57。一种治疗皮肤疾病、病症或病状的方法,该方法包括:将实施方案1-27中任一项的成分涂抹于患者的皮肤表面。实施方案58。一种为患者的皮肤伤口包扎的方法包括:将实施方案1-27中任一项的成分涂抹于伤口并形成液体绷带。实施方案59。一种治疗脑脊液经蝶窦渗漏的方法包括:将实施方案1-27中任一项的成分涂抹于蝶窦渗漏相对应的颅间隙处并形成防漏的水密密封胶。实施方式60。一种将治疗因子释放至生理环境的方法包括:在生理环境中涂抹实施方案1-27中任一项的成分,其中所述成分还包含分散在所述成分的水性溶剂中的治疗因子。实施方案61。一种密封硬脑膜和颅骨的开放区域的方法包括:将实施方案1-27中任一项的成分涂抹在硬脑膜和颅骨的开放区域中并形成水密密封胶。实施方案62。实施方案61的方法中所述成分在一次性外科手术过程中是同时或基本上是同时涂抹于硬脑膜和颅骨的开放区域中。实施方案63。实施方案61的方法是通过从一号注射器注射成分的第一组分并从二号注射器注射成分的第二组分来将胶涂抹在开放区域中。实施方案64。实施方案63的方法中所述成分的第一和第二组分是同时注射。实施方案65。实施方案63的方法中所述成分的第一组分阴阳离子型的第一类纳米颗粒或第一种聚合物,并且所述成分的第二组分包含第二类纳米颗粒或与第一纳米颗粒或第一种聚合物带电相反的第二种聚合物。实施方案66。实施方案65的方法中成分的第一组分和/或第二组分进一步包含了有效剂量的医治材料。实施方案67。实施方案66的方法中成分的第二组分进一步包含羟基磷灰石颗粒。实施方案68。根据实施方案67所述的方法中所述成分的第一组分至少部分填充硬脑膜的开放区域,并且所述成分的第二组分至少部分填充头骨的开放区域。实施例69。如实施例61-68中任一项所述的方法还包括:胶的成分在一个或两个开放区域内交联。实施方案70。包括一种当置于生理环境中时可延迟硬化或连续硬化的生物胶的成分。实施方案71。实施方案70的成分可延迟硬化是由于所述成分的内部和/或所述成分与周围生理环境的一个或多个表面之间的交联度随时间增加而增加。实施方案72。实施方案70的成分的内部交联度随时间增加是由于在成分中或附近的交联引发剂的浓度或数量增加。实施方案73。实施方案72的成分中所述交联引发剂包括光引发剂或点击化学催化剂。实施方案74。一种化妆品成分,其包含:水性溶剂;第一种聚合物分散在水性溶剂中;和化妆品可接受的助剂,其中包含以下一种或多种:一个结构助剂,胶凝剂粉末填充剂乳化剂固体或液体脂肪剂,或它们的任意组合;其中第一种聚合物带负电或正电;和其中第一种聚合物是非颗粒的。实施方案75。实施方案74的化妆品成分中第一种聚合物的侧基包含第一种官能团。实施方案76。实施方案75的化妆品成分中所述的第一种官能团是多巴胺基、单宁基、可点击基、n-羟基磺基琥珀酰亚胺基、马来酰亚胺基、乙烯性不饱和基、醛基、或氢硅烷基。实施方案77。实施方案76的化妆品成分中所述可点击基团是叠氮基或炔基。实施方案78。实施方案76的化妆品成分中所述乙烯性不饱和基团是烯丙基、丙烯酸酯基或甲基丙烯酸酯基。实施方案79。实施方案74的化妆品成分还包含:分散在水性溶剂中的第二类纳米颗粒,其中第二类纳米颗粒与第一种聚合物带电相反。实施方案80。实施方案74的化妆品成分还包含:第二种聚合物分散在水性溶剂中,第二种聚合物是非颗粒的并且不同于第一聚合物,与第一种聚合物带电相反。实施方案81。一种粘合剂化妆品成分包含:水性溶剂;分散在水性溶剂中的第一类纳米颗粒;和化妆品可接受的助剂,其中包含以下一种或多种:一个结构助剂,胶凝剂粉末填充剂乳化剂固体或液体脂肪剂,或它们的任何组合;其中第一类纳米颗粒带负电或正电;和其中所述第一类纳米颗粒具有1nm至1000nm的三维粒径。实施方案82。实施方案81的成分中所述纳米颗粒为球形或近似球形。实施方案83。实施方案81的成分中第一类纳米颗粒的平均zeta电势小于-30mv或大于30mv。实施方案84。实施方案81的成分中第一类纳米颗粒由聚合物形成。实施方案85。实施方案84的成分中第一类纳米颗粒由聚氨酯、聚酯或聚丙烯酸酯形成。实施方案86。实施方案81的成分中第一类纳米颗粒的外表面含第一种官能团。实施方案87。实施方案86的成分中第一种官能团是多巴胺基、单宁基、可点击基、n-羟基磺基琥珀酰亚胺基、亚乙基不饱和基、醛基或氢硅烷基。实施方案94。实施方案90的成分中第二类纳米颗粒的外表面含第二种官能团。实施方案95。实施方案90的成分中第二种官能团与第一类纳米颗粒外表面的第一种官能团可选择性地反应。实施方案96。实施方案81-101中任一项的成分进一步包括了:多价离子盐。实施方案97。实施方案74-96任一项的化妆品成分中的固含量按总物重量百分比计为最多55%。实施方案98。实施方案74-97中任一项的化妆品成分中所述成分动态粘度为小于等于10,000cp。实施方案99。实施方案74-98的化妆品成分是非压缩粉底粉或棒、压缩粉底粉或棒、化妆品膏、睫毛膏、口红、唇彩、润唇膏、指甲抛光剂或美容霜。实施方案100。