基于脑电图(EEG)非线性变化的用于癫痫发作检测的系统和方法与流程

文档序号:30390187发布日期:2022-06-11 14:31阅读:424来源:国知局
基于脑电图(EEG)非线性变化的用于癫痫发作检测的系统和方法与流程
基于脑电图(eeg)非线性变化的用于癫痫发作检测的系统和方法
1.相关专利申请的交叉引用本技术要求于2019年8月22日提交的美国临时专利申请号62/890,497的权益和优先权,其全部内容通过引用方式并入本文。


背景技术:

2.本公开总体上涉及脑电图(eeg)分析。更具体地,本公开涉及用于患者中癫痫发作(seizure)检测的eeg分析。
3.癫痫发作通常发生在具有各类医学问题的患者中。全世界有超五千万人受到癫痫发作的折磨。在一些情况下,癫痫发作可以是良性的,但在极端形式下,癫痫发作可以危及生命。因此,检测并响应癫痫发作是重要的。癫痫发作的检测和治疗越早,患者的结果越好。然而,由于患者中发生癫痫发作时可能没有可见的征兆,检测癫痫发作可能非常困难。特别地,可能难以从视觉上检测到重症监护患者或年轻患者(儿童或婴儿)正在经历癫痫发作。
4.因此,通常可收集此类患者的eeg数据记录以供癫痫学家分析,在一些情况下,可能需要长达二十四小时的连续eeg数据记录以用于癫痫学家的人工分析。对如此大量的数据进行人工分析可能繁琐、耗时且价格昂贵。存在一些用于癫痫发作检测的eeg分析算法,但是这些算法对幼儿的检测能力很低。例如,一些癫痫发作检测算法在成人中可达到80%的检测率,但在幼儿中仅达到50

60%的检测率。此外,此类算法还可能具有大量假阳性率,在一些情况下,当患者是幼儿时,此类算法对于单个患者具有每天超过100个假阳性结果。这个数量的假阳性结果需要对儿童的所有记录进行人工复查,并且分析算法无法适当地减少需要进行人工eeg数据复查的数据量。此类eeg检测算法在儿童中的失败部分是由于针对儿童记录的异常eeg波形的性质具有高度可变性。


技术实现要素:

5.本公开的一个实施是包括一个或多个电路的癫痫发作检测系统。该一个或多个电路被配置成接收基于患者的脑电活动生成的脑电图(eeg)信号。该一个或多个电路被配置成基于eeg信号来确定度量(metric)。该度量指示eeg信号的非线性特征。该一个或多个电路被配置成:通过至少部分基于该度量确定eeg信号的非线性特征随时间的变化,来确定eeg信号指示候选癫痫发作;以及生成癫痫发作警报,该癫痫发作警报指示eeg信号可能指示候选癫痫发作。如本文所用,“候选癫痫发作”可以指任何癫痫发作、癫痫性放电、亚临床事件、需技术人员核查的潜在癫痫发作等。非线性特征的变化指示引起候选癫痫发作的生理诱因(physiological force)。在非线性特征的变化的发生和候选癫痫发作的发生之间的时间可以变化。
6.在一些实施方案中,处理电路被配置成基于默认参数值或用户定义参数值中的至少一个来确定eeg信号指示候选癫痫发作。
7.在一些实施方案中,癫痫发作检测系统是基于云的系统,其中该一个或多个电路
被配置成经由网络从本地eeg采集系统接收eeg信号,以及经由该网络将结果数据提供给本地eeg采集系统。
8.在一些实施方案中,癫痫发作检测系统是本地系统。在一些实施方案中,本地系统与本地eeg系统集成或本地连接到eeg采集系统。
9.在一些实施方案中,至少部分基于度量确定eeg信号的非线性特征的变化包括确定非线性特征随时间的增加。在一些实施方案中,该方法包括确定非线性特征的总体变化(例如,指示非线性特征变化了多少的值)。在一些实施方案中,该方法包括确定非线性特征(例如,在非线性特征中的每个非线性特征中)在一个时间段内的总体增加或总体减少。在一些实施方案中,该方法包括确定非线性特征的轨迹在该时间段内是增加还是减少。
10.在一些实施方案中,度量包括维数(dimensionality)、同步性、李雅普诺夫(lyapunov)指数、熵、全局非线性、递归轨迹之间的距离差、自相似性或特征值(eigenvalue)中的至少一个。
11.在一些实施方案中,该一个或多个电路被配置成通过以下方式来通过至少部分基于度量确定eeg信号的非线性特征随时间的变化从而确定eeg信号指示癫痫发作警报:利用度量中的一个度量进行初级分析,其中初级分析指示eeg信号指示候选癫痫发作或指示eeg信号包括噪声;以及利用度量中的一个或多个度量进行次级分析,以确定是eeg信号指示候选癫痫发作,还是eeg信号包括该噪声和/或其他伪像。
12.在一些实施方案中,该一个或多个电路被配置成:确定多个度量中的每个度量在多个时间点的轨迹的概率;以及基于这些概率确定多个度量中的每个度量的轨迹是否显著。在一些实施方案中,至少部分基于多个度量确定eeg信号的非线性特征的变化包括将多个度量中的显著度量映射到类别,其中该类别导致癫痫发作警报。在一些实施方案中,确定非线性特征的变化可包括确定非线性特征的轨迹。轨迹可以是度量随时间的变化的模式。可通过对度量的值(或记录值)进行绘图来确定度量的轨迹。在一些实施方案中,确定轨迹包括对相空间中的度量的值进行绘图,以及从相空间图确定度量的轨迹。
13.在一些实施方案中,该一个或多个电路被配置成通过执行相空间分析来确定eeg信号的维数,该相空间分析通过增加维数的值直至假近邻数达到零来执行,其中维数的起始值基于患者的年龄。
14.在一些实施方案中,该一个或多个电路被配置成确定度量中的一个或多个度量是否表现出具有统计学显著性的随时间的变化,以及生成用户界面。在一些实施方案中,用户界面包括eeg信号的实时趋势和度量中的该一个或多个度量。在一些实施方案中,该一个或多个电路被配置成使得用户界面设备显示该用户界面。
15.在一些实施方案中,度量中的一个度量是特征值,其中用户界面还包括特征值的趋势。在一些实施方案中,特征值可与eeg信号一起绘制,使得用户界面可以向操作者提供eeg信号以及特征值的趋势的视图。
16.在一些实施方案中,用户界面还包括eeg信号的历史窗口,eeg信号的历史窗口与候选癫痫发作相关联。
17.在一些实施方案中,该一个或多个电路被配置成:确定eeg信号的特征值的移动窗口;确定特征值正在减小;以及响应于特征值正在减小的确定而至少部分基于度量来确定eeg信号与候选癫痫发作相符。
18.在一些实施方案中,该一个或多个电路被配置成:基于eeg信号确定renyi排列熵值(和/或任何其他类型的熵测度);确定renyi排列熵值正在减小;以及响应于特征值正在减小的确定以及renyi排列熵值正在减小的第二确定而确定eeg信号指示候选癫痫发作。
19.在一些实施方案中,该一个或多个电路被配置成:基于eeg信号确定renyi排列熵值;确定renyi排列熵值正在增加;响应于renyi排列熵值正在增加的第一确定,基于eeg信号确定样本熵值;响应于样本熵值正在减少(例如,为负)的第二确定,确定eeg信号指示候选癫痫发作;以及响应于样本熵值正在增加(例如,为正)的第三确定,确定eeg信号不指示候选癫痫发作。
20.本公开的另一个实施是癫痫发作检测的方法。该方法包括:由处理电路接收基于患者的脑电活动生成的脑电图(eeg)信号;由处理电路基于eeg信号确定度量,这些度量指示eeg信号的非线性特征;由处理电路通过至少部分基于度量确定eeg信号的非线性特征(例如,在非线性特征中的每个非线性特征中)随时间的变化来确定eeg信号指示候选癫痫发作;以及由处理电路生成癫痫发作警报,该癫痫发作警报指示eeg信号指示候选癫痫发作。非线性特征的变化反映引起候选癫痫发作的生理诱因。
21.在一些实施方案中,由处理电路确定eeg信号指示候选癫痫发作是基于默认参数值或用户定义参数值中的至少一个。
22.在一些实施方案中,度量包括维数、同步性、李雅普诺夫指数、熵、全局非线性、递归轨迹之间的距离差、自相似性或特征值中的至少一个。
