使用无源RF调制的与注射装置使用相关的数据的传输的制作方法

文档序号:32610343发布日期:2022-12-20 19:38阅读:33来源:国知局
使用无源RF调制的与注射装置使用相关的数据的传输的制作方法
使用无源rf调制的与注射装置使用相关的数据的传输
1.本发明申请是基于申请日为2018年12月17日,申请号为201880089504.1(国际申请号为pct/ep2018/085110)、名称为“使用无源rf调制的与注射装置使用相关的数据的传输”的发明专利申请的分案申请。


背景技术:

2.电子注射装置允许患者安全地给予药剂,而无需医务人员不断监督,同时还能将治疗数据传输给医务人员。电子注射装置可以包括如药筒或注射筒的药剂储器、电子部件、驱动系统和能量供应。电子部件可以被配置为检测电子注射装置的使用并传输数据。使用检测和数据传输可能需要大量的能量供应。能量供应可以由电池提供。然而,电池电量低的情况可能会导致电子注射装置失效或故障、剂量不正确、剂量遗漏,或甚至通过停止电子部件的操作而使电子注射装置无法使用。


技术实现要素:

3.本公开文本的实现方式包括注射装置和使用无源射频(rf)信号传输注射装置数据的系统。在一些实现方式中,一种注射装置包括:储器,所述储器包括壁,所述壁限定近端、远端和侧壁;柱塞杆,所述柱塞杆被配置为可在所述储器内沿从所述远端到所述近端的方向移动,所述注射装置具有由壳体部件、内部或外部主体部件或所述药剂储器限定的管状侧;射频(rf)天线,所述rf天线附接到所述管状侧并且被配置为从外部装置接收询问信号;以及谐振组件,所述谐振组件被配置为从所述rf天线接收所述询问信号并生成具有与所述柱塞杆的位置相关联的频率的经调制的rf信号。在一些实现方式中,所述谐振组件包括磁体和一个或多个谐振器,所述磁体附接到所述柱塞杆,所述一个或多个谐振器附接到所述管状侧并且被配置为基于相对于所述磁体的线性位置和角位置中的至少一者来改变它们的rf特性。在一些实现方式中,所述谐振组件包括机械连杆和应变敏感谐振器,所述机械连杆附接到所述柱塞杆,所述应变敏感谐振器附接到所述管状侧,所述应变敏感谐振器被配置为基于相对于所述机械连杆的线性位置和角位置中的至少一者来改变其rf特性。在一些实现方式中,所述机械连杆包括弹簧、偏心元件和偏心盘中的至少一者。在一些实现方式中,所述谐振组件包括机械连杆和振荡器,所述机械连杆附接到所述柱塞杆,所述振荡器附接到所述管状侧,所述振荡器被配置为基于相对于所述机械连杆的线性位置和角位置中的至少一者来改变其rf特性。在一些实现方式中,所述机械连杆包括梁,所述梁通过隔膜附接到所述振荡器悬臂。在一些实现方式中,所述谐振组件包括多槽贴片谐振器,使得所述rf信号包括所述注射装置的标识符和药剂类型中的至少一者。在一些实现方式中,所述询问信号包括以规则的时间间隔接收的多个询问信号。在一些实现方式中,响应于接收到所述多个询问信号,所述谐振组件生成多个rf信号,使得所述多个rf信号中的两者之间的频移与所述储器内的药剂量相关联。在一些实现方式中,响应于所述注射装置传输的触发信号而生成所述询问信号。在一些实现方式中,所述柱塞杆的所述位置指示所述储器内的药剂量。
4.根据本公开文本的另一方面,一种药剂注射系统包括:外部装置和注射装置。所述外部装置包括:发射器,所述发射器被配置为生成询问信号;接收器,所述接收器被配置为接收射频(rf)信号;和一个或多个处理器,所述一个或多个处理器被配置为处理所述rf信号并生成要由所述外部装置显示的结果数据。所述注射装置包括:储器,所述储器包括壁,所述壁限定近端、远端和管状侧;柱塞杆,所述柱塞杆被配置为可在所述储器内从所述远端移动到所述近端;rf天线,所述rf天线附接到所述管状侧并且被配置为从外部装置接收询问信号;以及谐振组件,所述谐振组件被配置为从所述rf天线接收所述询问信号并生成具有与所述柱塞杆的位置相关联的频率的所述rf信号。
5.在一些实现方式中,所述谐振组件包括磁体和一个或多个谐振器,所述磁体附接到所述柱塞杆,所述一个或多个谐振器附接到所述管状侧并且被配置为基于相对于所述磁体的线性位置和角位置中的至少一者来改变它们的rf特性。在一些实现方式中,所述谐振组件包括机械连杆和应变敏感谐振器,所述机械连杆附接到所述柱塞杆,所述应变敏感谐振器附接到所述管状侧,所述应变敏感谐振器被配置为基于相对于所述机械连杆的线性位置和角位置中的至少一者来改变其rf特性。在一些实现方式中,所述机械连杆包括弹簧、偏心元件和偏心盘中的至少一者。
6.具体地,本发明涉及如下各项:
7.1.一种注射装置,其包括:
8.储器,所述储器包括壁,所述壁限定近端、远端和管状侧;
9.柱塞杆,所述柱塞杆被配置为能够在所述储器内沿从所述远端到所述近端的方向移动;
10.射频(rf)天线,所述rf天线附接到所述管状侧并且被配置为从外部装置接收询问信号;和
11.谐振组件,所述谐振组件被配置为从所述rf天线接收所述询问信号并响应于所述询问信号而生成经调制的rf信号,所述rf信号具有与所述柱塞杆的位置相关联的频率。
12.2.根据项1所述的注射装置,其中所述谐振组件包括磁体和一个或多个谐振器,所述磁体附接到所述柱塞杆,所述一个或多个谐振器附接到所述管状侧并且被配置为基于相对于所述磁体的线性位置和角位置中的至少一者来改变它们的rf特性。
13.3.根据项1所述的注射装置,其中所述谐振组件包括机械连杆和应变敏感谐振器,所述机械连杆附接到所述柱塞杆,所述应变敏感谐振器附接到所述管状侧,所述应变敏感谐振器被配置为基于相对于所述机械连杆的线性位置和角位置中的至少一者来改变其rf特性。
14.4.根据项3所述的注射装置,其中所述机械连杆包括弹簧、偏心元件和偏心盘中的至少一者。
15.5.根据项1所述的注射装置,其中所述谐振组件包括机械连杆和振荡器,所述机械连杆附接到所述柱塞杆,所述振荡器附接到所述管状侧,所述振荡器被配置为基于相对于所述机械连杆的线性位置和角位置中的至少一者来改变其rf特性。