实施方案74-99中任一项的化妆品成分可接受的助剂还包括着色剂、颜料、光保护剂、第二成膜剂、化妆品活性剂或化妆品助剂、或它们的任何组合。实施方案101。实施方案100的化妆品成分中所述化妆品助剂是润肤剂、保湿剂、纤维、防腐剂、螯合剂、香料、中和剂或其任何组合。实施方案102。实施方案74-101中任一项的化妆品成分中所述粉末和填充剂是聚酰胺颗粒、尼龙纤维、聚乙烯粉末、基于丙烯酸共聚物的微球、三聚氰胺-甲醛树脂颗粒、脲-甲醛树脂颗粒、聚(四氟乙烯)颗粒、乙烯-丙烯酸酯共聚物粉末、膨胀粉末、淀粉粉末和硅树脂微珠。实施方案102。一种制备用于角蛋白组织的化妆品成分的方法,其包括配制实施方案74-101中任一项的成分。实施方案103。将化妆品成分粘附至角质组织的方法,其包括:将实施方案74-101中任一项的成分涂抹于一个或多个角质组织表面上。实施例104。一种将延长睫毛粘附到人体的方法包括了:使用实施例1-27和74-101中任一项的成分,将延长睫毛到粘附到目标人体的睫毛或其他角质组织上。实施例105。一种将延长睫毛粘附到人体的方法包括了:将实施方案1-27和74-101中任一项的成分涂抹于延长睫毛上;使用该成分将延长睫毛粘附到目标人体的角质组织上。实施方案106。一种指甲油成分包含了:实施方案1-27和74-101中任一项的成分。实施方案107。实施方案106的指甲油成分进一步包含了硬化剂。实施方案106。在指甲或趾甲表面上形成指甲油涂层的方法包括了:将1-27和74-101实施方案中任一项的成分涂抹于指甲或趾甲表面并完成固化。实施方案107。一种将指甲油涂层物理和化学地附着到指甲或趾甲表面的方法包括了:将1-27和74-101实施方案中任一项的成分涂抹于指甲或趾甲表面并完成固化。实施方案108。一种液体化妆品成分包含了:实施方案1-27和74-101中任一项的成分,其中在将所述成分涂抹于角质组织并在其上干燥后,所述成分折射率为1.3至1.8。实施方案109。一种使用化妆品成分的方法包括:将实施方案1-27和74-101中任一项的成分涂抹于人的角蛋白组织以在角蛋白组织上形成膜。实施方案110。实施方案109的方法中所述膜是透气的。实施方案111。实施方案109的方法中所述膜是在角质组织上原位形成的。实施方案112。实施方案111的方法中所述膜的原位形成是在室温下进行。实施方案113。实施方案109的方法中所述膜是弹性的、柔性的、透湿的、透氧的或其任何组合。实施方案114。实施方案119的方法中所应用的膜使皱纹、面部线条和/或阳光损伤的皮肤紧致、平滑和/或减少。实施方案115。一种治疗皮肤疾病的方法包括:对有需要的受试者以有效量的成分局部给药治疗,其包含:伯多胺(例如脂肪族(相对于芳香族而言)伯多胺),仲多胺(例如脂肪族仲多胺),多异氰酸酯(例如脂肪族多异氰酸酯),伯多元醇(例如脂肪族伯多元醇),仲多元醇(例如脂肪族仲多元醇),和可电离的多元醇(例如脂肪族可电离的多元醇);其中皮肤病包括牛皮癣、叮或咬伤、烧伤、疮、痔疮、肛门括约肌撕裂和割伤中的至少一种;其中所述成分还包含抗细菌、抗真菌和/或抗病毒药物;其中,伯多胺、仲芳族多胺和多元醇中的至少一种与多异氰酸酯反应形成聚(脲-氨基甲酸酯)预聚物。在以下非限制性示例中将进一步展示本公开描述的一些实施例。实例1具有炔基(d1,x,y=-o-,r6=-h)和叠氮化物基团(d6,x=-o-)的官能二醇2,2-双(羟甲基)丙炔基丙酸酯(d1,x,y=-o-,r6=-h)是根据lu等人,(j.polym.sci.parta:polymchem.,2007,45,3204-3217)和shi等人(biomaterials2008,29,1118-1126)报导的方法合成的。简而言之,将一定量的2,2-双(羟甲基)丙酸和koh加入干燥的n,n-二甲基甲酰胺(dmf)中,将混合物在100℃下搅拌直至形成透明溶液。然后将反应温度降低至45℃,随后加入炔丙基溴用于进一步反应。在真空下于80-120℃除去dmf和过量的炔丙基溴后,将粗产物溶于去离子水中,并用二氯甲烷(dcm)或氯仿萃取,然后将合并的有机相用无水mgso4或na2so4干燥,过滤并在通过旋转蒸发除去溶剂,然后在使用前将最终产物(黄色液体)置于真空中至少3天。2,2-双(叠氮甲基)丙烷-1,3-二醇(d6,x=-o-)是根据zhang等人,(macromolecules2011,44,1755-1759)和xu等人(macromolecules2011,44,2660-2667)报导的方法合成的。简要地,将一定量的2,2-双(溴甲基)丙烷-1、3-二醇和叠氮化钠(nan3)在dmf中混合。将混合物在120℃搅拌过夜。除去dmf后,然后将粗产物溶于另一种溶剂中,过滤固体副产物,并通过旋转蒸发除去溶剂。然后将粗产物溶解在溶剂中,并用饱和nacl溶液萃取。分离有机相,并用无水mgso4或na2so4干燥,过滤,并通过旋转蒸发除去溶剂,然后将最终产物(黄色液体)在真空下放置至少3天,然后使用。实例2阳离子型wpu(wpu+)和多巴胺(dp)功能化的阳离子型wpu(wpu+-dp)用以下组分和用量制备wpu+和wpu+-dp:表1.wpu+和wpu+-dp反应组分。