脊髓损伤修复用材料和骨脊髓组织工程支架的制备方法

文档序号:26350902发布日期:2021-08-20 20:23阅读:139来源:国知局
脊髓损伤修复用材料和骨脊髓组织工程支架的制备方法

本发明涉及再生医学和生物材料技术领域,特别是涉及一种脊髓损伤修复用材料和骨脊髓组织工程支架的制备方法。



背景技术:

目前,全球约有超过2700万人因脊髓损伤造成残疾。脊髓损伤有多种原因,包括创伤、炎症、感染、血管原因、肿瘤或退变。其中90%由创伤引起。例如脊柱外伤等因素常导致椎体骨折,压迫脊髓实质进而引起脊髓损伤及脊髓神经元死亡,脊髓神经元死亡后中断的神经束无法进行信息传递,导致多系统的功能失调及感觉、运动、自主神经功能障碍。由于中枢神经系统自我修复能力有限,脊髓损伤往往造成永久性缺陷。尽管多年来脊髓损伤相关实验研究取得了很大的进展,但仍未发现治疗脊髓损伤的可靠手段,因此,寻找脊髓损伤的有效治疗方法已迫在眉睫。

近年来,组织工程学应用于脊髓损伤的研究成为热点,通过天然材料或人工合成材料制备出具有各种脊髓支架,用于促进脊髓再生修复,包括单纯生物支架、生物支架复合干细胞移植等等,但对于脊髓再生的程度均有限。随着再生医学技术的发展,生物支架材料、神经再生因子或干细胞移植已成为脊髓损伤修复的一个重要策略。随着研究的深入,科学家逐渐认识到,由于脊髓损伤后形成的复杂的微环境,单一的策略很难有效促进脊髓损伤的修复,多种策略联合逐渐成为脊髓损伤修复研究的重点。生物支架材料可为受损的神经再生提供支撑和引导,在损伤的局部搭建神经再生的桥梁,同时可以作为再生因子、干细胞或药物等的载体联合应用于损伤局部。生物支架材料结合再生因子或干细胞形成功能支架材料已广泛应用于脊髓损伤修复研究。



技术实现要素:

本发明要解决的技术问题是:现有的脊髓损伤修复用的材料难以有效促进脊髓损伤的修复,制备不便且成本高昂,不能很好地模拟正常脊髓结构。

为了解决上述技术问题,本发明提供了一种脊髓损伤修复用材料,按照重量份数计,包括以下组分:有机高分子材料10~40份、有机溶剂50~100份、水2~30份、超分子水凝胶材料10~30份、药物0~1份。

优选的,所述有机高分子材料为聚己内酯(pcl)或聚乙醇酸(pga)或聚乳酸(pla)。

优选的,所述有机溶剂为三氟乙醇,三氟乙醇能够与水相溶,并可与杂环化合物生成氢键键连的稳定配合物;水为去离子水。

优选的,所述超分子水凝胶材料的成分包括水、明胶、双键化β-环糊精、分子量700-10000的聚乙二醇双丙烯酸酯(pegda)、脊髓细胞外基质、光引发剂,其中水:明胶:双键化β-环糊精:聚乙二醇双丙烯酸酯(pegda):脊髓细胞外基质:光引发剂的质量比为100份:12份:8份:1份:10份:0.1份。

优选的,所述药物为oxymatrine(omt),该药物有减少组织纤维瘢痕形成的作用。

本发明还提供一种骨脊髓组织工程支架的制备方法,包括以下步骤:

s1、制备定向微米纤维:将有机高分子材料溶于有机溶剂中形成有机高分子材料/有机溶剂溶液,混合搅拌均匀得到纤维成型墨水,将该纤维成型墨水转移到3d打印设备中打印得到具有相同方向排列的微米纤维;

s2、风干:将步骤s1得到的微米纤维风干去除溶剂;

s3、配制超分子水凝胶:将水、明胶、双键化β-环糊精、聚乙二醇二丙烯酸酯(pegda)、脊髓细胞外基质和光引发剂按预定份数混合加入去离子水中,在37℃条件下充分溶解、搅拌,得到超分子水凝胶前驱体,将水凝胶前驱体放置在300~410nm的紫外光下照射3-10分钟,交联得到超分子水凝胶;

s4、药物负载:将药物oxymatrine(omt)加入到制备好的超分子水凝胶中,并搅拌均匀;

s5、骨脊髓组织工程支架的制备:将负载有oxymatrine(omt)的超分子水凝胶涂敷在去除溶剂的微米纤维上,将所述微米纤维卷曲成类圆柱型结构,并进行紫外光照射,通过交联得到骨脊髓组织工程支架。