23.在一些实施方案中,通过以下方式由处理电路通过至少部分基于度量确定eeg信号的非线性特征随时间的变化来确定eeg信号指示候选癫痫发作:利用度量中的一个度量进行初级分析,其中初级分析指示eeg信号指示候选癫痫发作或指示eeg信号包括噪声;以及利用度量中的一个或多个度量进行次级分析,以确定是eeg信号指示候选癫痫发作,还是eeg信号包括噪声。
24.在一些实施方案中,该方法还包括:由处理电路确定多个度量中的每个度量在多个时间点的轨迹的概率;以及由处理电路基于这些概率确定多个度量中的每个度量的轨迹是否显著。在一些实施方案中,由处理电路至少部分基于多个度量确定eeg信号的非线性特征的变化(例如,非线性特征的轨迹的变化)包括将多个度量中的显著度量映射到类别,其中该类别为癫痫发作类别。
25.在一些实施方案中,该方法包括由处理电路通过执行相空间分析来确定eeg信号的维数,该相空间分析通过增加维数的值直至假近邻数达到零来执行,其中维数的起始值基于患者的年龄。
26.本公开的另一个实施是一种癫痫发作检测系统,该系统包括一个或多个连接到患者的电极,这些电极被配置成基于患者的脑电活动生成脑电图(eeg)信号。该系统还包括处理电路,该处理电路被配置成:接收基于患者的脑电活动生成的脑电图(eeg)信号;基于eeg信号确定度量,这些度量指示eeg信号的非线性特征;通过至少部分基于度量确定eeg信号的非线性特征(例如,在非线性特征中的每个非线性特征中)随时间的变化来确定eeg信号指示候选癫痫发作;以及生成癫痫发作警报,该癫痫发作警报指示eeg信号指示候选癫痫发作。非线性特征的变化指示引起候选癫痫发作的生理诱因。
27.在一些实施方案中,处理电路被配置成基于默认参数值或用户定义参数值中的至
少一个来确定eeg信号指示候选癫痫发作。
28.在一些实施方案中,处理电路被配置成通过以下方式确定eeg信号指示候选癫痫发作:通过确定非线性特征中的一个非线性特征的随时间的值来确定非线性特征中的该一个非线性特征的轨迹;确定轨迹的概率值小于指示轨迹的出现具有统计学显著性的概率水平(例如,由分类标准设置的预定义临界概率水平),以及响应于轨迹的概率值小于该概率水平的确定,确定eeg信号指示候选癫痫发作。在一些实施方案中,将多个非线性特征的轨迹的概率水平各自与该概率水平进行比较,以确定轨迹各自具有统计学显著性以及/或者信号是否指示候选癫痫发作。
29.在一些实施方案中,非线性特征的值中的每一个值相对于值中的先前值减小(即,非线性特征的值的模式的每个单独值相对于先前值减小)。在一些实施方案中,处理电路被配置成基于值中的每一个值相对于值中的先前值减小的值的数目(即,连续减小值的数目)来确定轨迹的概率值。
30.在一些实施方案中,处理电路被配置成经由用户界面接收用户输入,以及通过将概率水平设置为由用户经由用户输入选择的值来确定概率水平。
31.在一些实施方案中,处理电路被配置成从癫痫发作检测系统的存储器设备检索默认值,以及通过将概率水平设置为从存储器设备检索的默认值来确定概率水平。
32.在一些实施方案中,处理电路被配置成通过以下方式确定eeg信号指示候选癫痫发作:通过确定非线性特征中的每个非线性特征的随时间的值来确定非线性特征中的每个非线性特征的轨迹;确定非线性特征中的每个非线性特征的轨迹的概率值小于指示非线性特征中的每个非线性特征的轨迹的出现具有统计学显著性的概率水平;以及响应于非线性特征中的每个非线性特征的轨迹的概率值小于该概率水平的确定,确定eeg信号指示候选癫痫发作。
附图说明
33.通过参考结合附图的详细描述,本公开的各种目的、方面、特征和优点将变得更加明显且更易理解。在附图中,相似的参考标记始终标识对应的元件。在附图中,相似的参考标号通常表示相同的、功能上类似的和/或结构上类似的元件。
34.图1是根据示例性实施方案的包括癫痫发作检测器的本地eeg系统的框图,该癫痫发作检测器用于基于eeg信号中的非线性特征的趋势进行候选癫痫发作检测。
35.图2是根据示例性实施方案的用于收集eeg数据的eeg采集系统和包括癫痫发作检测器的分析系统的框图,该分析系统用于分析eeg数据以检测候选癫痫发作。
36.图3是根据示例性实施方案的包括用于候选癫痫发作检测的癫痫发作检测器的基于云的远程系统的框图。
37.图4是根据示例性实施方案的更详细示出的图1至图3的癫痫发作检测器的框图。
38.图5是根据示例性实施方案的通过确定eeg信号的非线性特征的改变来检测候选癫痫发作的方法的流程图,其中确定eeg信号的非线性特征的改变可由图4的癫痫发作检测器来执行。
39.图6是根据示例性实施方案的通过用特征值、renyi排列熵和样本熵确定eeg信号的非线性特征的改变来检测候选癫痫发作的方法的流程图,其中确定eeg信号的非线性特
征的改变可由图4的癫痫发作检测器来执行。
40.详细说明概述总体上参考附图,根据各种示例性实施方案,示出了用于基于eeg非线性度的改变进行癫痫发作检测的系统和方法。在一些实施方案中,癫痫发作检测器被配置成通过分析非线性度随时间的变化,即通过检测eeg数据中的非线性度随时间的变化(例如增加),来检测eeg数据中是否存在候选癫痫发作。在一些实施方案中,该癫痫发作检测器被配置成分析eeg信号以确定在eeg信号中是否存在可以展示给癫痫学家或其他临床技术人员以供人工复查的时期或事件,从而明确地确定是否已发生候选癫痫发作。癫痫发作检测器可以在对接受eeg监测以进行癫痫发作检测的患者进行评估时节省大量时间。
41.癫痫发作检测器不是试图检测异常波形(例如eeg数据中的棘波和尖锐波的形态的各种集合),而是可检测引起这些异常波形的生理诱因。在一些实施方案中,被配置成通过非线性度检测候选癫痫发作的癫痫发作检测器胜过集中于直接检测异常波形模式的算法,特别是当患者是儿童或婴儿时。在儿童和婴儿中,异常波形可能差异较大且多样化,对于癫痫发作检测器而言,可能难以存储每一种异常波形的标识。癫痫发作检测器不是检测特定的异常波形,而是可通过监视eeg信号中的非线性度的趋势来检测引起候选癫痫发作的生理诱因。
42.癫痫发作检测器可利用癫痫发作过程的(一个或多个)生理学或数学模型。癫痫发作起因于神经元组之间的异常相互作用(即,非线性行为)。这些相互作用与许多非癫痫发作状态中存在的表观加和性或线性相互作用不同。此外,这些相互作用在癫痫发作期间发展,就这一意义而言,是动态的。因此,癫痫发作的发病反映了神经细胞组间的异常非线性转化或由其驱动,而这种异常非线性转化会随着癫痫发作的发展而发展。处理这种类型的现象的数学分支被称为非线性动态系统分析。
43.在一些实施方案中,由癫痫发作检测器执行的癫痫发作检测可由另一系统利用(或与另一系统集成)以操作专用于中止患者癫痫发作的闭环刺激设备。此外,在一些实施方案中,癫痫发作检测器可用于筛选患者eeg数据的长期历史记录。这可以向患者和护理人员提供更快速的反馈,从而更早地干预癫痫发作。此外,在缺少经过训练的癫痫学家进行人工复查eeg信号数据的情况下,可使用癫痫发作检测器。能够复查eeg信号的神经科医生在美国很短缺,在美国之外则更甚。据估计,美国有近200个儿科重症监护室(icu)和800个新生儿icu没有接受过足够训练的人员来解读eeg数据。
44.对患者正在经受癫痫的视觉线索(例如,惊厥、肌肉张力变化等)的依赖问题重重。观察者(例如家庭成员、护士、技师等)通常不能通过视觉线索检测到患者的癫痫发作,通常观察者遗漏多达30%至40%的癫痫发作。这一点一部分是由于许多癫痫发作是非惊厥性的,因此更难以通过视觉检测。在诸如重症监护病房等患者无法传达其非惊厥事件(例如,意识模糊、失语、视觉或其他感觉障碍)或患者过于年轻而无法传达此类事件或发病期间可能麻痹的情形下,通过视觉线索检测癫痫发作尤为困难。据估计,icu中约30%至80%的癫痫发作可属于这些非惊厥性类别之一。
45.成人癫痫发作中近85%起自颞叶,并且通常累及海马体。然而,从解剖学角度来看,与成人相比,婴儿和儿童的癫痫发作更为广泛,并且他们的颞部形态更多样化。因此,适用