通过使多元醇和多元异氰酸酯反应合成wpu+。使用n-甲基二乙醇胺(mdea)作为阳离子二醇,并通过盐酸(hcl)将其转化为季铵盐以制得水性聚氨酯。简而言之,将一定量的聚(ε-己内酯)(ε-pcl)二醇(重均分子量(mw)=994da),聚(乙二醇)(peg)二醇(mw=1000da)和季戊四醇(ptto)装入100毫升两颈圆底烧瓶中。然后将混合物熔化并在搅拌下于90℃在真空(40mmhg)下干燥2小时。将温度降至60℃后,加入异佛尔酮二异氰酸酯(ipdi)和2-乙基己酸锡(ii)(sn(oct)2),并在60℃下继续反应1小时。当搅拌棒停止搅拌时,添加10ml的干燥丙酮以溶解混合物,搅拌速度保持在约300rpm。然后,将1,4-丁二醇(bdo)和n-甲基-二乙醇胺(mdea)与另外10ml干燥的丙酮一起加入,并在60℃下继续反应一小时。反应后,将聚合物溶液移至250ml烧杯中,在搅拌下将10ml1mhcl添加到烧杯中,然后将38ml蒸馏水(di)缓慢滴入烧杯中,同时,将聚合物溶液使用高剪切分散机在1000至2000rpm的剪切速度下分散5分钟。然后使用旋转蒸发仪除去丙酮,制得固含量为重量百分比的40.0%的wpu+水乳液。通过与wpu+类似的方法合成wpu+-dp,区别在于多元醇和多异氰酸酯之间反应后,将获得的带有异氰酸酯基团的支链聚氨酯进一步与多巴胺反应以获得多巴胺改性的pu,然后将其分散到水相以得到wpu+-dp水乳液。简而言之,将ε-pcl二醇(mw=994da),peg二醇(mw=1000da)和ptto装入100ml两颈圆底烧瓶中。然后将混合物熔化并在搅拌下于90℃的真空(40mmhg)下干燥2小时。将温度降至60℃后,加入ipdi和sn(oct)2,并在60℃下继续反应1小时。加入10ml干燥的丙酮以溶解混合物。然后将bdo和mdea与另外的10ml干燥的丙酮一起加入,并且反应继续进行另外一个小时。然后加入多巴胺盐酸盐(6mmol)和干燥的丙酮,再反应4小时。在高剪切分散机(例如机械搅拌器)下,将50ml去离子水缓慢滴加到获得的聚合物溶液中。然后使用旋转蒸发仪除去丙酮,制得固含量为重量百分比为39.5%的wpu+-dp水乳液。实例3阴离子型wpu(wpu-)和单宁酸官能化的阴离子型wpu(wpu--dp)用以下组分和用量制备带阴离子型水性聚氨酯(wpu-)和用单宁酸改性的wpu(wpu--dp):表2.wpu-和wpu--dp反应组分。通过多元醇与多异氰酸酯之间的反应合成阴离子型水性聚氨酯(wpu-),将二羟甲基丙酸(dmpa)用作离子型二醇,并通过用二甲基氨基乙醇(dmae)处理被转化为带负电荷的基团,以制备得到的水性聚氨酯。简而言之,将ε-pcl二醇(mw=994da)和peg二醇(mw=1000da)装入100ml两颈圆底烧瓶中。然后将混合物熔化并在搅拌下于90℃在真空(40mmhg)下干燥2小时。加入ipdi和sn(oct)2并在60℃下继续反应1小时。然后加入dmap,使反应在60℃下继续进行1小时。反应后,在搅拌下加入dmae。然后将50ml去离子水缓慢滴入烧杯中,同时,在搅拌下将聚合物溶液分散在水中5分钟。加入乙二胺作为扩链剂,以与未反应的-nco端基反应。然后除去溶剂,得到固含量按重量百分比计为39.47的wpu-水乳液。类似于上述wpu-的合成方法,合成了带有负电荷的鞣酸(ta)修饰的wpu(wpu--ta)。简而言之,将ε-pcl二醇(mw=994da)和peg二醇(mw=1000da)装入100ml两颈圆底烧瓶中。然后将混合物熔化并在90℃的真空下(40mmhg)干燥2小时。加入ipdi和sn(oct)2并在60℃下继续反应1小时。然后加入dmap和bdo,在60℃下继续反应一小时。然后将ta与20ml干燥的丙酮一起加入,并且反应再继续进行2小时。反应后,在搅拌下加入dmae。然后将去离子水缓慢滴入烧杯中并剪切5分钟。加入eda作为扩链剂,以与未反应的-nco端基反应。然后除去丙酮,得到具有40.27%的固含量的wpu--ta水乳液。实施例4带炔基的阳离子型wpu(wpu+-al)和带叠氮基的阴离子型wpu(wpu--n3)用以下组分和用量制备具有炔基的阳离子型wpu(wpu+-al)和具有叠氮基团的阴离子型wpu(wpu--n3):表3.wpu+-al和wpu--n3反应组分。具有炔基官能团的阳离子型wpu(wpu+-al)的合成与wpu+的的合成类似,合成方法如实例1所示:炔丙基2,2-双(羟甲基)丙酸酯(d1,x,y=-o-,r6=-h)用作具有炔基的官能二醇(aldiol)加入聚氨酯合成中。制得固含量按重量百分比计为39.46%的wpu+-al水乳液。具有叠氮基的阴离子型wpu(wpu--n3)的合成与wpu-的的合成类似,合成方法如实例1所示:2,2-双(叠氮甲基)丙烷-1,3-二醇(d6,x=-o-)用作具有叠氮基的官能二醇(叠氮二醇)加入聚氨酯合成中。制得固含量按重量百分比计为39.76%的wpu--n3水乳液。