16.6.根据项5所述的注射装置,其中所述机械连杆包括梁,所述梁通过隔膜附接到所述振荡器的悬臂。
17.7.根据项1至6中任一项所述的注射装置,其中所述谐振组件包括多槽贴片谐振
器,使得所述rf信号包括所述注射装置的标识符和药剂类型中的至少一者。
18.8.根据项1至7中任一项所述的注射装置,其中所述询问信号包括以规则的时间间隔接收的多个询问信号。
19.9.根据项8所述的注射装置,其中响应于接收到所述多个询问信号,所述谐振组件生成多个rf信号,使得所述多个rf信号中的两者之间的频移与所述储器内的药剂量相关联。
20.10.根据项1至9中任一项所述的注射装置,其中响应于所述注射装置传输的触发信号而生成所述询问信号。
21.11.根据项1至10中任一项所述的注射装置,其中所述柱塞杆的所述位置指示所述储器内的药剂量。
22.12.一种药剂注射系统,其包括:
23.外部装置,所述外部装置包括:
24.发射器,所述发射器被配置为生成询问信号,
25.接收器,所述接收器被配置为接收射频(rf)信号,和
26.一个或多个处理器,所述一个或多个处理器被配置为处理所述rf信号并生成要由所述外部装置显示的结果数据;和
27.根据项1所述的注射装置。
28.13.根据项12所述的药剂注射系统,其中所述谐振组件包括磁体和一个或多个谐振器,所述磁体附接到所述柱塞杆,所述一个或多个谐振器附接到所述管状侧并且被配置为基于相对于所述磁体的线性位置和角位置中的至少一者来改变它们的rf特性。
29.14.根据项12所述的药剂注射系统,其中所述谐振组件包括机械连杆和应变敏感谐振器,所述机械连杆附接到所述柱塞杆,所述应变敏感谐振器附接到所述管状侧,所述应变敏感谐振器被配置为基于相对于所述机械连杆的线性位置和角位置中的至少一者来改变其rf特性。
30.15.根据项14所述的药剂注射系统,其中所述机械连杆包括弹簧、偏心元件和偏心盘中的至少一者。
31.应当明白,根据本公开文本的系统可以包括本文中所描述的方面和特征的任何组合。即,根据本公开文本的方法不限于本文具体描述的方面和特征的组合,还包括所提供的方面和特征的任何组合。
32.本公开文本的一个或多个实施方案的细节阐述在附图和下方描述中。根据说明书和附图并且根据权利要求,本公开文本的其他特征和优点将是清楚的。
附图说明
33.图1a至图1f是根据本公开文本的系统的例子的分解图。
34.图2是可执行本公开文本的实现方式的示例性系统架构的框图。
35.图3是示出可被执行以执行本公开文本的操作的示例性过程的流程图。
36.图4是可用于执行本公开文本的实现方式的示例性计算机系统的示意性图示。
37.不同附图中相同的参考符号表示相同的元件。
具体实施方式
38.本公开文本的实现方式总体涉及被配置用于测量注射装置内的药剂量的机构和系统。更具体地,本公开文本的实现方式涉及一种用于使用调制射频(rf)信号的无源传输来确定药剂储器体积的技术。
39.除其他事项外,我们描述了用于无需例如使用电池即可为注射装置供电的技术。在一些注射装置中,注射装置数据的传输是基于诸如蓝牙、ant+或无源rf标识符/近场通信之类的技术,这些技术可能与高功耗相关联。如本文进一步详细描述的,本公开文本的实现方式解决了这个挑战。例如,根据实现方式,注入装置具有集成到rf电路中的感测功能性,并且通过模拟方法传输感测信息,而无需电池或有线连接来提供能量。注射装置不需要用于注射装置或进行通信的能量收集或能量转换,从而实现了数米长的通信范围。传输技术允许在注射装置侧进行简单的系统设置。注射装置的部件对注射装置的用户操作没有影响。例如,患者不必更换电池或插入注射装置即可进行射频信号传输。被配置为在没有电池的情况下操作的电子注射装置具有低的环境足迹(environmental footprint),并且可以被制造为一次性物品。
40.图1a至图1f展示了示例性药剂递送系统100的分解图。示例性药物递送系统100可以被配置为使用无源rf传输来促进医学数据的共享。示例性药物递送系统100可以包括一个或多个注射装置102、外部装置104、询问器106、网络108和服务器系统110。
41.在一些实现方式中,注射装置102是预填充的一次性注射笔,并且在一些实现方式中,注射装置102是可重复使用的注射笔。注入装置102被配置为与询问器106通信。例如,注射装置102可以被配置用于基于频率的询问,并且询问器106可以将从注射装置102接收的基于频率的信号传输到外部装置104。在一些实现方式中,使用时域反射仪将基于频率的信号从注射装置102传输到外部装置104。在一些实现方式中,注射装置102可以与由外部装置104用来唯一地识别注射装置102的标识符相关联,例如这是因为标识符是外部装置104所特有的。
42.注射装置102可以被配置为基于存储在注射装置102内的药剂量来调制从询问器106接收的rf信号。注射装置102可以是预填充一次性注射笔,或者注射装置102可以是可重复使用的注射笔。注射装置102可包括壳体112和针组件115。注射装置102可以包括一个或多个管状侧,所述一个或多个管状侧限定注射装置102的部件(诸如壳体112或诸如药剂储器116之类的药剂容器)的内壁或外壁中的任一者。壳体112可以包含rf调制系统114、药剂储器116、塞子117、柱塞杆118、柱塞头119、轴承120、剂量旋钮122、剂量窗口124和注射按钮126。壳体112可以由诸如液晶聚合物的医学级塑料材料模制而成。
43.rf调制系统114可以包括一个或多个电子部件,所述一个或多个电子部件被配置为调制从询问器106接收的rf信号并将经调制的rf信号传输到询问器106。例如,rf调制系统114可以包括天线128、谐振器130、运动元件132和传感器134。