优选的,所述骨脊髓组织工程支架成品的孔隙率为40~95%,以及孔径为100~2000μm,次级孔径为1~100μm。

优选的,所述步骤s3中脊髓细胞外基质的获取方法如下:

(1)手术取大鼠胸段脊髓;

(2)通过化学萃取的方法得到大鼠脊髓脱细胞支架(asc):将胸段脊髓依次冷冻、浸泡、震荡;详细步骤包括:

①将胸段脊髓-80℃冰箱冷冻1h,室温解冻;

②然后浸入蒸馏水中浸泡6h,每小时换液一次;

③然后将脊髓放入1%的tritonx-100磷酸缓冲液中,室温下连续振荡萃取3h(25℃,100r/min);

④再用蒸馆水振荡漂洗3h,每小时换液一次;

⑤1%的脱氧胆酸纳缓冲液中室温下连续振荡萃取3h;

⑥再用蒸馆水振荡漂洗3h,每小时换液一次;

⑦再重复③-⑥操作步骤1次;

(3)萃取后的脊髓置4℃无菌pbs溶液(0.01mol/l,ph7.2)中保存备用;

(4)大鼠asc的冷冻干燥:脊髓去细胞支架置于冷冻干燥机内,将标本冷冻干燥24小时;

(5)大鼠asc支架的灭菌:将封装好的标本,由-60伽马射线(3kgy)灭菌,备用;

(6)取asc支架将其剪碎、研磨、溶于水,获得脊髓细胞外基质。

与现有技术相比,本发明具有以下优点:

1、本发明的脊髓损伤修复用材料,其制作原料均为常用原料,易于获取且资源丰富,为骨脊髓组织工程支架的推广应用提供了便利条件;

2、本发明的骨脊髓组织工程支架的制备方法,脊髓支架成型墨水配制简单,制备方便,可实现原位负载药物,利用3d打印设备打印成型,便于制备个性化的组织工程支架,在-10~-40℃条件下无需进行冷冻干燥即可使脊髓结构支架定型;

3、本发明的骨脊髓组织工程支架的制备方法,采用3d打印技术,实现具有特定方向结构支架,以促进轴突按照设定方向生长,如具有特定纵向排列结构,可“引导”轴突按特定方向生长,避免神经轴突生长过程中“迷失方向”,以更好的到达修复效果;

4、本发明的骨脊髓组织工程支架的制备方法制备的组织工程支架在37℃条件下能够保持良好的力学强度及仿生脊髓组织结构,且在37℃下可变软,与超分子水凝胶环境可共同促进所负载脊髓的修复;

5、本发明的骨脊髓组织工程支架的制备方法制备的组织工程支架中载有oxymatrine(omt),此药物可通过调节细胞信号通路达到减少受损部位纤维瘢痕的形成,为轴突生长提供良好微环境;

6、本发明的骨脊髓组织工程支架的制备方法制备的组织工程支架中含有天然脊髓细胞外基质成分,可促进神经干细胞向神经元分化及神经轴突的生长。

附图说明

图1是本发明实施例1制备的脊髓组织工程支架中的微米纤维的结构图,该微米纤维均为纵向排列,具有定向结构。

图2为本发明实施例1的脊髓组织工程支架中的微米纤维在显微镜下放大40倍图,图中微米纤维的平均直径约为20μm。

图3为本发明实施例1的骨脊髓组织工程支架成品图,为类圆柱状,具有与脊髓相似形状。

图4为本发明实施例1的骨脊髓组织工程支架扫描电子显微镜(sem)10μm尺度下的放大图,可见骨脊髓组织工程支架的微米纤维按特定方向定向排列,超分子水凝胶分布均匀。