还可以将具有炔基的可点击二醇引入阴离子型wpu中以获得wpu--al,类似地,也可以将具有叠氮基的可点击的二醇引入阳离子型wpu中以获得wpu+-n3。实例5具有丙酸酯基的可点击二醇(pl,-coc≡ch)和阴离子型丙酸酯基wpu(wpu--pl)的合成图10展示的是参考文献(tsotsalasm等人,jamchemsoc2014,136,8-11;和guoj等人,biomaterials,2017,112,275-286)合成的具有pl基团的可点击二醇(pl二醇,d5)。简而言之,将季戊四醇(ptto)和丙酸溶解在120ml甲苯中。加入硫酸(h2so4)作为催化剂。将混合物加热至125℃以回流24小时。反应后,除去甲苯。粗产物再溶解在乙酸乙酯中。溶液用碳酸氢钠(nahco3)溶液和盐水溶液洗涤。有机层经无水mgso4干燥,过滤,并通过旋转蒸发除去残留的溶剂,得到的最终产物为浅黄色油状物(91%产率)。pl二醇可以带正电荷或负电荷被引入wpu(图11)。具有pl基团的可点击的二醇作为小分子二醇,按以下组分以负电荷形式引入wpu中以制得wpu--pl:表4.wpu--pl反应组分。wpu--pl的合成与wpu-类似,pl二醇(d5)作为具有pl基团的官能二醇被引入到聚氨酯合成中。简而言之,将ε-pcl二醇(mw=990da)和peg二醇(mw=200da)装入100ml两颈圆底烧瓶中。然后将混合物熔化并干燥,并将温度降低至60℃。加入ipdi和sn(oct)2并在60℃下继续反应1小时。加入dmpa,bdo和pl二醇,并在60℃下继续反应2小时。反应后,加入dmae,然后在搅拌下将di水缓慢滴加5分钟。加入eda作为扩链剂,以与未反应的-nco端基反应。然后使用旋转蒸发仪除去丙酮并获得wpu--pl分散体,其固含量按重量百分比计为39.79%。实例6使用peg-ppg-peg作为二醇并经caco3(icmba-epe-ca2+)处理的水性可注射柠檬酸蓝贻贝仿生生物胶用以下组分制备icmba-epe-ca2+:表5.icmba-epe-ca2+反应组分。icmba-epe-ca2+原料量(克)柠檬酸(ca)9.22聚(乙二醇)-聚(丙二醇)-聚(乙二醇)(1100da)44多巴胺·盐酸2.28碳酸钙(caco3)过量水性icmba-epe-ca2+是通过柠檬酸(ca)、聚(乙二醇)-聚(丙二醇)-聚(乙二醇)(peg-ppg-peg)和多巴胺的无催化单釜无溶剂的缩聚反应合成的,根据我们先前的工作(yangj等人,adv.mater.2004,16,511-516),然后用过量的碳酸钙(caco3)将聚合物链上的侧羧基转化为离子以使其具有水性(图14)。实例7wpu作为液体绷带的应用wpu无论是阴阳离子还是官能化或非官能化,例如以上实施例中合成的那些成分都可以用作液体绷带。此液体绷带可用于小创口、擦伤、烧伤、皮疹和皮肤刺激,在溶剂挥发后以保护和促进伤口愈合。液体绷带是一种伤口敷料。固体绷带始终无法完全覆盖伤口区域,尤其是在伤口位于关节区域时。由于其弹性和柔韧性,对皮肤的出色附着力,液体绷带的液体形式可以应用于复杂的身体表面轮廓,并对面对外部灰尘和微生物的伤口提供更可靠、更持久的屏障。聚氨酯-脲液体绷带的防水性能以及蒸气/空气可透过性也有利于伤口愈合过程。与市面上销售的具有刺痛感的溶剂型液体绷带(例如newskin(3m))相比,wpu液体绷带(作为水性配方)无刺痛且用户体验更佳。实例8wpu+-dp和wpu--ta与2%高碘酸钠(naio4,pi)的交联以及力学和吸水率测试wpu+-dp或wpu--ta通过2%的pi交联并且将水蒸发掉可以制得均匀的聚合物膜。同时还制备了没有交联的聚合物膜。交联和非交联聚合物膜的力学性能和吸水率(溶胀率)均被测试。pi可以直接添加到wpu+-dp或wpu--ta溶液中,也可以首先包埋到另一种颗粒或载体中,再与wpu+-dp或wpu--ta溶液混合。后一种方法(纳米颗粒中的pi)可用作进一步减慢pi释放再与wpu+-dp或wpu--ta交联的方法。力学性能可根据astmd412a使用instron力学测试仪(诺伍德,马萨诸塞州)进行测试。将干燥时的聚合物膜样品切成条状(25×6×1.5mm,长×宽×厚),夹在测试仪的夹具中,以500mm/min的速度拉至破坏。聚合物膜的吸水率(溶胀率)可以如先前所述的差量法计算膜在泡水前后的变化(mehdizadehm,et.biomaterials,2012,33,7972-7983;guoj,etalbiomaterials,2016,85,204-217。)。然后使用以下公式计算溶胀率:这里wd代表干燥的聚合物膜的重量,并且代表干燥的聚合物膜在水中浸泡24小时后的重量。非pi和pi交联的wpu+-dp和wpu--ta薄膜的力学和吸水率数据如图16a至17d所示。图16a显示了在以2%pi交联之前和之后,wpu+-dp膜的拉伸强度和杨氏模量变化。图16b显示了伸长率变化。图16c显示了具有代表性的拉伸曲线。图16d显示了吸水率(也称为水溶胀率)的变化。