44.天线128可以被配置为通过在通信场136内时接收和传输经调制的rf信号来与询问器106通信。天线128可以被配置用于无源rf传输。例如,天线128可以是蛇形偶极子天线。由天线128传输的经调制的rf信号可以包括药剂储器116中的药剂量的指示、由传感器134测量的值以及注射装置102的标识符。
45.谐振器130(谐振组件)可以被配置为调制由天线128接收的rf信号。谐振器130可
以包括沿着壳体112的纵向轴线113对准的一个或多个谐振器。谐振器130可以包括多种类型的谐振器中的一者,诸如机械类型、磁性类型或微机电类型。
46.运动元件132可以被配置为附接到柱塞杆118,所述柱塞杆以微步长增量前进以分配特定量的药剂。运动元件132可以包括直接或间接附接到柱塞杆118的一个或多个运动元件。运动元件132可以包括多种类型的运动元件中的一者或多者,诸如机械类型、磁性类型或微机电类型。在一些实现方式中,谐振器130的类型可以取决于运动元件132的类型。
47.图1a所示的示例性rf调制系统114包括:谐振器130,所述谐振器基于附接到壳体112的壁的超材料;运动元件132,所述运动元件包括直接附接到或插入柱塞杆118的磁体。在一些实现方式中,磁体附接到最终剂量螺母(last dose nut)。超材料包括被配置为具有一组特定性质的一类材料。通常,所述性质不存在于基材中,而是由所使用材料的特定微观结构或结构化组合产生的。根据本文所述的实现方式,超材料被定义为被配置为在施加物理或化学刺激时通过改变它们的固有性质中的一者或多者来表现出特定响应的材料。外部刺激可以是应变、磁场、温度、湿度和压力。在图1a的例子的上下文中,谐振器130的超材料可以包括磁性薄膜或磁性复合物,所述磁性薄膜或磁性复合物被配置为根据所施加的磁场来调制rf信号。谐振器130的谐振频率可以根据运动元件132(磁体)相对于谐振器130的角位置、线性位置或线性位置与角位置的组合而偏移。运动元件132(磁体)的角位移和/或线性位移与频移相关联。为了确定注射装置102内的药剂剂量,询问器106以规则的时间间隔读取频移。
48.图1b所示的示例性rf调制系统114包括应变敏感谐振器130,所述应变敏感谐振器附接到壳体112的壁并且附接到运动元件132。应变敏感谐振器130可以包括应变敏感超材料,诸如聚四氟乙烯(ptfe)。运动元件132包括附接基座132a和在附接基座132a与运动元件132之间拉伸的弹簧。附接基座132a附接到或插入柱塞杆118。应变敏感谐振器130的谐振频率可以根据与运动元件132(附接基座132a)相对于谐振器130的角位置、线性位置或线性位置与角位置的组合相关联的力而偏移。运动元件132(附接基座132a)的角位移和/或线性位移与弹簧132b内的弹力的变化以及频移相关联。为了确定注射装置102内的药剂剂量,询问器106以规则的时间间隔(例如,每隔几毫秒)读取频移。
49.图1c所示的示例性rf调制系统114包括应变敏感谐振器130,所述应变敏感谐振器附接到壳体112的壁并且附接到运动元件132。应变敏感谐振器130可以包括应变敏感超材料,诸如聚四氟乙烯(ptfe)。运动元件132可以包括具有附接到柱塞杆118的偏心元件132c的盘。应变敏感谐振器130的谐振频率可以根据与运动元件132相对于谐振器130的角位置、线性位置或线性位置与角位置的组合相关联的力而偏移。例如,根据偏心元件132c的角位置和/或线性位置,可以在应变敏感谐振器130上施加特定的压力水平,所述应变敏感谐振器将压力转换为频移。为了确定注射装置102内的药剂剂量,询问器106以规则的时间间隔读取频移。
50.图1d所示的示例性rf调制系统114包括应变敏感谐振器130,所述应变敏感谐振器附接到壳体112的壁并且附接到运动元件132。应变敏感谐振器130可以包括应变敏感超材料,诸如聚四氟乙烯(ptfe)。运动元件132可以包括附接到柱塞杆118的偏心轮。应变敏感谐振器130的谐振频率可以根据与运动元件132相对于谐振器130的角位置、线性位置或线性位置与角位置的组合相关联的力而偏移。例如,根据运动元件132(例如,偏心轮的边缘)的
角位置和/或线性位置,可以在应变敏感谐振器130上施加特定的压力水平,所述应变敏感谐振器将压力转换为频移。为了确定注射装置102内的药剂剂量,询问器106以规则的时间间隔读取频移。
51.图1e所示的示例性rf调制系统114包括谐振器130,所述谐振器附接到壳体112的壁以及运动元件132。谐振器130可以包括微机电系统(mems)振荡器130a、悬臂130b和隔膜130c。运动元件132包括梁,所述梁附接到柱塞杆118并且在隔膜130c上方耦合到谐振器130。应变敏感谐振器130的谐振频率可以根据与运动元件132(梁)相对于振荡器130a的角位置、线性位置或线性位置与角位置的组合相关联的力而偏移。运动元件132(梁)的角位移和/或线性位移与悬臂130b的角度的变化相关联,所述角度变化引起频移。为了确定注射装置102内的药剂剂量,询问器106以规则的时间间隔读取频移。
52.图1f所示的示例性rf调制系统114包括:谐振器130,所述谐振器限定附接到壳体112的壁上的电路;以及运动元件132,所述运动元件包括直接附接到柱塞杆118的最终剂量螺母。电路可以是包括印刷电路的薄箔,所述印刷电路被配置为基于运动元件132的位置来改变其电特性。运动元件132(最终剂量螺母)包括电导体132d和一对电刷132e。在一些实现方式中,运动元件132(最终剂量螺母)包括电子元件132f,诸如智能电路或负载。电导体132d可以被配置为连接到谐振器130和电子元件132f。电导体132d可以使谐振器130短路,可以增加或改变谐振器130的负载或阻抗,或者可以连接或断开电路130d、130e的区段。这对电刷132e可以被配置为在运动元件132的位置改变期间提供机械稳定性。谐振器130的电性质可以根据运动元件132(最终剂量螺母)相对于谐振器130的角位置、线性位置或线性位置与角位置的组合而改变。运动元件132(最终剂量螺母)的角位移和/或线性位移与电性质(例如,负载、阻抗、短路或开路)的变化相关联。为了确定注射装置102内的药剂剂量,询问器106正在读取电性质的变化。询问器106可以通过时域反射仪或相位编码传输原理以规则的时间间隔读取与电性质相关联的信号。