图5为本发明实施例1的骨脊髓组织工程支架扫描电子显微镜(sem)10μm尺度下的放大图,图中所示的黑色点为三维微孔,其余部分为微米纤维和超分子水凝胶,可见骨脊髓组织工程支架的局部呈三维多孔结构,具有适当的空隙,可为神经细胞、轴突生长提供良好的微环境和空间。

具体实施方式

下面结合附图和实施例,对本发明的技术方案进行清楚、完整的描述。显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。

本发明充分发挥3d打印在一体化构建梯度结构方面的优势,根据天然脊髓的成分、宏-微观结构和力学特性差异,选用适当的基材墨水、药物负载技术,通过次序低温3d打印和后处理构建成分、宏-微观结构和力学性能均可精确仿生脊髓修复材料,并负载药物促进轴突生长,形成具有“桥梁”作用并可改善损伤部位微环境、力学性能良好、强度优良的脊髓损伤修复材料。以下各实施例中所采用的3d生物打印设备为多喷头打印机且打印环境温度可降低为0~-100℃。

实施例1:本实施例提供一种脊髓损伤修复用材料,所述材料包括按照重量份数计的以下组分:有机高分子材料-聚己内酯(pcl)10份、有机溶剂三氟乙醇50份、去离子水2份、超分子水凝胶材料10份、药物oxymatrine(omt)1份。所述超分子水凝胶材料为水、明胶、双键化β-环糊精、分子量700-10000的聚乙二醇双丙烯酸酯(pegda)、脊髓细胞外基质、和光引发剂,其中水:明胶:双键化β-环糊精:聚乙二醇双丙烯酸酯(pegda):脊髓细胞外基质:紫外光引发剂为100份:12份:8份:1份:10份:0.1份。所述药物为oxymatrine(omt),该药物有减少组织纤维瘢痕形成的作用。

利用上述脊髓修复用材料按照本发明的骨脊髓组织工程支架的制备方法制备骨脊髓组织工程支架,包括以下步骤:

s1、制备定向微米纤维:将有机高分子材料溶于有机溶剂中形成有机高分子材料/有机溶剂溶液,混合搅拌均匀得到纤维成型墨水,并在低温(-35℃)打印机内,按照预先设计的cad模型通过喷头打印得到具有相同方向排列的微米纤维;

s2、风干:待微米纤维打印完成后通过低温风干将微米纤维中的溶剂风干;

s3、配制超分子水凝胶:将水、明胶、双键化β-环糊精、聚乙二醇二丙烯酸酯(pegda)、脊髓细胞外基质和光引发剂按上述预定的份数混合加入10ml去离子水中,在37℃条件下充分溶解、搅拌,得到超分子水凝胶前驱体,将超分子水凝胶前驱体放置在365nm的紫外光下照射5分钟,交联得到超分子水凝胶;其中,脊髓细胞外基质的详细获取方法如下:

(1)手术取大鼠胸段脊髓;

(2)通过化学萃取的方法得到大鼠脊髓脱细胞支架(asc):将胸段脊髓依次冷冻、浸泡、震荡;详细步骤包括:

①将胸段脊髓-80℃冰箱冷冻1h,室温解冻;

②然后浸入蒸馏水中浸泡6h,每小时换液一次;

③然后将脊髓放入1%的tritonx-100磷酸缓冲液中,室温下连续振荡萃取3h(25℃,100r/min);

④再用蒸馆水振荡漂洗3h,每小时换液一次;

⑤1%的脱氧胆酸纳缓冲液中室温下连续振荡萃取3h;

⑥再用蒸馆水振荡漂洗3h,每小时换液一次;

⑦再重复③-⑥操作步骤1次;

(3)萃取后的脊髓置4℃无菌pbs溶液(0.01mol/l,ph7.2)中保存备用;

(4)大鼠asc的冷冻干燥:脊髓去细胞支架置于冷冻干燥机内,将标本冷冻干燥24小时;

(5)大鼠asc支架的灭菌:将封装好的标本,由-60伽马射线(3kgy)灭菌,备用;

(6)取asc支架将其剪碎、研磨、溶于水,获得脊髓细胞外基质。

s4、药物负载:将药物oxymatrine(omt)加入到制备好的超分子水凝胶中,并搅拌均匀;

s5、脊髓复合水凝胶支架的制备:将负载有药物oxymatrine(omt)的超分子水凝胶涂敷在去除溶剂的微米纤维上,将其卷曲成类圆柱形结构,并进行紫外光照射,通过交联可得到骨脊髓组织工程支架。