图12显示了在用2%的pi交联之前和之后,wpu--ta(图4和实施例3所示的合成方法)膜的力学强度和吸水率变化(实例7)。图17a显示了在通过2%的pi交联之前和之后的wpu-ta聚合物膜的拉伸强度和杨氏模量变化;图17b显示了伸长率变化。图17c显示了具有代表性的拉伸曲线。图17d显示了吸水率(水溶胀率)的变化。wpu--ta被pi交联后吸水率增加的现象可能是由于氧化后单宁酸部分的亲水性增加引起的(参见实例9)。实施例9由wpu+和wpu-组成可通过离子交联的仿常春藤仿生生物胶以及其凝胶时间的测试仿常春藤仿生生物胶可以通过将具有相反电荷的wpnd/聚合物溶液混合来实现。例如,wpu+和wpu-的混合。固含量分别为40%和39.47%的wpu+和wpu-聚合物乳液是分别根据实例2和3中所述的方法合成的。ab配方生物胶被设计为包含wpu+和wpu-聚合物乳液,其比例为1/1(重量/重量)。根据先前文献(guoj等,biomaterials,2016,85,204-217;guoj等,biomaterials,2017,112,275-286),使用倒置测试进行凝胶时间测定。凝胶时间记录始于在10ml塑料管中混合1gwpu+和1gwpu-的时间,当胶管倒置时,混合物停止向下流动的时间记录为胶凝时间或凝固时间。生物胶的固化通常非常快,并且可以在不到10s的时间内固化。实例10通过离子间或离子相互作用交联的具可点击反应的wpu+-al和wpu--n3生物胶,及其拉伸剪切强度和吸水率测试根据实例4中所述的方法合成了固含量分别为39.46%和39.76%的wpu+-al和wpu--n3。对于该wpu+-al和wpu--n3的ab配方与实施例7中所述的wpu+和wpu-配方相同,交联仅依靠离子相互作用。铜催化剂使用是为了通过离子相互作用和点击反应使wpu+-al和wpu--n3交联。将硫酸铜(cuso4)和l-抗坏血酸钠(nalac)分别预溶于wpu+-al和wpu--n3中,得到组分a和b。cu(i)离子用作1,3-偶极催化剂在组分a和b混合后,铜原位催化了叠氮化物-炔烃环加成反应(cuaac,点击反应)。离子交联可以在几秒钟内完成,而点击反应则需要更长的时间。因此,离子相互作用可用于提供初始粘附性并且使聚合物交联,点击反应则可作为次级交联,以缓慢提高离子相互作用交联后的内聚力和粘合强度。此种以两步交联的机理对改善粘附性和内聚强度的是独特的。在与wpu+-al和wpu--n3混合之前,也可以先将硫酸铜(cuso4)和l-抗坏血酸钠(nalac)包埋到载体(例如颗粒)中,从而进一步实现wpu+-al和wpu--n3通过点击化学进行交联。根据astm标准f2255-05和文献(mehdizadehm,biomaterials,2012,33,7972-7983等人的方法,通过有/无点击反应的离子相互作用来交联)测量wpu+-al和wpu--n3ab配方胶的拉伸剪切强度。简而言之,将50×25×0.1mm的箔片用作粘附物。然后,使用强力胶(glorilla,耐冲击配方)将尺寸为40×4mm的猪源无细胞小肠粘膜下层(sis)材料(oasis,healthpointltd.fortworth,tx)条粘贴到箔片上并干燥约1小时。然后将sis材料附着的箔片在测试前于25℃的磷酸盐缓冲盐水(pbs)中预浸泡1小时。然后将组分a和b均匀涂抹在sis表面上,两张sis表面重叠在一起,接触面积为25×10mm。然后将粘附的sis放置在湿度为50±5%的培养箱内2小时。随后,使用配备有10n传感器的instron力学测试仪(诺伍德,马萨诸塞州),以5mm/min的恒定速度测量粘附样品的拉剪切强度。记录数据,对于每个实验组,至少测试6个样品,并对结果取平均值。通过与实例6中所述相同的方法测试和计算了通过离子相互作用以及离子相互作用与点击反应共同交联的wpu+-al和wpu--n3的吸水率(溶胀比)。吸水率和拉伸剪切强度测试结果列于图18a和18b。实例11wpu+和wpu-乳液以及wpu+、wpu-和通过离子相互作用交联的wpu+/wpu-聚合物薄膜的抗菌性能使用革兰氏阳性和革兰氏阴性细菌,金黄色葡萄球菌(金黄色葡萄球菌,atccno.6538)和大肠杆菌(大肠杆菌,et。coli,atccno.8739)测试wpu+和wpu-乳液的抗菌性能。此测试可根据美国药典(usp)<51>(抗菌功效测试)和文献(guoj等人,biomaterials,2016,85,204-217;guoj等人,biomaterials,2017,112,275-286)进行。简而言之,将新鲜培养的微生物悬浮液以5000rpm离心10分钟除去培养基。按使细菌悬浮液的终浓度为1×105~1×106cfu/ml(cfu:菌落形成单位)的量加入2ml的测试wpu乳液。同时,通过将离心的微生物分散在2ml培养基中作为对照样品。通过将离心的微生物分散在2ml去离子水中作为去离子水(非无菌)样品。通过板数法确定初始微生物浓度(cfu/ml),计数使用多个平行样。然后将密封小瓶中的微生物在32.5±2.5℃下培养,并在第1天和第4天取样。