53.传感器134可以被配置为生成rf信号调制,所述rf信号调制指示包括环境条件和/或药剂类型的参数。环境条件可以包括温度、湿度和发光度。被配置为检测环境条件的传感器134可以包括基于超材料的谐振器或mems谐振器。例如,包括菲(温度阈值感测)、离子塑料晶体、金属氧化物(例如,zno)中的一者或多者的超材料可以被配置为检测注射装置102的温度。具体地,菲可以被配置为检测温度阈值。包括聚酰亚胺和聚乙烯醇(pva)中的一者或多者的超材料可以被配置为检测注射装置102周围的环境的湿度。可以使用多槽贴片谐振器对药剂类型进行编码。多槽贴片谐振器的谐振频率取决于槽的数量、槽几何形状、槽宽度、槽高度和槽长度。注射装置102的标识符也可以用多槽贴片谐振器进行编码。注射装置102的标识符可以是使得能够识别使用中的注射装置102的唯一标识符。为了减少所需位的数量,它也可以是足够大的数量,所述数量可以与其他信息(诸如药剂类型、日期、地理位置)结合使用以识别当前在询问器106的通信场136内的注射装置102。在一些实现方式中,基于一个或多个规则来向多个注射装置102发放相同的“唯一”标识符,所述一个或多个规则防止在任何时候向两个注射装置102发出相同的“唯一”标识符,进而共享相同的通信场。例如,注射装置102发放有相同的“唯一”标识符,并在世界的不同地区(诸如在欧盟和美利坚合众国)出售。作为另一个例子,可以在特定时间间隔之后(诸如在包括于注射装置102中的药剂的有效期之后),重复注射装置102的标识符。
54.在一些实现方式中,rf调制系统114的部件可以在单个位置或多个位置(例如,在轴承120柱塞杆118内或附接到所述柱塞杆以及柱塞头119中的腔体)处被集成在壳体112内。可以选择rf调制系统114的一个或多个电子部件(诸如谐振器130和/或运动元件132)的位置,以将rf信号调制的效率最大化。rf调制系统114的部件可以被模制、装配或焊接到注射装置102的特定部件(例如,壳体112或柱塞杆118)。
55.药剂储器116可以被配置成容纳流体药剂。药剂储器116可以是常规的、大致为圆柱形的一次性容器,例如用于封装诸如药剂、麻醉剂等的准备好的流体的药筒或注射筒。药剂储器116具有管状侧,所述管状侧具有内壁和外壁以及两个端部。一个端部(近端)具有可刺穿隔膜,所述隔膜以密封接合的方式容纳针138的内端。另一端部(远端)可以被配置为能够插入塞子117。
56.通过转动剂量旋钮122可以从注射装置102中排出一定剂量的所含药剂,然后经由剂量窗口124例如以所谓的国际单位(iu)的倍数显示所选剂量,其中一个iu是约45.5微克纯结晶药剂(1/22mg)的生物学当量。剂量窗口124中显示的所选剂量的例子可以例如是30iu,如图1a所示。在一些实现方式中,可以以不同方式显示所选剂量,例如用电子显示器(例如,剂量窗口124可以采用电子显示器的形式)。转动剂量旋钮122可以引起机械咔嗒声以向用户提供声学反馈。剂量窗口124中显示的数字可以印刷在套管上,所述套管包含在壳体112中并且与柱塞头119机械地相互作用,所述柱塞头固定在柱塞杆118的端部并推动药剂储器116内的塞子117。轴承120可以提供到柱塞杆118的一端或两端的牢固安装。
57.柱塞头119(例如,柱塞的后端)可以被配置为通过移动药剂储器116内容纳的塞子117来排出一部分流体,使得最终剂量螺母的位置、柱塞杆118的位置和塞子117的位置与注射装置102内的流体量相关联。塞子117可以是诸如橡胶塞子之类的柔性塞子。塞子117可以具有足够的长度,使得塞子117在被柱塞头119接合时不会被撕裂或扭曲。
58.针组件115包括可以附着到壳体112上的针138。针138可以由内针帽140和外针帽142覆盖,所述内针帽和所述外针帽进而可以由外部帽144覆盖。在将针138刺入患者的皮肤部分中,并且然后推动注射按钮126时,可以从注射装置102排出显示窗口124中显示的药剂剂量。当在推动注射按钮126后注射装置102的针138在皮肤部分中保留一定时间时,大部分剂量(例如,超过95%的剂量)实际上注射至患者体内。药剂剂量的排出可以生成机械咔嗒声,所述机械咔嗒声可以与使用剂量旋钮122时产生的声音不同。
59.注射装置102可以用于若干次注射过程,直至药剂储器116排空或注射装置102到达有效期(例如,首次使用后28天)为止。在首次使用注射装置102之前,可能有必要执行起动操作以从药剂储器116和针138中除去空气。例如,起动操作可包括选择两个单位的药剂并在保持注射装置102的针138向上的同时按压注射按钮126。通过选择两个单位的药剂或按压注射按钮126而生成的脉冲可以触发rf调制系统114对rf信号的调制。
60.在一些实现方式中,外部装置104可以包括询问器106,并且在一些实现方式中,外部装置104可以可移除地附接到询问器106。询问器106可以被配置为将信号传输到注射装置102和/或从注射装置102接收信号。询问器106可以被配置为在预设时间间隔期间(例如,在预定的治疗时间间隔期间或在接收到激活信号之后直到两个连续的rf调制信号相同)以预设频率(例如,在0.1hz至1hz之间)自发地将信号传输到注射装置102。外部装置104可以被配置为处理由注射装置102传输的经调制的rf信号,并通过网络108将它们传输到服务器
装置110。