于成人的方法,即基于形态学的分析,可能不一定适用于儿童。基于形态学的分析的示例可包括对eeg数据中存在的周期性的分析。通常,随着癫痫发作的进展,eeg的幅度增加,因此分析系统可分析总幅度。对周期性或幅度的分析指示癫痫发作的积累。其它分析算法可以是基于患者中特定癫痫发作模式的机器学习的线性时域分析。这些方法的部分列表包括独立成分分析、形态学分析、模板匹配、模拟方法、参数方法、聚类技术和基于知识的规则。然而,此类分析可能在儿童中并不是非常成功。相反,本文描述的癫痫发作检测器的非线性趋势分析可适用于儿童。此外,这种非线性趋势分析也可适用于成人。
46.儿童癫痫发作的临床表现鲜有一致。其中一些没有可见的相关性,一些在外观上非常明显(例如,跌倒发作),而一些则包括多个行为要素(例如,lennox-gastaut综合征)。类似地,小儿癫痫发作中有各种电图模式或特征。存在着可见于成人中的节律性积累、电压抑制期(例如,婴儿痉挛)、“停止和开始”模式、高幅度节律性减慢、多棘性爆发等的典型模式。甚至可以在单个患者中观察到多种模式。但对所有此类模式和模式转换进行建模或模板匹配的努力都未能成功。在一些实施方案中,本文描述的癫痫发作检测器不使用波形形态学作为检测数学的决定因素,而是被配置成检测产生这些不同变化的潜在生理诱因的形式。
47.此外,相同的“驱动函数”可以根据背景eeg产生不同的结果(表现出对初始条件的依赖)。由于eeg的矩对矩分量变化非常明显,在一些情况下,驱动函数对可变输入的作用的结果是可变输出。系统行为是背景活动的形式、产生状态转变的生理诱因的形式和任何外部变量(例如,偏高的温度、药物的存在、代谢参数等)的联合函数。在短暂的静息期内获得驱动函数的形式更容易,而在过渡期确定其形式则较为困难。
48.应当注意,诸如肌电图(emg)、运动、轻拍、电极“爆发”等的伪像不应当具有类似前述在癫痫发作中所看到的轨迹变化的模式。虽然观察到的伪像或其他虚假波形的形态可以表现出与癫痫发作的视觉相似性,但是这些伪像和其他虚假事件不应当表现出癫痫中所见的相同的生理轨迹演变模式。在一些实施方案中,癫痫发作检测器被配置成将虚假事件与癫痫发作事件分离以最大限度地减少误报。
49.癫痫发作检测现在参考图1,示出了根据示例性实施方案的包括eeg系统104的系统100,该eeg系统包括用于基于非线性特征的趋势进行候选癫痫发作检测的癫痫发作检测器108。在系统100中,信号处理固件和/或软件被集成到具有和/或不具有额外信号处理板的eeg数据采集系统中以形成eeg系统104。在一些实施方案中,eeg系统104被配置成从患者102收集eeg数据,以及基于eeg数据使用癫痫发作检测器108进一步检测候选癫痫发作(例如,检测潜在的候选癫痫发作以供用户复查)。在一些实施方案中,癫痫发作检测器108是完全集成的并行处理器。
50.患者102在图1中示出,其中多个电极被施加到患者102的头部。电极感测患者102中的脑电活动。患者102可以是人,例如,成人、青少年、儿童、婴儿等。此外,患者102可以是动物,例如猫、狗、马、牛等。施加到患者102以收集eeg数据供癫痫发作检测器108分析的电极的数量可以由期望的定位精度(当目标是检测时,则定位的准确性不太关键)、由癫痫发作检测器108确定的驱动函数的维度、颅骨尺寸的物理限制、电极的空间分布、源的空间范围和电极之间的相关结构等确定。
51.在一些实施方案中,电极连接到eeg系统104所包括的电极接口106。电极接口106可包括用于产生eeg数据以供癫痫发作检测器108分析的一个或多个初步硬件电路。硬件电路可包括放大器电路(例如,差分放大器电路)、滤波器(例如,高通、低通、带通)、模数转换器(adc)等。
52.在一些实施方案中,癫痫发作检测器108可被配置成分析由施加到患者102的全套电极所产生的信号和/或分析施加到患者102的电极的子集。在一些实施方案中,因为癫痫发作的维数通常不超过四的值,所以癫痫发作检测器108可分析约十个或更少的电极以检测癫痫发作。在这点上,即使技术人员应用了全套电极,癫痫发作检测器108也可以选择所需的适当数量的电极(例如,选择十个电极)。
53.在一些实施方案中,癫痫发作检测器108被配置成确定通常从约二至九变化的李雅普诺夫谱,其中大多数癫痫发作随着癫痫发作的发生表现出减小的维度。在癫痫发作期间,很少看到超过四的维度。使用多信道eeg方法,轨迹可用个电极表征,其中是用李雅普诺夫谱估计的潜在函数的维数。癫痫发作检测器108可在操作期间确定潜在函数的维数,并使用户界面设备110为患者102建议特定数量的电极。在这点上,患者102可从预定义数量的电极开始,但是根据癫痫发作检测器108的分析,技术人员可基于所确定的维数向患者102添加额外的电极。
54.eeg数据可表示用于患者102的脑活动的一个或多个eeg信号。癫痫发作检测器108可接收eeg数据并执行eeg数据的非线性分析以检测eeg数据是否指示患者102中已经、将要或正在发生的候选癫痫发作。可将由癫痫发作检测器108检测到的候选癫痫发作检测提供给用户界面设备110,以用于对用户(例如医生、护士、患者102的家庭成员、癫痫学家、技术人员等)的视觉和/或听觉通知。此外,经由用户界面设备110,用户可提供配置数据。配置数据可指示患者102的年龄、患者102的体重、患者102的历史eeg数据、患者的医学病症等。癫痫发作检测器108被配置成执行的非线性分析可至少部分基于配置数据。
55.用户界面设备110可以是被配置成从用户接收输入和/或向用户提供输出的系统或设备。用户界面设备110可以是监视器,例如显示屏。显示屏可以是发光二极管(led)屏幕、阴极射线管显示器(crt)、液晶显示器(lcd)和/或任何其它类型的显示屏。用户界面设备110还可包括输入设备、鼠标、键盘、触摸屏等。此外,用户界面设备110可包括用于音频输出的扬声器、用于音频输入的麦克风等。在一些实施方案中,用户界面设备110是与eeg系统104和/或癫痫发作检测器108通信的计算机、智能电话、平板电脑等。
56.原则上,在一些实施方案中,如果导致癫痫发作出现的特定事件链是已知的,则系统被配置成搜索特定事件链。例如,关于引发癫痫发作的解剖区域中的单个神经元的异常电行为,已所知较多。例如,尤其是可在成人中识别到颞叶癫痫发作。然而,癫痫发作是由脑细胞的网络或组件的功能障碍引起的。因此,癫痫发作检测器108可分析行为群体以寻找患者102中癫痫发作的发生背后的驱动诱因,而不是寻找已知的形态模式(例如,大脑特定区域中的活动、活动的尖棘波等)。癫痫发作的生理背后的诱因并非随机。实际上,诱因是确定的,并且可由癫痫发作检测器108通过应用非线性动态系统工具来检测。
57.在一些实施方案中,癫痫发作检测器108被配置成将癫痫发作检测应用于任何年龄范围,并且可实时执行。此外,24小时期间内,癫痫发作检测器108的准确度可大于90%并
且为患者102收集的eeg数据中的假阳性率小于两位数。癫痫发作检测器108可在本地实现(如图1和2中所示)以及/或者可远程实现(如图3中所示)。
58.在一些实施方案中,癫痫发作检测器108被配置成基于用户输入(作为使用编程到癫痫发作检测器108中的默认值的替代或补充)选择用于检测癫痫发作和/或对由癫痫发作检测器108执行的事件进行分类的参数值。在一些实施方案中,参数值可由用户手动选择,其中用户经由与癫痫发作检测器108相关联的用户界面110提供用户输入。参数值可以是轨迹统计学显著性水平和/或当多个度量同时应用于数据集时的组成度量之间的度量参数值。通过基于用户输入选择参数值,可减少癫痫发作检测器108生成的误报,或者可增加癫痫发作检测器108的命中率。此外,通过允许用户选择参数值,可通过癫痫发作检测器108实现假阳性和真阳性之间的适当权衡。
59.用户输入可指示减少假阳性和增加命中率之间的平衡水平(例如,权重)。这可通过使用建议的默认值或通过调整这些值来实现,其中可以基于个人偏好或为了最好地适合特定患者情况来进行调整。平衡水平可以是范围中的值,并且可以对应于较低或较高的统计学显著性水平(例如,有利于减少假阳性的平衡水平可与在特定方向上改变(增加或减少)的度量的轨迹的较低概率值相关联,而有利于增加命中率的平衡水平可以与改变的度量的轨迹的较高概率值相关联)。