实施例2:本实施例提供一种脊髓损伤修复用材料,所述材料包括按照重量份数计的以下组分:有机高分子材料聚乙醇酸(pga)25份、有机溶剂三氟乙醇75份、去离子水14份、超分子水凝胶材料20份、药物oxymatrine(omt)1份。所述超分子水凝胶材料为水、明胶、双键化β-环糊精、分子量700-10000的聚乙二醇双丙烯酸酯(pegda)、脊髓细胞外基质、光引发剂,其中水:明胶:双键化β-环糊精:聚乙二醇双丙烯酸酯(pegda):脊髓细胞外基质:紫外光引发剂为100份:12份:8份:1份:10份:0.1份,药物oxymatrine(omt)有减少组织纤维瘢痕形成的作用。

利用上述脊髓修复用材料按照本发明的脊髓组织工程支架的制备方法制备骨脊髓组织工程支架,包括以下步骤:

s1、制备定向微米纤维:将有机高分子材料溶于有机溶剂中形成有机高分子材料/有机溶剂溶液,混合搅拌均匀得到纤维成型墨水,将该纤维成型墨水转移到3d打印设备中按照预先设计的cad模型通过喷头打印得到具有相同方向排列的微米纤维;

s2、风干:待微米纤维打印完成后通过低温风干将微米纤维中的溶剂风干;

s3、配制超分子水凝胶:配制超分子水凝胶:将水、明胶、双键化β-环糊精、聚乙二醇二丙烯酸酯(pegda)、脊髓细胞外基质和光引发剂按上述预订份数混合加入10ml去离子水中,在37℃条件下充分溶解、搅拌,得到超分子水凝胶前驱体,将超分子水凝胶前驱体放置在365nm的紫外光下照射3分钟,交联得到超分子水凝胶。其中,脊髓细胞外基质的详细获取方法如下:

(1)手术取大鼠胸段脊髓;

(2)通过化学萃取的方法得到大鼠脊髓脱细胞支架(asc):将胸段脊髓依次冷冻、浸泡、震荡;

①将胸段脊髓-80℃冰箱冷冻1h,室温解冻;

②然后浸入蒸馏水中浸泡6h,每小时换液一次;

③然后将脊髓放入1%的tritonx-100磷酸缓冲液中,室温下连续振荡萃取3h(25℃,100r/min);

④再用蒸馆水振荡漂洗3h,每小时换液一次;

⑤1%的脱氧胆酸纳缓冲液中室温下连续振荡萃取3h;

⑥再用蒸馆水振荡漂洗3h,每小时换液一次;

⑦再重复③-⑥操作步骤1次;

(3)萃取后的脊髓置4℃无菌pbs溶液(0.01mol/l,ph7.2)中保存备用;

(4)大鼠asc的冷冻干燥:脊髓去细胞支架置于冷冻干燥机内,将标本冷冻干燥24小时;

(5)大鼠asc支架的灭菌:将封装好的标本,由-60伽马射线(3kgy)灭菌,备用;

(6)取asc支架将其剪碎、研磨、溶于水,获得脊髓细胞外基质;

s4、药物负载:将药物oxymatrine(omt)加入到制备好的超分子水凝胶中,并搅拌均匀;

s5、脊髓复合水凝胶支架的制备:将负载有药物oxymatrine(omt)的超分子水凝胶涂敷在去除溶剂的微米纤维上,将其卷曲成类圆柱形结构,并进行紫外光照射,通过交联可得到骨脊髓组织工程支架。

实施例3:本实施例提供一种脊髓损伤修复用材料,所述材料包括按照重量份数计的以下组分:有机高分子材料聚乳酸(pla)40份、有机溶剂三氟乙醇100份、去离子水30份、水凝胶材料30份、药物oxymatrine(omt)1份;所述超分子水凝胶材料包括水、明胶、双键化β-环糊精、分子量700-10000的聚乙二醇双丙烯酸酯(pegda)、脊髓细胞外基质和光引发剂,其中水:明胶:双键化β-环糊精:聚乙二醇双丙烯酸酯(pegda):脊髓细胞外基质:紫外光引发剂为100份:12份:8份:1份:10份:0.1份。药物oxymatrine(omt)有减少组织纤维瘢痕形成的作用。