通过板数法确定每个采样间隔中存在的活微生物cfu/ml的数量。在测试开始时使用计算出的cfu/ml浓度,计算第1天和第4天测试样品cfu/ml浓度的对数值变化,并按照以下方程计算得到对数减少值(lrv)来表征:logreductionvalue(lrv)=log10n0-log10nt在此,n0是测试开始时的平均菌数,nt是在时间t时的平均菌数。对于每个样品,至少进行五个平行实验,并对计算结果取平均值。根据astmf1608-00和atcc100-2012,对wpu+,wpu-和离子交联的wpu+/wpu-聚合物薄膜的抗菌性能进行了测试:使用金黄色葡萄球菌和大肠杆菌微生物模型对纺织品材料进行了抗菌实验。首先,通过将2g的聚合物乳液或混合物浇铸到直径60mm的特氟龙盘中,制备wpu+,wpu-和wpu+/wpu-聚合物薄膜。然后将聚合物薄膜样品(φ55mm)堆叠放入无菌培养皿(φ100mm)中。将没有任何样品的无菌培养皿作为对照。将浓度为1×105cfu/ml的1ml细菌悬浮液置于膜上,并通过毛细作用穿过膜。接种的样品在32.5±2.5℃下孵育24小时。孵育过程中,将两个吸满无菌水的无菌棉球放在样品侧面,以保持湿度。24小时后,将无菌培养基添加到每个容器中,并将容器摇动1分钟以将接种物从测试样品中释放到培养基中。梯度稀释后,再进行孔板孵育。孵育后,对回收的菌落进行计数并用于确定减少的百分比。通过将接触时间后的每个测试样品与接种后立即与对照样品进行比较来确定减少的百分比。减少百分比的计算公式如下:这里,nc是对照的菌落数,ns是测试样品的菌落数。tc是对照的稀释时间,ts是测试样品的稀释时间。测试结果表明金黄色葡萄球菌和大肠杆菌的数量减少了。实例12双组分生物胶(bpglue)通过密封硬脑膜和颅骨用于治疗脑脊液(csf)渗漏aleobmetm的双组分生物胶(bpglue)成分由:可生物降解可注射的柠檬酸贻贝仿生生物粘合剂(icmba)、羟基磷灰石(ha)和英国常春藤仿生水性可降的解聚合物(例如聚氨酯(wpu))。如实例5中所述,通过用caco3处理,将icmba转化为带有负电荷和钙离子作为相反电荷的水性icmba(icmba-ca2+)。阴阳离子型的wpu((wpu+)或(wpu-))均可与icmba-ca2+进行离子相互作用。为了理论验证,sprague-dawley大鼠的csf鼻漏模型被用作评估使用bp胶作为密封胶预防csf渗漏的可行性。植入手术、术后荧光素注射和荧光泄漏检测如图20所示。简而言之,用金属尖端工具将筛板(将嗅球从鼻黏膜前端分离开的部分)穿透以打开脑和鼻腔之间的空间。这一手术可造成严重的脑脊液泄漏。使用一次性移液器将由icmba-ca2+(30%水溶液),wpu+或wpu-(固含量约40%)和ha(固含量约30%)组成的bp胶注射至所造缺陷中。首先使用由wpu+或wpu-组成的组分a,再用包括icmba-ca2+,ha和高碘酸钠引发剂(pi)的组分b,然后将组分a和b混合。bp胶用于硬脑膜和骨修复的使用说明(图19和20)涉及在渗漏硬脑膜的顶部涂抹a组分,以允许wpu纳米颗粒相互作用并渗透进硬脑膜组织,就像英国常春藤首先粘附在墙上。然后将b组分沿组分a和沿颅骨缺损的边缘进行混合。a和b混合后会在20秒内快速凝胶。然后可以将先前取下的颅骨板放置在缺损处,然后将多余的混合凝胶沿着边缘挤出。pi引发的icmba交联会促进头骨板与周围骨骼的粘合,从而促进骨骼融合。ab组分凝胶化促进了硬脑膜表面wpu纳米颗粒的聚结,从而建立了与组织机械互锁的界面。植入三周后,将50μl荧光素注入枕大池,以引起整个中枢神经系统(cns)的荧光。然后在黑光下分析脊髓以确定荧光素在csf中的定位,表明荧光素已成功注射到cns中。处死大鼠,随后解剖鼻粘膜并在黑光下分析荧光。未用bpglue修复筛状缺陷的对照组大鼠的鼻黏膜显示出了强烈的荧光。用bp胶治疗的大鼠粘膜无荧光,证明了其对csf渗漏的有效修复。其他配方包括wpu-+wpu+/ha,wpu++wpu-/ha,wpu++wpu-等也进行了同样的实验。实例13胶粘剂成分的化妆品应用根据实例2和3中所述的方法,分别合成了固含量为40%和39.47%的wpu+和wpu-聚合物乳液。wpu+和wpu-聚合物乳液可用作指甲油,睫毛延长胶和角质组织涂层或假皮。例如,wpu+和wpu-聚合物乳液可以单独或组合使用。指甲在涂抹wpu乳液3分钟后能迅速形成干膜。此乳液也以用作睫毛延长用的胶粘剂。wpu作为指甲油具有很好的弹性和可剥离性。使用wpu作为胶粘剂可以将延长睫毛很好地粘附上。实施例14wpu+和wpu-聚合物分散体的破裂强度根据实例2和3中所述的方法,分别合成了固含量为40%和39.47%的wpu+和wpu-聚合物乳液(“wpu+/-”乳液)。根据标准astmf2392-04,对wpu+/-乳液进行了破烈强度测试,并将其与和的破裂强度进行了比较。通常,颅脑csf平均压强约为15mmhg,脊柱csf平均压强约为30mmhg,压强峰值可达45mmhg。按照astm标准的流程所得到的测试结果显示,大约1毫米厚的wpu+/-密封胶能够承受的平均破裂压强远超过脊柱可能产生的平均压强的三倍,大概为160mmhg。