60.在一些实施方案中,癫痫发作检测器108被配置成检测产生从非癫痫发作到癫痫发作的状态转变的诱因的偏移模式,而不试图检测目标波形形态。在一些实施方案中,这些异常生理诱因产生癫痫发作检测器108被配置成量化其的波形轨迹。癫痫发作检测器108可利用这些轨迹来检测多个状态变化,包括癫痫发作状态变化,即,从患者102的正常状态到癫痫发作状态的变化。更具体地,在一些实施方案中,癫痫发作检测器108被配置成基于反映这些轨迹出现的eeg数据确定一个或多个非线性度量。在一些实施方案中,癫痫发作检测器108被配置成应用非线性动态系统工具来检测这些异常轨迹的出现。
61.在一些实施方案中,癫痫发作检测器108被配置成通过搜索特定类别的状态改变来在eeg时间序列中搜索癫痫发作。更具体地,在一些实施方案中,癫痫发作检测器108被配置成搜索变化,即eeg数据中的结构性非线性的改变。癫痫发作检测器108被配置成应用非线性方法来检测数学状态空间中的状态变化,即,用于系统动态(患者102的脑活动的动态)的重建的起始点。
62.在一些实施方案中,癫痫发作检测器108被配置成检测患者102中存在向癫痫发作状态的逐渐和/或突然转变的候选癫痫发作。更具体地,癫痫发作检测器108可应用动态系统分析来检测突然变化(例如,分叉)以及多种形式的逐渐变化。对癫痫发作的搜索不是对特定孤立事件的搜索,也不是对特征的特定单个值的搜索,相反,癫痫发作检测器108可确定多个非线性度量并随时间跟踪这些非线性度量以检测eeg数据的非线性特征的诊断偏移和变化模式。例如,癫痫发作检测器108可确定是否出现了非线性特征的具有统计学显著性的增加或减少的轨迹。例如,对于指示非线性度的度量,该度量的七个连续增加值可具有指示轨迹正在增加的统计学显著性。然而,度量值的五次连续增加可能不具有指示增加的轨迹的统计学显著性。类似地,连续减少的值的数目可与发生的概率相关联,例如,度量的五个连续减少的值可能不具有显著性,而度量的七个连续减少的值可能具有统计学显著性。
63.例如,度量的五个连续增加的值的概率可以是0.032(可由癫痫发作检测器108从
五个连续增加的值和/或历史轨迹数据确定)。度量的七个连续增加值的概率可以是0.01。因为七个连续增加值的概率小于五个连续增加值的概率,所以七个连续增加值可以比五个连续增加值具有更高的统计学显著性(更低的概率水平)。癫痫发作检测器108可应用概率阈值以确定度量的增加或减少是否具有统计学显著性,例如,发生的概率是否小于概率阈值。此外,癫痫发作检测器108可应用变化数量阈值,即,连续增加或连续减少值的数量是否大于或等于变化数量阈值,即,如果阈值为七,则度量的七个连续增加值具有统计学显著性,而度量的五个连续增加值不具有统计学显著性。
64.用于确定统计学显著性的阈值可定义假阳性和遗漏的癫痫发作检测的量。例如,需要较高数量的连续增加或连续减少值的阈值可能具有较少的假阳性,但是遗漏了大量癫痫发作。然而,阈值的较低值可导致更多的假阳性,但遗漏较少的癫痫发作。可由癫痫发作检测器108执行优化以适当地设置用于确定统计学显著性的阈值。优化可尝试最大限度地减少遗漏的癫痫发作并最大限度地减少假阳性。优化可基于用户输入,例如,将历史eeg信号的某些时段识别为对应于癫痫发作或将eeg信号的其他时段识别为与假阳性有关的用户反馈。
65.在一些实施方案中,因为变化模式是癫痫发作状态转换的常态方面,癫痫发作检测器108被配置成检测eeg数据的非线性动态模式的变化。通常,在电图或临床癫痫发作的eeg数据中,非线性度的状态变化在时间上先于棘波、尖锐波或其它视觉迹象的出现。因此,在一些实施方案中,癫痫发作检测器108被配置成首先确定来自eeg的非线性变化(即特征值)的非特定检测器。如果非特定检测器指示候选癫痫发作,则癫痫发作检测器108可应用后续的度量计算和/或分析。这允许癫痫发作检测器108通过应用低计算要求的计算,例如特征值,然后应用较高计算要求的计算,例如维数,来节省计算资源。
66.在一些实施方案中,由于多个非线性测度的潜在不稳定性,在样本大小较小时,癫痫发作检测器108被配置成应用移动窗口来进行度量的计算。移动窗口持续时间和窗口内重叠百分比的特定值可基于特定度量来预定义,即,每个度量可以与其自己的窗口持续时间和重叠百分比相关联。在一些实施方案中,特定度量对样本大小的依赖性越大,为了确保估计的稳定性,癫痫发作检测器108被配置成确定具有越长窗口持续时间的度量。
67.在一些实施方案中,癫痫发作检测器108被配置成分析特征值的变化以检测癫痫发作。然而,特征值的变化可能是由于eeg数据的线性活动与非线性活动的比率的定量变化,或eeg数据中噪声的存在引起的。因此,癫痫发作检测器108可同时确定和分析多个非线性度量以检测候选癫痫发作。例如,在一些实施方案中,癫痫发作检测器108被配置成确定熵以及特征值以助于区分癫痫发作和噪声。当噪声不是节律性的时,噪声通常使熵增加,而大多数癫痫发作使熵降低。
68.在一些实施方案中,癫痫发作检测器108被配置成确定和分析许多其它非线性度量。癫痫发作检测器108被配置成分析其的度量可基于配置数据,即患者102的临床图像或综合征(例如,跌倒发作、婴儿痉挛、lennox-gastaut综合征、缺氧后脑病、年龄、体重等)以及与患者102相关联的基线eeg模式。在一些实施方案中,癫痫发作检测器108被配置成分析特定的配置数据,以及确定和/或分析适合于患者102的度量。
69.临床综合征和基线eeg模式(例如,正常脑活动的eeg模式、癫痫发作模式等)、患者的年龄、患者的体重等可包括在配置数据中,并且可由癫痫发作检测器108用于在第二阶段
(和/或初始阶段)中选择非线性度量的混合体的组成(或混合体的加权)。候选度量包括但不限于维数、同步性、李雅普诺夫指数、各种形式的熵、全局非线性度(经由替代测试)、相空间中的递归轨迹之间的距离差、自相似性等。
70.由癫痫发作检测器108执行的分析的输出可以是一组随时间变化的非线性值。这些模式中的一些模式可指示候选癫痫发作,而一些其他模式反映睡眠发生,再一些其他模式反映伪像。因此,癫痫发作检测器108可将该组非线性值映射到特定类别,例如癫痫发作、噪声、睡眠等。该组非线性值中的度量的数量可由癫痫发作检测器108基于eeg系统的硬件和/或固件架构的信号处理能力来设置。度量的选择可基于癫痫发作检测器108是在实时模式下操作还是在历史分析模式下操作而改变;在实时模式下,eeg数据被实时分析;在历史分析模式下,先前记录的eeg数据被分析。
71.现在参考图2,示出了根据示例性实施方案的包括用于收集eeg数据的eeg采集系统206和包括癫痫发作检测器108的分析系统204的系统200,该分析系统204用于分析eeg数据以检测候选癫痫发作。在系统200中,癫痫发作检测器108的信号处理硬件、固件和/或软件被完全集成到与eeg采集系统206分离的独立本地计算机中,即,在分析系统204中。
72.在一些实施方案中,分析系统204被配置成使用eeg采集系统的输出,即由eeg采集系统206采集的eeg数据,与eeg采集系统206一起操作。系统200可在多个实施方案中实现,例如,分析系统204可以是具有用于eeg采集系统206的简化的机顶盒和有限的信号处理能力的筛查设备。该机顶盒可被构造成位于eeg采集系统206的外壳的顶部。系统200可适于在医院或在患者家中进行警告和/或筛查。在一些实施方案中,分析系统204是插入式卡(例如,配置有可连接到eeg采集系统206的连接端口的电路板)。用户可将插入式卡插入到eeg采集系统206中,以向eeg采集系统206提供分析系统204的所有操作能力。例如,插入式卡可包括图形或数字信号处理电路和包括用于实现本文所述的操作的指令的存储器。