61.在一些实现方式中,服务器装置110包括至少一个服务器146和至少一个数据存储件148。服务器装置110意图表示各种形式的服务器,包括但不限于web服务器、应用服务器、代理服务器、网络服务器和/或服务器池。通常,服务器系统接受对应用服务的请求,并且通过网络108向任意数量的客户端装置(例如,外部装置104)提供这样的服务以支持监测注射装置102的使用。在一些实现方式中,用户(如患者或健康护理提供者)可以访问应用服务以分析与注射装置102的使用相关联的过去和当前数据。与注射装置102的使用相关联的过去和当前数据可以包括药剂注射日期、每个日期的排出剂量和注射装置102内的药剂剩余量。
62.图2是可以执行本公开文本的实现方式的示例系统200的框图。系统200使得能够在注射装置102与外部装置104之间传输rf信号。注射装置102可以包括天线128和谐振器130。天线128被配置用于从外部装置104接收rf信号。谐振器130被配置为无源地调制rf信号,如参考图1a至图1e详细描述的。外部装置104包括控制模块202、询问器204和输入/输出模块206。控制模块202可以是可从服务器下载的应用程序,所述应用程序被配置为控制外部装置104的一个或多个操作。例如,外部装置104的操作由控制模块202执行的程序控制。控制模块202包括激活部件208、检测部件210和分析部件212。
63.激活部件208可以被配置为生成激活信号,所述激活信号可以开始与注射装置102进行rf通信过程,如参考图3所描述的。rf通信过程的激活是导致外部装置104的能量消耗、外部装置104附近的检测的可用性和可靠性的重要因素。在一些实现方式中,响应于接收到唤醒信号而生成激活信号。唤醒信号可以包括由外部装置104的用户说出的单词或由注射装置102的操作生成的特定噪声(例如,与起动操作、剂量拨选咔嗒声或分配咔嗒声相关联的噪声)。在一些实现方式中,响应于从输入/输出模块206接收到用户输入而生成激活信号,所述用户输入包括与注射装置102发起rf通信过程的请求。在一些实现方式中,以预设频率(例如,一天一次或多次)生成激活信号,所述预设频率可以由外部装置104的用户更新以与治疗计划相对应。激活信号可以包括触发信号,所述触发信号被传输到询问器204以发起rf通信过程。激活信号可以包括触发信号,所述触发信号被传输到能量源(例如,外部装置的电池)以向询问器204供电以发起rf通信过程。在一些实现方式中,在激活rf通信过程之前,激活部件208通过输入/输出模块206向外部装置104的用户提供请求批准与注射装置102发起rf通信过程的消息。
64.检测部件210可以被配置为生成检测信号,以使用询问器204来控制对经调制的rf信号的检测。在一些实现方式中,可以基于激活过程的一个或多个参数来控制检测过程。例如,检测部件210可以被配置为与激活部件208通信以在激活部件208生成触发信号之后的特定时间发起检测操作。检测操作可以包括预处理阶段(例如,回声消除和/或噪声抑制)和实际检测阶段。在一些实现方式中,检测部件210在对经调制的rf信号的检测期间激活包括在外部装置104中的滤波器(例如,带通滤波器和/或带阻滤波器)。
65.分析部件212可以被配置为生成分析信号,以控制对由询问器204检测到的经调制的rf信号的分析。例如,分析部件212可以控制对信号处理算法的选择。信号处理算法可以包括基本信号处理方法(例如、离散傅立叶变换、短时间傅立叶变换、离散余弦变换、离散时间小波变换)、短期和中期特征提取、分类器(例如、k近邻分类器、决策树、支持向量机、人工神经网络、深度神经网络)、基于预期信号的先验知识来“训练”的算法以及基于预期信号的
先验知识以使接收信号与预期信号相关以确定感兴趣区域的算法中的一者或组合。
66.询问器204可以是集成在外部装置104中或附接到外部装置的部件。询问器204包括rf模块214、cpu 216、发射器218和接收器220。rf模块214被配置为生成rf信号。在一些实现方式中,基于注射装置102的谐振器130来选择rf信号的一个或多个特性。例如,可以为时域反射仪生成脉冲信号,可以为被配置为产生频率调制的谐振器130生成具有宽频率范围的信号,可以为配置为产生相位调制的谐振器130生成有限带宽脉冲信号,或者可以为被配置为产生互调(例如,谐波频率n*f1±
m*f2)的谐振器130生成具有多个紧密定位的频率(例如,两个频率f1和f2)的信号。cpu 216被配置为解译和执行从控制模块202接收的控制信号(例如,激活信号、检测信号和/或处理信号),并根据通过分析部件212选择的算法来处理经调制的rf信号。发射器218被配置为传输由rf模块214生成的rf信号。接收器220被配置为接收由注射装置102生成的经调制的rf信号。
67.输出模块206可以是外部装置104的标准部件,所述标准部件由控制模块202控制以支持与注射装置的rf通信以及对经调制的rf信号的处理。输出模块206包括显示器222、硬件驱动器224和存储器226。显示器222可以被配置为通过提供用户输入和接收与注射装置102相关联的指示以及使用注射装置102执行的治疗,来使外部装置104的用户能够与外部装置104交互。硬件驱动器224包括控制显示器222的程序。存储器226可以是被配置为存储数据的计算机可读介质,所述数据包括由询问器204接收的经调制的rf信号以及处理经调制的rf信号的结果。
68.图3是示出可以由参考图1和图2描述的装置和系统执行的示例性过程300的流程图。例如,过程300可以由图1a至图1e的系统100或图2的系统200执行。过程300开始于接收唤醒信号(302)。唤醒信号可以包括用户输入,所述用户输入指示发起外部装置与注射装置102之间的rf通信过程的请求。唤醒信号可以是口头命令(例如,由外部装置的用户说出的单词)、用户选择(例如,启动相关联的应用程序)或由注射装置102的操作生成的特定噪声(例如,与起动操作、剂量拨选咔嗒声或分配咔嗒声相关联的噪声)。用注射装置执行的起动操作的例子可以包括选择特定数量(例如,一个或两个)单位的药剂,并且在保持注射装置的针向上的同时按压注射按钮。用注射装置执行的起动操作的另一个例子可以包括按压被配置为生成唤醒信号的注射装置的起动按钮。用注射装置执行的起动操作的另一个例子可以包括将询问器附接到外部装置。