wpu+/-密封胶的所有破坏型式都是内聚力产生的。因为密封胶的破坏都是材料自身的破坏而百与组织间粘附的破环,表明了其非常强的组织粘附力。和的平均破裂压强均较低,分别为8.3和3mmhg。但是,和的破坏是属于粘附性的而不是内聚性的,破坏的型式是材料与组织本身的分离(“粘附”),而不是材料本身的破坏(“内聚”)。这表明与wpu+/-密封胶的强组织粘附力相比,和(纤维蛋白胶)的组织粘附力较弱。尽管起始的破裂压强测量确实显示了密封胶在植入时的强度,但是凝胶必须在术后依旧保持很高的力学性能,直到新生硬膜自身能够充分包覆csf为止。为了确定wpu+/-密封胶在植入后仍能保持很高的力学性能,将约1mm厚的密封胶(覆盖在胶原蛋白肠衣中直径3mm的孔上)在37度ph为7.4的pbs中浸泡至8周。浸泡一天后,wpu+/-密封胶达到最大破裂强度,平均值为230mmhg。在三到四个星期的浸泡后,密封胶继续保持高于脊柱可能会遇到的生理压强,这表明wpu+/-密封胶可以承受大约45mmhg的csf压强峰值并持续大约三周,如图21所示。实例15wpu+和wpu-聚合物乳液的拉伸剪切测试根据实例2和3中所述的方法,分别合成了固含量为40%和39.47%的的wpu+和wpu-聚合物乳液(“wpu+/-乳液”)。根据标准astmf2255-05的方法,对wpu+/-乳液进行拉伸剪切测试,并将其与的结果进行比较。按照astm标准的方法进行测试的结果表明:wpu+/-密封胶的组织拉伸剪切强度(35.35±7.11kpa)比纤维蛋白胶(5.47±1.47kpa)高出了6倍。实例16wpu+和wpu-聚合物乳液的水解和酶解根据实例2和3中所述的方法,分别合成了固含量为40%和39.47%的wpu+和wpu-聚合物乳液(“wpu+/-”乳液)。wpu+/-胶及其组分加速水解是通过测量样品在水中浸泡失重来评估的。在实验之前,将wpu+/-胶及其组分在真空下干燥。将50mg干燥样品(n=6)置于60℃的1ml磷酸盐缓冲液(pbs)中。在每个时间点,从缓冲液中取出样品,用去离子水冲洗,在真空下干燥24小时,然后称重。在预设目标时间点更换pbs,以消除由于样品在靠后的时间点因浸泡解体而导致的相分离误差。在每个时间点,测量pbs的ph值。聚氨酯在体内降解通常比在体外更快,表明酶促或氧化反应介导了其体内降解。材料是在含有胆固醇酯酶(ce)的溶液中浸泡进行酶解实验。此实验能在静态条件下评估材料短期体外降解速率。方法为:将50mg样品(n=6)在1ml含ce的37℃pbs中浸泡。含酶的pbs每隔3-4天更换一次(维持酶的活性),并在4周内的预定时间测量失重。由先前文献以及酶在pbs的溶解度极限确定的胆固醇酯酶(ce)浓度为1u/ml。业界已经研究过了多种能降解聚醚-聚氨酯(peu)的酶。尽管诸如弹性蛋白酶之类的酶也可有效降解聚氨酯,但胆固醇酯酶(ce)是对这类聚合物降解具有最高活性的酶。巨噬细胞-材料界面造成的含高浓度ce的微环境对聚氨酯的降解速率有着更显著的影响。我们的实验结果表明:水解和酶解的失重曲线差异很大。根据文献表明:在60℃下进行4周加速水解的效果等同于在室温下进行1年的常规水解。我们的实验结果表明:按此原量换算,当前配方wpu+/-制备的膜样品在常规水解条件下完全降解需要耗时两年半。但是酶解的结果表明,wpu+/-制备的膜样品完全降解仅需要400天左右,这比正常水解快得多。以上结果表明,wpu+/-乳液可以保持较长的稳定性(>2年),但在某些情况下可以在体内更快地降解,这是一种水性可降解医疗器械的重要特征,它需要较长的保存期限,但在体内却要相对更快降解来满足组织修复的应用。实例17wpu+和wpu-聚合物乳液的粒度和zeta电位根据实例2和3中所述的方法,分别合成了固含量为40%和39.47%的wpu+和wpu-聚合物乳液(“wpu+/-”乳液)。其粒度和zeta电位可使用zetasizernanozs(英国malvern仪器)进行动态光散射进行测量。分析得出样品的z平均值,这是所有纳米颗粒的加权平均粒径强度。多分散指数是尺寸分布宽度的度量。研究表明,粒度在确定聚合物溶液的稳定性以及wpu+/-密封胶与组织之间形成牢固的机械互锁的速率中起着重要作用。wpu+/-密封胶成分中,阳离子wpu+乳液显示平均粒径为120.9nm,在阴离子wpu-乳液中显示平均粒径为76.5nm。wpu+/-密封胶中的纳米颗粒的zeta电位在±30~±60mv的范围内是保持稳定分散的理想状态。颗粒堆积理论已经在水泥/混凝土工业中是被广泛应用的经典理论。调节材料的各种性能属性,特别是对于多相共混体系,例如强度、可加工性、尺寸稳定性和在极端环境下的耐久性,均可以通过合理地按比例制备不同的材料粒度分布来实现。在本公开中,wpu+/-乳液中的ab组分的粒径也可以显著地影响密封胶的力学(粘合和内聚)性能,并且颗粒堆积理论可以用于指导wpu+/-乳液ab配方的设计。