73.eeg采集系统206可包括采集管理器202。采集管理器202被配置成收集eeg数据并维护eeg数据的历史记录。此外,eeg采集管理器202可将eeg数据提供给分析系统204以用于分析和癫痫发作检测。在从分析系统204接收到请求时,采集管理器202可向分析系统204提供采集管理器202存储的所请求的历史eeg数据。
74.现在参考图3,示出了根据示例性实施方案的癫痫发作检测器108的基于云的实现的系统300。在系统300中,在远程站点处执行(即由云平台306执行)癫痫发作检测和相关联的信号处理。云平台306可以是医院内的一个或多个远程服务器和/或本地服务器,可以是云分析系统诸如microsoft azure、amazon web services等。
75.eeg系统100包括网络接口302,该网络接口302经由网络304将eeg数据和/或配置数据传送到云平台306以供癫痫发作检测器108分析。网络304可充当eeg系统100和云平台306之间的管线,其中特征提取和/或分析由癫痫发作检测器108执行。由分析系统204执行的分析的结果可被传输回eeg系统100,以经由用户界面设备110显示并由用户做出决定。
76.网络304可包括一个或多个不同的有线和/或无线网络。网络可以是局域网(lan)或广域网(wan)。网络可以是有线的并且包括以太网线路、电缆和/或光纤连接,并且/或者可以是无线的并且是基于wi-fi和/或蜂窝的网络。在一些实施方案中,网络接口302可包括一个或多个网络接口302被配置成操作其的接收器、发射器、收发器、无线电装置、信号处理电路等,以经由网络304进行通信。
77.现在参考图4,示出了根据示例性实施方案的包括癫痫发作检测器108的系统400。癫痫发作检测器108被示出为接收配置数据和eeg数据。此外,癫痫发作检测器108被示出为输出用户界面,使得用户界面设备110显示该用户界面。用户界面可包括对候选癫痫发作的存在的指示和/或癫痫发作检测器108根据eeg数据确定的计算的度量。
78.癫痫发作检测器108包括分析电路428。分析电路428可包括用于数字信号处理的一个或多个处理电路。分析电路428可包括现场可编程门阵列(fpga)、专用集成电路(asic)、一个或多个中央处理单元(cpu)、一个或多个数字信号处理(dsp)单元、一个或多个图形处理单元(gpu)等。癫痫发作检测器108可存在高处理要求,并且癫痫发作检测器108可跨多个处理单元(例如,单独的处理卡、图形卡、远程服务器、基于云的系统等)应用共享计算。
79.此外,分析电路428可包括一个或多个存储器设备。存储器设备可存储用于在一个或多个处理器上执行的指令和/或计算的数据。存储器设备可包括随机存取存储器(ram)、固态驱动器(ssd)、硬盘驱动器(hdd)、闪速存储器、电可擦可编程只读存储器(eeprom)和/或任何其他类型的存储器,无论是暂态的还是非暂态的。
80.在一些实施方案中,癫痫发作检测器108被配置成使用历史数据分析以及/或者在实时分析中来检测候选癫痫发作。在一些实施方案中,癫痫发作检测器108被配置成检测在癫痫发作的发生和检测之间具有少于十五秒的延迟的候选癫痫发作。在一些实施方案中,癫痫发作检测器108被配置成检测大量的电记录模式(即,癫痫发作类型和由癫痫发作检测器108对该癫痫发作类型执行的最佳检测算法之间的映射)。此外,在一些实施方案中,癫痫发作检测器108被配置成将癫痫发作状态转变与伪像和噪声分离。此外,在一些实施方案中,癫痫发作检测器108被配置成检测在同一患者内的由若干位置(多灶性)引起的同样在同一患者内的若干癫痫发作类型。癫痫发作检测器108对于单个患者可具有大于90%的真阳性率和每天小于8个误检的假阳性率。
81.从非癫痫发作状态到癫痫发作状态的转变的恒定定量特征是非线性度对信号能量水平的贡献的变化。在大多数成人中,许多向癫痫发作状态的转变导致节律性增加或细胞群之间的同步性增加。这反映在如替代测试所揭示的减少的特征值(减少的线性度贡献)、减少的熵、减少的维数以及增加的全局非线性中。然而,这种模式不是通用的。这种模式的例外在现有算法失效的儿童和婴儿中尤其显著。例如,在许多患有跌倒发作的患者中,电图相关现象为高能量减慢的初始短暂突发,随后是低电压去同步活动。定量度量的时间模式将更复杂,并且显示出一段具有增加的熵、增加的特征值和降低的全局非线性度的时期。为此,癫痫发作检测器108关注度量的变化而不是绝对值,并利用多种形式的变化来检测候选癫痫发作。这捕获了大量的发作电图形态。
82.当基线eeg活动组织不良、具有过度的慢波活动并且被高压尖锐波或棘波打断(例如lennox-gastaut综合征)时,出现挑战。在这种情况下,癫痫发作检测器108被配置成检测其的基线特征值可以很低,使得癫痫发作的出现可能不反映在特征值的下降中(例如,下限效应)。在这种情况下,由癫痫发作检测器108执行的使用多个度量的分析增加了避免下限和/或上限效应的可能性。所有这些变化都可与增加的噪声或伪像的侵入区分开来(噪声通常使特征值减小并且使熵增加)。
83.在一些实施方案中,癫痫发作检测器108被配置成将定量时间变化分析应用于识
别跨度量的变化模式的多个度量,这使得将事件分类为候选癫痫发作(例如,复查警报)、信号噪声(无警报)或不确定的分类(潜在癫痫发作警报发生)。通过调整需要被识别为显著变化的概率的显著性水平,可调整癫痫发作检测器108以改变真实检测、误报和遗漏之间的权衡。可在不使用机器学习的情况下执行癫痫发作检测器108的检测。机器学习需要一段时间的数据采集,并且延误治疗,可能对患者造成伤害。在一些实施方案中,度量轨迹的时间模式可经受后处理(例如,平滑处理以移除瞬态)以降低统计标准的应用中的可变性。
84.分析电路428可应用分析级的管线,并且可包括被配置成应用每一级的组件。这些组件可以是软件模块、电路等。分析电路428包括信道选择器402、滤波级404、初级分析器406、次级分析器408和界面生成器410。由癫痫发作检测器108接收的eeg数据可首先通过信道选择器402。信道选择器402可控制癫痫发作检测器108对eeg数据的哪些信道执行分析。例如,在存在多个电极的情况下,一组或多组电极可适合于由分析电路428进行分析。因此,信道选择器402可选择适当的eeg信号信道,并且将所选择的信道的eeg信号提供给滤波级404。
85.滤波级404可使用一个或多个低通、高通和/或带通滤波器对eeg数据进行滤波。滤波器可以是数字和/或硬件滤波器,例如无限脉冲响应(iir)和/或有限脉冲响应(fir)滤波器。适合于由分析电路428分析的信号的带宽可以是患者102的年龄所特有的。因此,在一些实施方案中,滤波级404可接收指示患者的特征(例如,年龄)的配置数据,并且被配置成基于配置数据执行滤波。
86.滤波级404通过的带宽可以不仅取决于患者的年龄,而且取决于由癫痫发作检测器108确定的用于检测候选癫痫发作的度量。在一些实施方案中,滤波级404使100至200 hz的频率通过。在一些实施方案中,滤波级404通过的频带可以是2 hz至400 hz的范围。
87.在一些实施方案中,分析电路428被配置成确定多个非线性度量,并将多个非线性度量的演变模式组合在一起,以经由初级分析器406和次级分析器408检测候选癫痫发作。在一些实施方案中,初级分析器406和次级分析器408被配置成将若干非线性度量算法的应用依序和/或并行地连接。癫痫发作检测器108可通过对非特定全局非线性变换(即可以是特征值的度量430)的第一筛查来检测候选癫痫发作的存在。此外,在一些实施方案中,次级分析器408被配置成经由次级分析器408处理集中于更具体类型的非线性度的更计算密集的度量。