69.响应于接收到唤醒信号,生成激活信号(304)。激活信号可以包括一个或多个触发信号,所述一个或多个触发信号被传输到外部装置的一个或多个部件(例如,询问器、能源和输入/输出模块)。例如,激活信号可以包括触发信号,所述触发信号被传输到集成在外部装置中或附接到外部装置的询问器,以与注射装置发起rf通信过程。激活信号可以包括触发信号,所述触发信号被传输到能量源(例如,外部装置的电池)以向询问器供电以发起rf通信过程。此外,激活信号可以包括触发信号,所述触发信号被传输到输入/输出模块以获取对与注射装置发起rf通信过程的用户批准。
70.响应于接收到激活信号,询问器(306)的rf模块生成一个或多个询问信号。询问信号可以包括具有特定特性的rf信号。在一些实现方式中,基于目标注射装置的谐振器类型来选择询问信号的一个或多个频率特性。例如,询问信号可以包括脉冲rf信号、宽频率范围rf信号、有限带宽脉冲信号rf信号或具有多个紧密定位的频率的rf信号。在一些实现方式
中,生成多个询问信号以使得能够检测由注射装置分散的药剂的量。
71.发射器将询问信号传输到注射装置(308)。响应于每个询问信号,接收由注射装置的谐振器生成的经调制的rf信号(310)。例如,如果传输多个询问信号,则接收到多个经调制的rf信号。经调制的rf信号可以包括时域调制、频率调制、相位调制或互调。对经调制的rf信号的调制指示谐振器相对于注射装置的另一个(机械)部件(例如,最终剂量螺母、柱塞杆、柱塞头和塞子)的位置,所述位置与药剂储器内的药剂量相关联。在一些实现方式中,如果接收到多个经调制的rf信号,则两个(连续的)rf信号之间的频移与储器内的药剂量相关联。对经调制的rf信号的调制可以指示环境参数(例如,湿度和温度)的一种或多种测量。
72.外部装置的处理器处理经调制的rf信号(312)。对经调制的rf信号的处理包括确定注射装置数据,诸如与药剂的施用相关联的一个或多个参数(例如,注射装置内的剩余药剂量和/或所分配药剂的量)以及注射装置的操作条件。对经调制的rf信号的处理可以包括基本信号处理方法(例如、离散傅立叶变换、短时间傅立叶变换、离散余弦变换、离散时间小波变换)、短期和中期特征提取、分类器(例如、k近邻分类器、决策树、支持向量机、人工神经网络、深度神经网络)、基于预期信号的先验知识来“训练”的算法以及基于预期信号的先验知识以使接收信号与预期信号相关以确定区分集成在注射装置中的多个谐振器的感兴趣区域的算法中的一者或组合。可以将注射装置数据存储、传输到另一系统或显示给外部装置的用户(314)。在一些实现方式中,与外部装置的显示器交互的用户可以选择终止注射装置与外部装置之间的通信或者通过生成另一个唤醒信号来重复过程300。
73.图4示出了示例性计算系统400的示意图。系统400可以用于结合本文描述的实现方式所描述的操作。例如,系统400可以包括在本文讨论的任何或所有服务器部件中。系统400包括处理器410、存储器420、存储装置430以及输入/输出装置440。部件410、420、430和440中的每一者是使用系统总线450互连的。处理器410能够处理用于在系统400内执行的指令。在一种实现方式中,处理器410是单线程处理器。在另一种实现方式中,处理器410是多线程处理器。处理器410能够处理存储在存储器420中或存储装置430上的指令,以在输入/输出装置440上显示用户界面的图形信息。
74.存储器420将信息存储在系统400内。在一种实现方式中,存储器420是计算机可读介质。在一种实现方式中,存储器420是易失性存储器单元。在另一种实现方式中,存储器420是非易失性存储器单元。存储装置430能够为系统400提供大容量存储。在一种实现方式中,存储装置430是计算机可读介质。在各种不同的实现方式中,存储装置430可以是软盘装置、硬盘装置、光盘装置、或磁带装置。输入/输出装置440为系统400提供输入/输出操作。在一种实现方式中,输入/输出装置440包括键盘和/或指向装置。在另一种实现方式中,输入/输出装置440包括用于显示图形用户界面的显示单元,所述图形用户界面使得用户能够访问所收集、存储和查询的与物品相关的数据,如参考图1至图3描述的。
75.所描述的特征可以在数字电子电路系统中实现,或者在计算机硬件、固件、软件或它们的组合中实现。所述设备可以在有形地体现在信息载体中的计算机程序产品中(例如在机器可读存储装置中)实现以用于由可编程处理器执行,并且方法步骤可以由执行指令程序的可编程处理器执行,以通过对输入数据进行操作并生成输出来执行所描述实现方式的功能。所描述的特征可以有利地实现在一个或多个计算机程序中,所述计算机程序可在包括至少一个可编程处理器的可编程系统上执行,所述至少一个可编程处理器被耦合以从
数据存储系统、至少一个输入装置、以及至少一个输出装置接收数据和指令,并向其传输数据和指令。计算机程序是一组指令,可以直接或间接地在计算机中使用以执行某种活动或引起某种结果。计算机程序可以以任何形式的编程语言编写,包括编译或解释语言,并且计算机程序可以通过任何形式部署,包括作为独立程序或作为模块、部件、子例程或适合在计算环境中使用的其他单元。
76.用于执行指令程序的合适处理器包括例如通用和专用微处理器,以及任何类型计算机的唯一处理器或多个处理器中的一者。通常,处理器将从只读存储器或随机存取存储器或两者处接收指令和数据。计算机的基本元件是用于执行指令的处理器和用于存储指令和数据的一个或多个存储器。通常,计算机还将包括用于存储数据文件的一个或多个大容量存储装置,或可操作地耦合以与其进行通信;此类装置包括磁盘,如内部硬盘和可移动磁盘、磁光盘以及光盘。适合于有形地体现计算机程序指令和数据的存储装置包括所有形式的非易失性存储器,包括例如半导体存储器装置(如eprom、eeprom、和闪存装置);磁盘(如内部硬盘和可移动磁盘、磁光盘、以及cd-rom和dvd-rom盘)。处理器和存储器可以由asic(专用集成电路)补充或者可以并入asic中。