图22b展示了非匹配颗粒堆积后具有较大粒径的wpu+和具有较小粒径的wpu-密封胶的破裂压强,其中s+具有的粒径=120.9nm,zeta电位=55mv;s-的粒径为76.52nm,zeta电位为-52mv。m+的粒度为146.2nm,zeta电位为18mv。m-的粒径为113.4nm,zeta电位为-34mv;l+的粒径为367.1nm,zeta电位为46mv。l-的粒径=120nm,zeta电位=-24mv。如图22b所示,wpu+和wpu-的非匹配颗粒堆积提供了封闭的填充结构,该结构有利于颗粒之间更好的融合和填充,这极大地增加了wpu+/-密封胶的密度和力学强度。尽管具有较小尺寸差异的wpu+/-密封胶也有一定的破裂强度,但具有较大尺寸差异的wpu+/-分散密封胶明显具备更高的破裂强度。本实验其中三个具有最高爆裂强度的配方中,尺寸和zeta电位的差值分别为:(l+/s-)367-77=290nm和46+52=98mv,(l+/m-)367-113=254nm和46+34=80mv,(m+/s-)146-77=69nm和18+52=70mv。阴离子wpu颗粒大于100nm的配方(m-为113nm,l-为120nm)会显著降低破裂压强(l+/s-与l+/m-;s+/s-与s+/m-;m+/s-与m+/l-)。同时阳离子wpu粒径小于140nm(s+)的配方的破裂压强也非常低(<50mmhg)。m+/m-的尺寸差为146-113=33nm、zeta电位差为18+34=52mv,仍具有相当强的破裂压强(87mmhg)。但是,粒径差异为120-113=7nm、zeta电位差异为55+34=89mv的s+/m-却具有非常低的破裂压强(19.5mmhg)。因此,上述结果表明,粒径和粒径差异是决定破裂压强下密封胶性能的重要因素。例如,小于30nm的粒径差会降低破裂压强,而大于30nm的粒径差会升高破裂压强。基于现有的wpu配方更显著的结果是:当阳粒子的粒径约为140nm,而阴粒子的粒径小于100nm时,混合后的wpu胶可达到最高的破裂压强。可相反的是,当阴粒子的尺寸约为140nm,而阳粒子的尺寸低于100nm时,破裂压强却较低。实例18wpu+和wpu-聚合物乳液的吸水率和溶胀率变化根据实例2和3中所述的方法,分别合成了固含量为40%和39.47%的wpu+和wpu-聚合物乳液(“wpu+/-”乳液)。为了测量吸水率,通过将a-b乳液(wpu+和wpu-)移入四氢呋喃模具(长×宽×厚=9.5×7.8×2.5mm)中15分钟后自固化成凝胶来制备密封胶样品。将所得凝胶样品于37℃的pbs(ph7.4)中浸泡1、5和12天,并记录和计算吸水率(溶胀百分比)。另一组实验是通过真空干燥将凝胶样品完全干燥(作为干燥的密封剂样品)后在pbs中浸泡1、5和12天,然后记录并计算吸水率(溶胀百分比)。尽管难以直接测量成型后不规则形状的wpu+/-胶样品尺寸变化,但是通过假设每个方向轴上尺寸的均匀变化,可以使用以下公式将溶胀百分比与尺寸变化百分比进行关联,样品密度约为1.0g/cc:{[%swellingt/100%+1]1/3-1}100%=%δst其中%swellingt=溶胀百分比随时间t的变化,%δst=尺寸(s)变化百分比随时间t的变化。对于手术常用的密封胶,一旦将其涂抹到硬脑膜组织上用于修补具有缺陷的组织时,密封胶应该具有最小的溶胀率以避免潜在的炎症反应和其他神经系统并发症。例如,聚乙二醇(peg)类的duraseal(用于硬膜密封)等合成聚合物具有较高的溶胀率(约400%的重量变化,相当于约637%的尺寸变化),这对防止csf渗漏以及维持颅内压构成了严重的风险。值得注意的是,最近的一例病例报告显示,对于延迟功能恶化的患者,使用duraseal会导致严重的术后并发症血肿。磁共振成像(mri)证明,水凝胶类密封胶会吸收硬膜外出血血块导致脊髓受压。而本公开所述的wpu+/-乳液显示了极小的吸水率(重量百分比变化),并且所制备的密封胶尺寸变化仅为5.3%和1.7%,对于完全干燥的密封胶则为36%和10.9%。如图23所示,wpu+/-密封胶与传统的peg基胶粘剂或密封胶不同,因为它在水中的溶胀最小并且具有持久的破裂强度。这样的物理性能可使wpu+/-密封胶成为许多外科手术应用的理想选择。实例19wpu+和wpu-聚合物乳液的体外细胞毒性根据实例2和3中所述的方法,分别合成了固含量为40%和39.47%的wpu+和wpu-聚合物乳液(“wpu+/-”乳液),并采用iso10993-12中所述的间接接触方法进行体外细胞毒性试验。在不同的时间点从待测标本中提取的浸提液被加入至细胞培养板中与待测细胞共同培养。与对照组相比,浸提淮培养的小鼠成纤维细胞l-929细胞显示正常增殖,且细胞活力大于70%。如果根据iso10993的标准,活细胞的百分比等于或大于未处理对照组的70%,则认为该测试物品无细胞毒性。值得注意的是,过夜固化的wpu密封胶组比其他组显示出更高的细胞活力,是由于从wpu+/-密封胶中提取的未固化颗粒较少。固化时间越长,细胞活力越高。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1