88.在一些实施方案中,初级分析器406被配置成通过确定特征值的移动窗口实现,例如度量430,来执行筛查阶段。特征值随着非线性相互作用(例如癫痫发作)的出现或噪声的出现而减小。当eeg数据的节律性或周期性减弱时,特征值增加。此外,在一些实施方案中,初级分析器406被配置成通过确定度量430的趋势的统计学显著性432来确定特征值的改变是否具有统计学显著性(例如,具有大于预定义量的显著性值或小于预定义量的误差概率),使得初级分析器406仅分析特征值的具有统计学显著性的改变来确定候选癫痫发作。
89.在一些实施方案中,初级分析器406利用移动窗口确定统计学显著性,即,利用与参考次级分析器408描述的基于移动窗口的趋势分析类似或相同的移动窗口确定度量430的趋势。在度量430的样本的特定窗口上,初级分析器406可确定度量430是增加还是减少。利用多个窗口,初级分析器406可确定度量430的趋势,并基于先前窗口确定该趋势在未来窗口上增加或减少的概率水平(统计学显著性432)。
90.响应于初级分析器406确定度量430减少了具有统计学显著性的量(例如,增加或减少的概率小于特定概率),次级分析器408可计算并分析其它度量,即度量416至420。例如,度量416至420可包括renyi排列熵。次级分析器408可仅对初级分析器406在特征值中检测到具有统计学显著性的减小的eeg数据样本确定renyi排列。置换熵在计算上可能是最简单的,并且对于噪声和伪像是可靠的。在一些实施方案中,次级分析器408被配置成进一步确定度量416至420的统计学显著性,即确定度量416至420的统计学显著性422至426。
91.更具体地,由次级分析器408计算的度量416至420()中的每个度量可以是数据的时间序列。在一些实施方案中,基于度量416至420的时间序列,次级分析器408被配置成确定统计学显著性422至426(),其指示在零假设下度量轨迹的偏移模式的概率。类似地,统计学显著性422至426可以是时间序列。在一些实施方案中,趋势分析器414被配置成基于统计学显著性422至426跨时间分析度量416至420的显著和非显著值的模式。当前一组显著度量可作为一组结果由趋势分析器414分析。每组结果可被映射到特定类别,例如临床类别,诸如候选癫痫发作事件、无癫痫发作、不确定状态等。此外,各组可映射到其他类型的虚假事件(非癫痫发作)。
92.度量416至420可有许多并且可变化,例如,可以有多于十二种非线性度量类型,这些非线性度量类型利用这些度量类型中的每种度量类型的许多变体来描述。例如,存在至少十四种不同形式的熵或用于熵的计算方法。度量416至420可包括复杂度损失度量。每个熵度量在特定设置中可具有性能优点和缺点(例如,样本熵在检测电压抑制方面比大多数表现更好,柯尔莫哥洛夫熵比同样具有低计算复杂度的多种形式的排列熵更脆弱,等等)。模糊熵因对类别成员进行分级而具有吸引力,使得用户具有对类别边界的更好控制。目标事件(癫痫发作)的频率可包括在一些形式的熵(例如tsallis熵)的参数值中。在状态变化频繁或深刻的情况下(例如麻醉),renyi熵可能是更好的选择。关于癫痫发作的频率、是否存在麻醉等的信息可包括在配置数据中,并且因此次级分析器408可确定和分析非线性度量的适当混合体。用于计算熵的方法的实例可见liang, zhenhu等人,“麻醉中的eeg熵度量”(eeg entropy measures in anesthesia),《计算神经科学前沿》(frontiers in computational neuroscience),第9卷,2015年,doi:10.3389/fncom.2015.00016,其全部内容以引用方式并入本文。
93.如所述的那样,度量416至420可基于eeg信号并因而由此衍生。度量416至420的一个重要方面可以是度量416至420中的每个度量的随时间的轨迹。度量416至420的绝对值可作为患者年龄、状态、综合征、伴随药物等的函数而产生明显变化。因此,趋势分析器414被配置成分析度量416至420的轨迹,而不一定是度量416至420的绝对值,以检测和/或分类候选癫痫发作。由候选癫痫发作(增加对减少)引起的度量416至420随时间变化的方向可基于患者年龄和/或候选癫痫发作的类型而变化。为此,次级分析器408被配置成确定度量416至420的轨迹,使得趋势分析器414可基于轨迹来确定eeg信号的任何段是否指示候选癫痫发作和/或是否应当被展示以供脑电图技师进行视觉评估。
94.根据样本大小,度量416至420本身也在稳定性和可靠性方面变化。可通过增加采样持续时间来增加样本大小。然而,如果癫痫发作事件短于必需的采样持续时间,则增加的采样持续时间可能冒着遗漏癫痫发作事件的风险。在一些实施方案中,次级分析器408被配
置成通过使用移动窗口来确定度量416至420的改变方向。
95.例如,在400 hz的采样率下,次级分析器408可被配置成应用其的五秒窗口包含2000个样本。由次级分析器408应用于度量416至420的每个窗口的步长和重叠可以是用户经由用户界面设备110定义的和/或预定义的。典型值可以是一秒步长,其中五个样本中的四个样本在窗口之间重叠(即,五个样本中的四个样本在窗口移动时在窗口的两个窗口位置之间相同)。
96.当由次级分析器408分析时,每个窗口可指示度量416至420中的一个度量的值的减少,并且构成度量随时间的轨迹。趋势分析器414可具有统计标准,用于复查和/或分析由度量416至420中的一个度量的窗口的窗口位置中的一个窗口位置定义的段。例如,假设每个样本独立且行为随机,则在相同方向上的个连续变化的概率将是的n次幂。在一些实施方案中,次级分析器408被配置成确定度量416至420的模式(增大或减小)的概率422至426。概率可以是度量416至420中的一个度量将在特定方向上发生预定义量的改变的概率(例如,未来的预定义量的窗口将指示基于先前窗口的轨迹的度量值的增加或减少)。如果概率上升到阈值之上或下降到阈值之下,则该阈值指示度量416至420中的一个特定度量正在以统计学上显著的水平增加或减少,趋势分析器414可应用该阈值。趋势分析器414可应用一个或多个用户定义的和/或预定义的阈值来确定具有统计学显著性的度量416至420,以及/或者将具有统计学显著性的度量416至420映射到类型,例如癫痫发作、噪声等。
97.由次级分析器408执行的计算度量的特定方法的选择可取决于事件的频率、它们的空间范围、样本大小、尺寸、患者102的状态、患者102的癫痫发作综合征、时期的信噪比,所有这些可以通过配置数据指示或由次级分析器408从eeg信号(例如,信噪比)提取。由次级分析器408执行的度量的计算和映射可考虑信号和对象因素以及固有计算复杂度,以确定哪些特征应当接收优先化。相同的方法适用于维数、复杂度(或复杂度损失)、李雅普诺夫指数等的计算。
98.度量416至420和它们的统计学显著性422至426可被传递到趋势分析器414,该趋势分析器可检测具有统计学显著性的度量中的哪些趋势指示候选癫痫发作、噪声等。例如,当趋势分析器414检测到由次级分析器408确定的renyi排列熵增加以及特征值降低时,eeg数据指示噪声或癫痫发作的突发抑制模式,在这种情况下应当分析额外的度量。例如,度量416至420中的一个度量可以是次级分析器408经由相空间分析器412在相空间中确定的样本熵。样本熵可在计算和分析renyi排列熵之后由次级分析器408计算,并且/或者可与特征值和/或renyi排列熵并行计算。样本熵的计算可小于第二延迟。
99.样本熵可能比排列熵对突发抑制更敏感。趋势分析器414可确定样本熵是正还是负,并且如果样本熵为正,则可将与减小的特征值相关联的eeg数据分类为噪声。度量416至420的这些结果可由趋势分析器414组合以对事件进行分类。当renyi排列熵和特征值都减小时,趋势分析器414可确定eeg数据指示候选癫痫发作,并且次级分析器408可不确定样本熵。
100.在一些实施方案中,相空间分析器412被配置成执行相空间分析以确定诸如维数的度量。在一些实施方案中,相空间分析器412被配置成生成eeg信号的相空间图。动态系统可由一系列微分方程表示,这些微分方程的解可能不以封闭形式存在。然而,相空间分析器
