本发明涉及碳材料技术领域,及其在固定化上应用。
背景技术:
碳纤维是指经高温碳化,含碳量超过85%以上的纤维材料,包括碳素纤维和石墨纤维。碳素纤维是有机纤维经1000~2300℃处理后,含碳量为85~95%的纤维;石墨纤维是有机纤维经2300℃以上处理,含碳量在98%以上的纤维。
碳纤维是一种高强度、高模量的新型纤维材料,具有生物相容性好、化学性能稳定,高比表面积等优良性能,这些特点决定碳纤维及活性炭纤维具备成为良好的固定化载体的特点。但是碳纤维出厂时表而一般涂有一层有机胶,其使碳纤维表面惰性增大、表面能变低,并缺乏有化学活性的官能团,从而导致碳纤维表面反应活性低,与基体的粘结性差,直接影响了碳纤维材料在固定化方向上的应用。因此需要对碳纤维表面进行改性处理,以提高其对基体的亲和性和粘结性。传统的碳纤维表面改性多采用强酸,强碱或者高温来对碳纤维表面进行表面改性,不仅耗时较长,操作复杂,而且还易导致环境污染,本发明欲提供一种新型的碳纤维表面改性方法来表面改性碳纤维,不仅耗时短,操作简单,而且对环境污染较小。这对碳纤维应用在固定化细胞领域有十分重要的意义。
技术实现要素:
为了克服上述现有技术的不足,本发明提供了一种新型改性碳纤维表面的方法,来制备固定化载体材料,具有操作简单,制备污染小,耗时短,反应效率高,易于工业化大规模生产应用等特点。实验发现固定化载体材料在固定化木聚糖酶重复使用6次后,测得反应酶活仍保持在60~80%左右;在固定化黑曲霉时,改性碳纤维制备的固定化载体材料的固定化细胞效率为90~100%,且其固定化细胞可连续使用6~8次,且降解AFB1效率可达到85~95%。
实验改性碳纤维反应机理大致为:
Fe2++H2O2==Fe3++OH-+HO·
Fe3++H2O2+OH-==Fe2++H2O+HO·
Fe3++H2O2==Fe2++H+ +HO2
HO2+H2O2==H2O+O2↑+HO·
HO·使这个体系具有强氧化能力,可以氧化一些难以被一般氧化剂氧化的物质,实验用其氧化能力来刻蚀碳纤维表面从而制备固定化材料。
本发明所采用的技术方案是:
发明之碳纤维改性制备固定化材料,可采用以下方法制成,包括以下步骤:
a. 碳纤维预处理:将碳纤维切成长度为0.5~1cm短切碳纤维
b.改性碳纤维:
1)在室温条件下取适量的碳纤维加入到一定体积的30%过氧化氢中,加入量大致为1g:(50~100ml)
2)在室温条件下,分批次少量加入含Fe2+的金属盐,加入量为:摩尔浓度Fe2+:H2O2=1:(1~10)
3)待其反应结束后再向其分批次多次加入30%过氧化氢10~50ml,反应40~60min后停止加入过氧化氢。
4)将以上溶液离心分离,用5%的盐酸和蒸馏水分别洗涤碳纤维3次,得到改性后的碳纤维。
5)干燥后,作为固定化载体进一步用于固定化。
6)以上过程中加入方式在搅拌转速180~250rpm,室温条件下进行。
进一步,所述制备方法的步骤(b)中,在室温条件下,加入30%过氧化氢中,加入量大致为1g:100ml。
进一步,所述制备方法的步骤(b)中,在室温条件下,分批次少量加入含Fe2+试剂,总加入量为:摩尔浓度Fe2+:H2O2=1:3。
进一步,所述制备方法的步骤(b)中,在室温条件下,分批次少量加入的含Fe2+试剂一般为FeSO4和FeCl2。
进一步,所述制备方法的步骤(b)中,待其反应结束后再向其分10次加入30%过氧化氢30ml,用时40min后停止加入过氧化氢。
有益效果
]与现有技术相比,本发明的有益效果是利用碳纤维表面可修饰的特性,通过对碳纤维表面进一步氧化处理,很大程度上增加其表面的亲水性、粗糙度等来增加其固定化细胞或酶的能力。实验制备改性碳纤维固定化载体具有操作简单,用时较短,对环境污染小等优点。
采用本发明制备方法获得的碳纤维具有比表面积高、表面粗糙度大、亲水性好等特点,比表面积高、表面粗糙度大能够为细胞或酶提供更多的吸附位点,亲水性增加,进一步增强了碳纤维表面与细胞或酶之间的吸引力。
碳纤维材料,无论是活性炭纤维还是改性后的碳纤维,其在固定化应用中所使用的固定方法多通过自身物理吸附性对细胞或酶进行固定。其优势在于,可通过改性碳纤维表面特征,来调节其固定化效率。