77.要提供与用户的交互,这些特征可以实现在计算机上,所述计算机具有用于向用户显示信息的显示装置(如crt(阴极射线管)或lcd(液晶显示器)监视器)、以及用户可以向计算机提供输入的键盘和指向装置(如鼠标或轨迹球)。
78.这些特征可以在包括后端部件(如数据服务器)的计算机系统、或者包括中间件部件(如应用服务器或互联网服务器)的计算机系统、或包括前端部件(如具有图形用户界面或互联网浏览器的客户端计算机)的计算机系统、或其任意组合中实现。系统的部件可以通过任何数字数据通信形式或媒介(如通信网络)进行连接。通信网络的例子包括例如lan、wan、以及形成互联网的计算机和网络。
79.计算机系统可以包括客户端和服务器。客户端和服务器典型地彼此相隔遥远,并且典型地通过网络(如所描述的网络)进行交互。客户端与服务器之间的关系是由于在各自的计算机上运行并且彼此具有客户端-服务器关系的计算机程序而产生的。
80.此外,图中描绘的逻辑流程不需要所示的特定次序或先后次序来实现期望的结果。此外,可以提供其他步骤,或者从所描述的流程中去除步骤,并且可以向所描述的系统添加或从中移除其他部件。因此,其他实现方式在以下权利要求的范围内。
81.术语“药物”或“药剂”在本文中同义使用,并且描述了如下药物制剂,其含有一种或多种活性药物成分或其药学上可接受的盐或溶剂化物以及任选地药学上可接受的载体。从最广义上来说,活性药物成分(“api”)是对人或动物具有生物学效应的化学结构。在药理学中,将药物或药剂用于治疗、治愈、预防或诊断疾病或者用于以其他方式增强身体或精神健康。可以将药物或药剂使用有限的持续时间,或者定期用于慢性障碍。
82.如下文所述,药物或药剂可以包括用于治疗一种或多种疾病的在各种类型的制剂中的至少一种api或其组合。api的例子可以包括小分子(具有500da或更小的分子量);多肽、肽和蛋白质(例如,激素、生长因子、抗体、抗体片段和酶);碳水化合物和多糖;以及核酸,即双链或单链dna(包括裸露和cdna)、rna、反义核酸如反义dna和rna、小干扰rna(sirna)、核酶、基因和寡核苷酸。可以将核酸掺入分子递送系统(诸如载体、质粒或脂质体)中。还考虑了一种或多种药物的混合物。
83.可将药物或药剂容纳在适配为与药物递送装置一起使用的初级包装或“药物容器”中。药物容器可以是例如药筒、注射筒、储器或其他坚固或柔性的器皿,其被配置为提供用于存储(例如,短期或长期存储)一种或多种药物的合适腔室。例如,在一些情况下,可将腔室设计成将药物储存至少一天(例如,1天到至少30天)。在一些情况下,腔室可被设计成将药物储存约1个月至约2年。储存可发生在室温(例如,约20℃)或冷藏温度(例如,从约-4℃至约4℃)。在一些情况下,药物容器可以是或可以包括双腔室药筒,其被配置为单独存储待给予的药物制剂的两种或更多种组分(例如,api和稀释剂、或两种不同的药物),每个腔室中存储一种。在此类情况下,双腔室药筒的两个腔室可被配置为允许在分配到人体或动物体内之前和/或期间在两种或更多种组分之间混合。例如,两个腔室可被配置为使得它们彼此处于流体连通(例如,通过两个腔室之间的导管),并且允许用户在分配之前在需要时混合两种组分。替代地或另外,两个腔室可被配置为允许在将组分分配到人体或动物体内时进行混合。
84.可将如本文所述的药物递送装置中包含的药物或药剂用于治疗和/或预防许多不同类型的医学障碍。障碍的例子包括例如糖尿病或与糖尿病相关的并发症(如糖尿病视网膜病变)、血栓栓塞障碍(如深静脉或肺血栓栓塞)。障碍的另外例子是急性冠状动脉综合征(acs)、心绞痛、心肌梗塞、癌症、黄斑变性、炎症、枯草热、动脉粥样硬化和/或类风湿性关节炎。api和药物的例子是如以下手册中所述的那些:如rote liste 2014(例如但不限于,主要组(main group)12(抗糖尿病药物)或86(肿瘤药物))和merck index,第15版。
85.用于治疗和/或预防1型或2型糖尿病或与1型或2型糖尿病相关的并发症的api的例子包括胰岛素(例如人胰岛素、或人胰岛素类似物或衍生物);胰高血糖素样肽(glp-1)、glp-1类似物或glp-1受体激动剂、或其类似物或衍生物;二肽基肽酶-4(dpp4)抑制剂、或其药学上可接受的盐或溶剂化物;或其任何混合物。如本文所用,术语“类似物”和“衍生物”是指具有如下分子结构的多肽,该分子结构可以通过缺失和/或交换在天然存在的肽中存在的至少一个氨基酸残基和/或通过添加至少一个氨基酸残基而在形式上衍生自天然存在的肽的结构(例如人胰岛素的结构)。添加和/或交换的氨基酸残基可以是可编码的氨基酸残基或其他天然存在的残基或纯合成的氨基酸残基。胰岛素类似物还被称为“胰岛素受体配体”。具体地,术语“衍生物”是指具有如下分子结构的多肽,所述分子结构在形式上可以衍生自天然存在的肽的结构(例如人胰岛素的结构),其中一个或多个有机取代基(例如脂肪酸)与一个或多个氨基酸结合。任选地,天然存在的肽中存在的一个或多个氨基酸可能已被缺失和/或被其他氨基酸(包括不可编码的氨基酸)替代,或者氨基酸(包括不可编码的氨基酸)已被添加到天然存在的肽中。
86.胰岛素类似物的例子是gly(a21)、arg(b31)、arg(b32)人胰岛素(甘精胰岛素);lys(b3)、glu(b29)人胰岛素(谷赖胰岛素);lys(b28)、pro(b29)人胰岛素(赖脯胰岛素);asp(b28)人胰岛素(门冬胰岛素);人胰岛素,其中在位置b28处的脯氨酸被asp、lys、leu、val或ala替代并且其中在位置b29处的lys可以被pro替代;ala(b26)人胰岛素;des(b28-b30)人胰岛素;des(b27)人胰岛素和des(b30)人胰岛素。