412可通过在相空间中生成轨迹来识别候选癫痫发作行为。在一些实施方案中,在eeg信号的时间序列中的每个实例处,相空间分析器412被配置成在相空间中生成单个点,并且这些点的顺序形成轨迹,该轨迹的模式提供关于驱动函数的性质的信息,即,关于癫痫发作的存在或不存在的信息。轨迹可占据整个相空间,或者可收敛至较低维的区域,称为吸引子。噪声的相空间轨迹从不收敛。当相邻点开始彼此靠近然后发散时,据说存在奇异吸引子,并且暗示存在混沌行为。
101.在一些实施方案中,相空间分析器412被配置成执行时移的takens方法以基于eeg时间序列的经验数据生成相空间图。takens方法详见ba
ş
ar, erol等人,“奇异吸引子eeg作为认知功能的标志”(strange attractor eeg as sign of cognitive function),《思维机制》(machinery of the mind),1990年,第91-114页,doi:10.1007/978-1-4757-1083-0_5。eeg信号可表示为时间序列,在一些实施方案中,根据该时间序列,相空间分析器412被配置成确定具有时间延迟和嵌入维度的eeg信号的相空间表示。
102.相空间中的轨迹的形状可受到相空间分析器412用来生成相空间图的时间滞后的选择的强烈影响。在一些实施方案中,时间滞后是自相关函数中的第一个零,并且由相空间分析器412确定然后用于将信号嵌入相空间中。相空间分析器412被配置成应用一种或多种不同的方法来估计时间滞后。在一些实施方案中,相空间分析器412可基于相空间分析器412试图确定的非线性度量来确定滞后。在一些实施方案中,由相空间分析器412用来确定滞后的估计函数是线性的和/或非线性的。
103.由相空间分析器412选择的第二值是嵌入维度。如果吸引子的维度是,那么惠特尼(witney)嵌入定理表明嵌入维度必须是。因此,在一些实施方案中,相空间分析器412被配置成基于吸引子的已知或确定的维度来选择嵌入维度。
104.在一些实施方案中,相空间分析器412被配置成利用cao方法来估计相空间的维度。由相空间分析器412估计的维度可以是相空间内吸引子的维度。在一些实施方案中,相空间分析器412被配置成从低维开始连续地增加该维度,直到假近邻数达到零。相空间分析器412达到的维度可与候选癫痫发作的存在或不存在相关联。例如,趋势分析器414可基于度量416至420以及/或者基于由相空间分析器412确定的维数来确定是否存在候选癫痫发作。
105.在一些情况下,维度的值可低至在癫痫发作期间的值。此外,发作间期的维度通常低于八。从实践的角度来看,利用由相空间分析器412执行的这种递增方法,即,从低维开始增加维度值,可存在基于递增方法的计算负担的性能的实时折衷。为了克服这种计算负担,相空间分析器412可接收指示患者年龄的配置数据。在一些实施方案中,相空间分析器412被配置成基于患者的年龄选择起始维度值以减少相空间分析器412递增维度值并确定假近邻数何时达到零的步骤数。
106.递增方法中由相空间分析器412使用的起始维度值对于幼儿可较低,而对于更年长的儿童可更高。这可能是因为年龄越低,无论是发作期还是发作间期的维数都越低。例如,当配置数据指示患者102小于十岁时,起始维度的选择可仅针对幼儿应用。在新生儿中,清醒与睡眠之间可能没有明显的维数差异,并且维数年龄调整在更年长的儿童和成人中可能是不显著的。趋势分析器414可分析维数的趋势,而不必是维数的绝对值。例如,如果维数随着时间下降,则趋势分析器414可将eeg信号分类为指示候选癫痫发作。在这点上,维数的绝对值的估计中的微小误差的结果被部分地减少,因为事件的分类是基于度量的改变而不是绝对值。
107.在一些实施方案中,界面生成器410被配置成基于由初级分析器406和/或次级分析器408确定的度量生成用于在用户界面设备110上显示的界面。此外,在一些实施方案中,界面生成器410被配置成基于如由趋势分析器414确定的候选癫痫发作的存在来生成界面。此外,由界面生成器410生成的用户界面可基于用户输入,例如,显示特定度量、显示历史eeg数据等的请求。
108.在一些实施方案中,界面包括eeg数据的实时趋势。在一些实施方案中,持续显示eeg数据的趋势。此外,由界面生成器410生成的界面可包括由初级分析器406确定的特征值的趋势与eeg的趋势的叠加图。在特征值和eeg波形之间可有750毫秒的延迟。在一些实施方案中,次级分析器408被配置成每750毫秒确定度量416至420中的每个度量的新值。这些值一起形成了度量416至420中的每个度量的轨迹。在一些实施方案中,假设每个值与前一个值相比只能上升或下降,次级分析器408被配置成计算在相同方向上的n个连续变化的概率。如果次级分析器408检测到相同方向上的八个连续变化,则这可指示特定方向上的变化的足够概率。由于在750毫秒的时间段上确定每个度量,并且可确定总共八个值来检测增加或减少,所以次级分析器408可使用六秒的时间来确定度量416至420的增加或减少的概率。初级分析器406可被配置成执行针对度量430的相同处理。
109.在一些实施方案中,当特征值的变化变得显著时,界面生成器410被配置成使叠加的特征值波形改变颜色。在一些实施方案中,界面生成器410被配置成存储与特征值趋势相关联的eeg趋势时间。这允许用户经由用户界面设备110请求历史eeg数据的特定部分。响应于该请求,界面生成器410可使界面显示eeg数据的所请求的部分以及所请求部分的对应特征值趋势。在一些实施方案中,在由界面生成器410生成的用户界面中突出显示被分类为候选癫痫发作的eeg数据的任何部分以及针对eeg数据的该部分确定的对应度量。这可允许受过训练的临床医生复查可能是候选癫痫发作的eeg数据的特定部分,并且做出关于该数据部分是否指示癫痫发作的最终确定。
110.在一些实施方案中,界面生成器410使得界面包括由次级分析器408确定的具有统计学显著性的一组非线性度量。界面生成器410可经由用户界面设备110接收用户指定的显著性水平,并且响应于特定非线性度量的统计学显著性大于该度量的用户指定的显著性水平而使得界面包括该特定非线性度量。
111.在一些实施方案中,当度量基于阈值显著性水平和每个度量的统计学显著性从非显著转变为显著时,界面生成器410使得界面中显示的度量从第一颜色改变为第二颜色,例如从黑白改变为黄色。当度量的模式在较高的显著性水平(其可基于用户设置或预定义的参数来定义)下改变时,界面生成器410可使得度量变为第三颜色,例如变为蓝色。在一些实
施方案中,界面生成器410显示eeg数据的分屏,使得eeg数据实时地显示在第一窗口中,并且还显示已经被分类为候选癫痫发作的一段时期的历史eeg数据。
112.当eeg轨迹中没有显著变化时,可能没有用于复查的显著性eeg数据,并且界面生成器410可使界面包括没有癫痫发作的指示。在一些实施方案中,度量的模式和显著性水平可以是用户定义的。在一些实施方案中,模式和/或显著性水平可以是预定义的。
113.现在参考图5,示出了根据示例性实施方案的通过确定eeg信号的非线性特征的变化来检测候选癫痫发作的方法500。在一些实施方案中,癫痫发作检测器108被配置成执行方法500。具体地,在一些实施方案中,癫痫发作检测器108的信道选择器402、滤波级404、初级分析器406和/或次级分析器408被配置成执行方法500的一些和/或全部。此外,如本文所述的任何计算系统或设备可被配置成执行方法500。
114.在步骤502中,信道选择器402从被配置成感测患者102的脑活动的eeg电极阵列接收eeg数据。在一些实施方案中,信道选择器402实时地(即在收集数据时)从电极直接接收eeg数据。在一些实施方案中,在收集了数据之后,信道选择器402接收数据,即从数据库或存储eeg数据的其他存储器设备接收数据。