附图说明
图1为改性碳纤维固定化细胞SEM图。
具体实施方式
下面结合实施例,对本发明的具体的实施方式进一步详细描述。以下实施例是用来进一步说明本发明的内容,而不限制本发明的保护范围。对于本发明所涉及的相关内容及所做的修改,均属于本发明保护范围。
实施例1改性碳纤维固定化载体的制备:
将碳纤维切成长度为1cm短切碳纤维。
]在室温条件下取2g的碳纤维加入到200ml的30%过氧化氢中。
在室温条件下,分批次少量加入硫酸亚铁91.2g。
待其反应结束后再向其10次加入30%过氧化氢30ml用时40min后停止加入过氧化氢。
将以上溶液离心分离,用5%的盐酸和蒸馏水分别洗涤处理后碳纤维3次,得到改性后的碳纤维,
干燥后,作为固定化载体进一步用于固定化。
以上过程中加入方式在搅拌转速220rpm,室温条件下进行。
实施例2
]本实施方式与实施例1不同的是:在室温条件下,分批次少量加入氯化亚铁76.2g。其他与具体实施方式1相同。
实施例3
改性碳纤维固定化载体用于固定化酶
取上述干燥后的碳纤维1g投入到100mlpH5.0的磷酸缓冲液所配制的10g/l的木聚糖酶溶液中,室温下摇床180rpm摇动24h,之后用无水乙醇和纯净水洗去游离酶,即可得到固定化木聚糖酶。
固定化酶活力的测定
酶活定义:1g酶在55℃、pH5.0条件下,每分钟催化分解木聚糖产生1mg木糖的量为一个酶活力单位,以IU/mg表示。
固定化酶活力的测定:将50ml木聚糖溶液加入至250ml锥形瓶中并水浴加热至55℃,之后加入0.5g固定化酶,准确反应20min.
木糖含量的测定:配制0.2、0.4、0.6、0.8、1.0g/L的木糖标准溶液,采用DNS法测定其木糖标准曲线。
酶活计算:将所测得的吸光度值带入木糖的标准曲线回归方程中得到木糖含量。
酶活力=(木糖含量*5)*1000
固定化酶多批次酶活力测定
将固定化酶投入到催化反应中,第一批发酵结束后测定其固定化酶活力,每批催化反应后将固定化酶从反应液取出,用pH5.0的磷酸缓冲液冲洗后重新加入到新的反应液中,重新检测酶活,在重复使用6次后,反应酶活仍保持在60~80%左右。
实施例4
改性碳纤维固定化载体用于固定化黑曲霉
(1)固定化细胞的制备
种子培养基:马铃薯300g、葡萄糖20g、蒸馏水1L、自然pH、121℃高压灭菌15min。
种子培养:将0.3g改性后碳纤维投入到种子培养基,装液量为50/250m1,pH 6.5,115℃灭菌30min。冷却后接种斜面种子,160rpm,30℃培养48h。
发酵液:将种子液(接种量3%体积比)接入250ml三角瓶中,装液量:50/250m1。160rpm,30℃下震荡培养48小时,得发酵液。
(2)固定化细胞的应用
每批次发酵结束后,将种子培养基中的菌悬液倒出(大约40ml),只保留碳纤维,补加新发酵液40ml发酵液并加入AFB1(0.05ppm),24h后对发酵液进行AFB1提取与测定。依次类推,进行多批次发酵降解实验。
每次所得产物的固定化效果及降解率通过以下方法测定:
1)固定化效率=吸附细胞重量/总细胞重量
2)AFB1的提取与测定
吸取1mL发酵液,用3 倍体积的氯仿提取滤液中AFB1,静置分层,收集氯仿层,氮气吹干,加入200μL 正己烷,混匀后于40℃避光反应15 min,再次氮气吹干,1mL 流动相(乙腈:水=20:80)溶解AFB1 的衍生物,0.22μm 膜过滤,保存于棕色瓶。
液相采用柱前衍生 HPLC 荧光检测方法对发酵液中 AFB1的含量进行测定,色谱柱: C18柱,size:New Column 25*4.6mm, 流动相:乙腈:水=20:80(v/v);柱温:30℃;流速:1mL/min;激发波长:360nm;发射波长:440nm;进样量:20μL
3)通过AFB1标准品的标准曲线算出其未降解AFB1的含量,从而计算其降解率。
本实施例中测得连续发酵降解过程中,改性碳纤维固定化载体的固定化细胞效率为90~100%,且其固定化细胞可连续使用6~8次,且降解率可达到85~95%。