利用上述脊髓修复用材料按照本发明的脊髓组织工程支架的制备方法制备骨脊髓组织工程支架,包括以下步骤:

s1、制备定向微米纤维:将有机高分子材料溶于有机溶剂中形成有机高分子材料/有机溶剂溶液,混合搅拌均匀得到纤维成型墨水,将该纤维成型墨水转移到低温(-35℃)3d打印设备中按照预先设计的cad模型通过喷头打印得到具有相同方向排列的微米纤维。

s2、风干:待微米纤维打印完成后通过低温风干将微米纤维中的溶剂风干。

s3、配制超分子水凝胶:配制超分子水凝胶:将水、明胶、双键化β-环糊精、聚乙二醇二丙烯酸酯(pegda)、脊髓细胞外基质和光引发剂按上述份数混合加入10ml去离子水中,在37℃条件下充分溶解、搅拌,得到超分子水凝胶前驱体,将超分子水凝胶前驱体放置在365nm的紫外光下照射6分钟,交联得到超分子水凝胶。其中,脊髓细胞外基质的详细获取方法如下:

(1)手术取大鼠胸段脊髓;

(2)通过化学萃取的方法得到大鼠脊髓脱细胞支架(asc):将胸段脊髓依次冷冻、浸泡、震荡;

①将胸段脊髓在-80℃冰箱冷冻1h,室温解冻;

②然后浸入蒸馏水中浸泡6h,每小时换液一次;

③然后将脊髓放入1%的tritonx-100磷酸缓冲液中,室温下连续振荡萃取3h(25℃,100r/min);

④再用蒸馆水振荡漂洗3h,每小时换液一次;

⑤1%的脱氧胆酸纳缓冲液中室温下连续振荡萃取3h;

⑥再用蒸馆水振荡漂洗3h,每小时换液一次;

⑦再重复③-⑥操作步骤1次;

(3)萃取后的脊髓置4℃无菌pbs溶液(0.01mol/l,ph7.2)中保存备用;

(4)大鼠asc的冷冻干燥:脊髓去细胞支架置于冷冻干燥机内,将标本冷冻干燥24小时;

(5)大鼠asc支架的灭菌:将封装好的标本,由-60伽马射线(3kgy)灭菌,备用;

(6)取asc支架将其剪碎、研磨、溶于水,获得脊髓细胞外基质;

s4、药物负载:将药物oxymatrine(omt)加入到制备好的超分子水凝胶中,并搅拌均匀;

s5、脊髓复合水凝胶支架的制备:将负载有药物oxymatrine(omt)的超分子水凝胶涂敷在去除溶剂的微米纤维上,将其卷曲成类圆柱形结构,并进行紫外光照射,通过交联可得到骨脊髓组织工程支架。

以上实施例制备得到的组织工程支架,外观均如附图1和3所示,所述组织工程支架成品的脊髓复合支架孔隙率为40~95%,一级孔径为100~2000μm,次级孔孔径为1~100μm。如附图2、4、5所示,各实施例制备的骨脊髓组织工程支架的放大结构基本一致,在此仅用实施例1的骨脊髓组织工程支架来表示结果。

本发明的脊髓损伤修复用材料,其制作原料均为常用原料,易于获取且资源丰富,为脊髓组织工程支架的推广应用提供了便利条件;本发明的骨脊髓组织工程支架的制备方法,脊髓支架成型墨水配制简单,制备方便,可实现原位负载药物,利用3d打印设备打印成型,便于制备个性化的组织工程支架,在-10~-40℃条件下无需进行冷冻干燥即可使脊髓结构支架定型;本发明的脊髓组织工程支架的制备方法,采用3d打印技术,成功制备出具有特定的“引导”干细胞或神经元细胞增殖方向的脊髓支架,并实现支架搭载药物,以更好的促进轴突生长;使制备的组织工程支架具有各向异性力学特性及宏-微观结构;组织工程支架在37℃条件下能够保持良好的力学强度及仿生脊髓组织结构,且在37℃下可变软,与水凝胶环境可共同促脊髓的修复。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1