115.在步骤504中,信道选择器402可选择特定信道的eeg信号,或从在步骤502中接收的eeg数据的多个信道中选择eeg信号。此外,滤波级404可对eeg信号执行滤波。在一些实施方案中,信道的选择包括从其他电极的其他eeg信号中选择特定电极或电极组的eeg信号。在一些实施方案中,由信道选择器402执行的选择是预定义的,即,总是选择相同的信道。在一些实施方案中,基于配置数据,即指示患者102的特征(例如年龄、身高、医学综合征等)的数据,来选择信道选择。滤波可允许特定范围的频率通过。在一些实施方案中,通过的频率范围是预定的。在一些实施方案中,通过的频率范围也基于配置数据。
116.在步骤506中,初级分析器406利用适合于检测移动窗口的非线性部分对线性部分的比率的偏移的一般化度量来执行初级分析。初级分析器406可检测度量的趋势。例如,初级分析器406可利用移动窗口来确定特征值,以及确定特征值的轨迹是增加还是减少。初级分析器406可基于特征值的值计算轨迹的概率值。如果概率值变小,即小于预定义量,则初级分析器406可识别特征值增加或减小的统计学显著性(例如,因增加或减小发生的概率低,增加或减小具有统计学显著性)。
117.特征值的减小可指示非线性和线性促成因素的比率的偏移,即eeg信号的非线性特征的增加。响应于在步骤506中检测到eeg信号的非线性特征的增加,可执行方法500的步骤508。如果eeg信号的非线性特征未在增加,则可跳过步骤508,使得计算资源不被低效利用。
118.在步骤508中,次级分析器408执行第二分析,包括确定将更精确地对非线性变化的形式进行分类的度量(例如,正在改变的维数、熵、相空间中的递归循环的分离度、李雅普诺夫指数等)。初级分析(步骤506)所分析的度量可以是计算高效的,而在第二阶段(步骤508)所分析的度量可能需要更多的计算资源,因此,在单独的阶段中处理度量允许仅在必要时(即仅在初级分析指示癫痫发作的可能性之后)才使用计算资源。在步骤508中,次级分析器408可识别第二度量中的趋势,以及基于第二度量中的特定变化模式来确定eeg数据指示候选癫痫发作还是无癫痫发作。
119.现在参考图6,示出了根据示例性实施方案的通过用特征值、renyi排列熵和样本
熵确定eeg信号的非线性特征的变化来检测候选癫痫发作的方法600。在一些实施方案中,方法600提供癫痫发作检测器108被配置成执行其的示例性度量分析。方法600的决定是示例性的,可存在可由癫痫发作检测器108应用以检测候选癫痫发作的度量和/或分析规则的许多组合。在一些实施方案中,癫痫发作检测器108被配置成分析具有各种不同的非线性度量的各种不同的模式,这些非线性度量作为对特征值、renyi排列熵和/或样本熵的补充或替代。在一些实施方案中,癫痫发作检测器108被配置成执行方法600。具体地,在一些实施方案中,癫痫发作检测器108的初级分析器406和/或次级分析器408被配置成执行方法600的一些和/或全部。此外,如本文所述的任何计算系统或设备可被配置成执行方法600。
120.在步骤602中,初级分析器406可接收eeg信号。eeg信号可以是基于患者102的脑电活动而生成的信号。此外,eeg信号在被初级分析器406接收之前可由信道选择器402和/或滤波级404处理。eeg信号可以是数据样本的时间序列。
121.在步骤604中,初级分析器406可基于eeg信号确定特征值。在一些实施方案中,初级分析器406利用特征值的移动窗口来确定特征值。例如,初级分析器460可应用具有预定义长度和具有与窗口的先前位置的预定义重叠的窗口,以基于落在该窗口内的eeg信号的样本来生成特征值。
122.在步骤606中,初级分析器406可分析在步骤604中确定的特征值的趋势,以确定特征值是随时间增加还是减少。在一些实施方案中,初级分析器406确定轨迹(即,特征值的总体增加或减少)的概率。如果轨迹增加的概率大于预定义量,则初级分析器406执行步骤608。类似地,如果轨迹减小的概率大于预定义量,则初级分析器406执行步骤610。如果特征值没有表现出显著的增加或减少,则初级分析器406可将eeg数据分类为不显著。
123.如果特征值正在增加,则初级分析器406可在步骤608中将指示该增加的eeg数据(eeg信号的特定样本)分类为不显著。然而,如果初级分析器406确定特征值正在减小,则在步骤610中,eeg信号的数据可由初级分析器406分类为显著并且潜在地指示候选癫痫发作。
124.在步骤612中,次级分析器408可基于eeg信号确定renyi排列熵值。在一些实施方案中,次级分析器408仅为已由初级分析器406分类为显著的eeg数据片段确定renyi排列熵值。这可允许次级分析器408仅高效地执行计算以及利用计算资源。
125.在步骤614中,次级分析器408可分析在步骤612中确定的renyi排列熵的趋势,以确定renyi排列熵是随时间增加还是减少。在一些实施方案中,次级分析器408确定轨迹(即,renyi排列熵的总体增加或减少)的概率。如果轨迹增加的概率大于预定义量,则次级分析器408执行步骤618。类似地,如果轨迹减小的概率大于预定义量,则次级分析器408执行步骤616。如果renyi排列熵未表现出显著的增加或减少,则次级分析器408可执行步骤618。
126.在步骤618中,次级分析器408可基于eeg信号确定样本熵值。在一些实施方案中,次级分析器408仅为已由初级分析器406分类为显著的eeg数据片段确定样本排列熵值。这可允许次级分析器408仅在必要时执行计算以及利用计算资源。在一些实施方案中,样本排列熵可由次级分析器408使用移动窗口确定。
127.在步骤620中,次级分析器408确定样本熵是正还是负。基于样本熵的极性,当样本熵为负时,在步骤624中,次级分析器408将数据分类为候选癫痫发作,或当样本熵为正时,在步骤622中,分类为噪声。
128.示例性实施方案的配置在各种示例性实施方案中示出的系统和方法的构造和布置仅为说明性的。尽管在本公开中仅详细描述了几个实施方案,但是许多修改是可能的(例如,各种元件的大小、尺寸、结构、形状和比例、参数值、安装布置、材料的使用、颜色、取向等的变化)。例如,元件的位置可以颠倒或以其它方式改变,并且独立的元件的性质或数量或位置可以改变或变化。因此,所有此类修改都旨在包括在本公开的范围内。任何方法或方法步骤的顺序或次序可根据替代实施方案而变化或重新排序。可对示例性实施方案的设计、操作条件和布置做出其它替代、修改、改变和省略而不脱离本公开的范围。
129.本公开考虑了用于实现各种操作的方法、系统和任何机器可读介质上的程序产品。本公开的实施方案可以使用现有计算机处理器来实现,或者通过用于适当系统的出于该目的或其他目的而纳入的专用计算机处理器来实现,或者通过硬连线系统来实现。本公开范围内的实施方案包括程序产品,该程序产品包括用于承载或具有存储在其上的机器可执行指令或数据结构的机器可读介质。此类机器可读介质可以是可由通用或专用计算机或具有处理器的其它机器访问的任何可用介质。作为示例,此类机器可读介质可包括ram、rom、eprom、eeprom、cd-rom或其它光盘存储器、磁盘存储器或其它磁存储设备或可以用来以机器可执行指令或数据结构的形式承载或存储期望的程序代码并且可以由通用或专用计算机或具有处理器的其它机器访问的任何其它介质。上述内容的组合也包括在机器可读介质的范围内。机器可执行指令包括例如使通用计算机、专用计算机或专用处理机器执行某个功能或某组功能的指令和数据。
130.尽管附图示出了方法步骤的特定顺序,但是步骤的顺序可与所描绘的不同。而且,可同时或部分同时执行两个或更多个步骤。此类变化将取决于所选择的软件和硬件系统以及设计者的选择。所有此类变化都在本公开的范围内。同样,软件实现可以利用标准编程技术来完成,该标准编程技术具有基于规则的逻辑和其他逻辑以完成各种连接步骤、处理步骤、比较步骤和决定步骤。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1