87.胰岛素衍生物的例子是例如b29-n-肉豆蔻酰-des(b30)人胰岛素,lys(b29)(n-十四酰)-des(b30)人胰岛素(地特胰岛素,);b29-n-棕榈酰-des(b30)人胰岛素;b29-n-肉豆蔻酰人胰岛素;b29-n-棕榈酰人胰岛素;b28-n-肉豆蔻酰lysb28prob29人胰岛
素;b28-n-棕榈酰-lysb28prob29人胰岛素;b30-n-肉豆蔻酰-thrb29lysb30人胰岛素;b30-n-棕榈酰-thrb29lysb30人胰岛素;b29-n-(n-棕榈酰-γ-谷氨酰)-des(b30)人胰岛素,b29-n-ω-羧基十五酰-γ-l-谷氨酰-des(b30)人胰岛素(德谷胰岛素(insulin degludec),);b29-n-(n-石胆酰-γ-谷氨酰)-des(b30)人胰岛素;b29-n-(ω-羧基十七酰)-des(b30)人胰岛素和b29-n-(ω-羧基十七酰)人胰岛素。
88.glp-1、glp-1类似物和glp-1受体激动剂的例子是例如利西那肽(lyx)、艾塞那肽(exendin-4,由毒蜥(gila monster)的唾液腺产生39个氨基酸的肽)、利拉鲁肽索马鲁肽(semaglutide)、他司鲁肽(taspoglutide)、阿必鲁肽度拉糖肽(dulaglutide)rexendin-4、cjc-1134-pc、pb-1023、ttp-054、兰格拉肽(langlenatide)/hm-11260c、cm-3、glp-1eligen、ormd-0901、nn-9924、nn-9926、nn-9927、nodexen、viador-glp-1、cvx-096、zyog-1、zyd-1、gsk-2374697、da-3091、mar-701、mar709、zp-2929、zp-3022、tt-401、bhm-034、mod-6030、cam-2036、da-15864、ari-2651、ari-2255、exenatide-xten和glucagon-xten。
89.寡核苷酸的例子是例如:米泊美生钠它是一种用于治疗家族性高胆固醇血症的胆固醇还原性反义治疗剂。
90.dpp4抑制剂的例子是维达列汀、西他列汀、地那列汀(denagliptin)、沙格列汀、小檗碱。
91.激素的例子包括垂体激素或下丘脑激素或调节活性肽及其拮抗剂,如促性腺激素(促滤泡素、促黄体素、绒毛膜促性腺激素、促生育素)、促生长激素(somatropine)(生长激素)、去氨加压素、特利加压素、戈那瑞林、曲普瑞林、亮丙瑞林、布舍瑞林、那法瑞林和戈舍瑞林。
92.多糖的例子包括葡糖胺聚糖(glucosaminoglycane)、透明质酸、肝素、低分子量肝素或超低分子量肝素或其衍生物、或硫酸化多糖(例如上述多糖的多硫酸化形式)、和/或其药学上可接受的盐。多硫酸化低分子量肝素的药学上可接受的盐的例子是依诺肝素钠。透明质酸衍生物的例子是hylan g-f20它是一种透明质酸钠。
93.如本文中所使用,术语“抗体”是指免疫球蛋白分子或其抗原结合部分。免疫球蛋白分子的抗原结合部分的例子包括f(ab)和f(ab')2片段,其保留结合抗原的能力。抗体可以是多克隆抗体、单克隆抗体、重组抗体、嵌合抗体、去免疫或人源化抗体、完全人抗体、非人(例如鼠类)抗体或单链抗体。在一些实施方案中,所述抗体具有效应子功能,并且可以固定补体。在一些实施方案中,所述抗体具有降低的或没有结合fc受体的能力。例如,抗体可以是同种型或亚型、抗体片段或突变体,所述抗体不支持与fc受体的结合,例如,它具有诱变的或缺失的fc受体结合区。术语抗体还包括基于四价双特异性串联免疫球蛋白(tbti)的抗原结合分子和/或具有交叉结合区取向(codv)的双可变区抗体样结合蛋白。
94.术语“片段”或“抗体片段”是指衍生自抗体多肽分子的多肽(例如,抗体重链和/或轻链多肽),其不包含全长抗体多肽,但仍包含能够结合抗原的全长抗体多肽的至少一部分。抗体片段可以包括全长抗体多肽的切割部分,尽管该术语不限于此类切割片段。可用于本公开文本的抗体片段包括例如fab片段、f(ab')2片段,scfv(单链fv)片段、线性抗体、单
特异性或多特异性抗体片段(如双特异性、三特异性、四特异性和多特异性抗体(例如,双链抗体、三链抗体、四链抗体))、单价或多价抗体片段(如二价、三价、四价和多价抗体)、微型抗体、螯合重组抗体、三抗体或双抗体、胞内抗体、纳米抗体,小模块化免疫药物(smip)、结合域免疫球蛋白融合蛋白、驼源化抗体和含有vhh的抗体。抗原结合抗体片段的另外的例子在本领域中是已知的。
95.术语“互补决定区”或“cdr”是指重链多肽和轻链多肽两者的可变区内的短多肽序列,其主要负责介导特异性抗原识别。术语“框架区”是指重链多肽和轻链多肽两者的可变区内的氨基酸序列,其不是cdr序列,并且主要负责维持cdr序列的正确定位以允许抗原结合。尽管框架区本身典型地不直接参与抗原结合,如本领域中已知的,但是某些抗体的框架区内的某些残基可以直接参与抗原结合或可以影响cdr中的一个或多个氨基酸与抗原相互作用的能力。
96.抗体的例子是抗pcsk-9mab(例如,阿利库单抗(alirocumab))、抗il-6mab(例如,萨瑞鲁单抗(sarilumab))和抗il-4mab(例如,度皮鲁单抗(dupilumab))。
97.本文所述的任何api的药学上可接受的盐也预期用于在药物递送装置中的药物或药剂中使用。药学上可接受的盐是例如酸加成盐和碱性盐。
98.本领域技术人员将理解,在不偏离本公开文本的全部范围和精神的情况下,可对本文所述的api、配制品、仪器、方法、系统和实施方案的各种组分/组件进行修改(添加和/或去除),本发明涵盖包括这些修改及其任何和所有等同物。
99.已经描述了本公开文本的许多实现方式。然而,应该理解,在不脱离本公开文本的精神和范围的情况下,可进行各种修改。因此,其他实现方式在所附权利要求的范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1