
1.本发明属于抗菌膜技术领域,具体来说涉及一种光动力型过滤抗菌复合膜及其制备方法和应用。
背景技术:2.传染病对于各个国家都很棘手的问题,因为它传播速度快,传播途径广被称之为世界范围内的第三大重要死亡原因。目前,世界面临最为严重的卫生保健问题之一就是细菌对于传统的抗生素的耐药性。在过去的很多年里,越来越多的病患受到由细菌所引起的各种健康问题,甚至威胁到生命,随着耐药菌的增多疾病恶化日益严重。但就目前的医用防护材料来说,虽然在舒适性等方面已经做得很成熟,但存在抗菌力不强,抗菌效果也不持久等问题。并且,大部分的光敏剂不够清洁,合成过程繁琐,大部分抗菌材料都需要紫外线光或近红外光的驱动,不具备在黑暗条件下工作的能力。因此,制备一种既可以在光照和黑暗条件下工作,又不影响对致病性的粒子拦截功能的光驱动型抗菌材料来解决现有的卫生保健问题极其重要。
技术实现要素:3.针对现有技术的不足,本发明的目的在于提供一种光动力型过滤抗菌复合膜的制备方法。
4.本发明的另一目的是提供上述制备方法获得的光动力型过滤抗菌复合膜。
5.本发明的目的是通过下述技术方案予以实现的。
6.一种光动力型过滤抗菌复合膜的制备方法,包括以下步骤:
7.1)将二氯甲烷和n,n
‑
二甲基甲酰胺混合均匀,得到第一液体,向所述第一液体中加入pcl颗粒,搅拌均匀,得到静电纺丝液,再向所述静电纺丝液中加入zif
‑
8粉末,超声分散至少1个小时,得到pcl/zif
‑
8纺丝液,其中,按体积份数计,二氯甲烷和n,n
‑
二甲基甲酰胺的比为(1~10):(1~10),所述第一液体的体积份数和所述pcl颗粒的质量份数的比为(1~50):(1~10),所述pcl/zif
‑
8纺丝液中zif
‑
8粉末为0.1~1.5wt%;
8.在上述技术方案中,所述质量份数的单位为g,所述体积份数的单位为ml。
9.在所述步骤1)中,所述搅拌均匀的时间为1~5h。
10.在所述步骤1)中,所述超声分散的时间为1~10h。
11.2)将所述pcl/zif
‑
8纺丝液喷涂在ppcl@pda/taeg熔喷膜上,得到所述光动力型过滤抗菌复合膜。
12.在所述步骤2)中,制备所述ppcl@pda/taeg熔喷膜的方法为:
13.步骤1,制备pp和pcl混合的母粒,采用熔喷机将所述母粒制备成熔喷膜;
14.在所述步骤1中,按质量份数计,所述母粒中pp和pcl的比为(50~90):(5~30)。
15.在上述技术方案中,制备母粒的方法为:将聚丙烯(pp)与聚己内酯(pcl)分别于10~80℃干燥8~15h,加入造粒机中,混合、挤出得到所述母粒。
16.在所述步骤1中,将所述母粒制备成熔喷膜之前将所述母粒于10~80℃干燥8~15h。
17.步骤2,将三羟甲基氨基甲烷盐酸盐、盐酸多巴胺和去离子水混合,滴加3
‑
氨丙基三乙氧基硅烷调节ph至8~9,得到聚多巴胺(pda)溶液,将所述熔喷膜浸入聚多巴胺溶液中8~15h,取出,洗涤,干燥,得到ppcl@pda熔喷膜,其中,所述三羟甲基氨基甲烷盐酸盐的质量份数、盐酸多巴胺的质量份数和去离子水的体积份数的比为(0.05~0.5):(0.05~0.8):(30~150);
18.在所述步骤2中,所述洗涤采用去离子水。
19.在所述步骤2中,所述干燥的时间为8~15h,干燥的温度为10~80℃。
20.步骤3,将tdpa、多磷酸和二恶烷混合均匀,得到第二液体,在第二液体搅拌的条件下,将ppcl@pda熔喷膜浸入40~100℃的第二液体中0.5~5h,洗涤,干燥,得到ppcl@pda/ta抗菌熔喷膜,其中,所述tdpa的质量份数、多磷酸的质量份数和二恶烷的体积份数的比为(0.05~0.5):(0.05~0.5):(5~50);
21.在所述步骤3中,所述洗涤采用丙酮。
22.在所述步骤3中,所述干燥为20~80℃保持0.5~5h。
23.步骤4,将egcg、多磷酸和二恶烷混合均匀,得到第三液体,在第三液体搅拌的条件下,将ppcl@pda/ta抗菌熔喷膜浸入40~100℃的第三液体中0.5~5h,洗涤,干燥,得到ppcl@pda/taeg熔喷膜,其中,所述egcg的质量份数、多磷酸的质量份数和二恶烷的体积份数的比为(0.05~0.5):(0.05~0.5):(5~50);
24.在所述步骤4中,所述洗涤采用丙酮。
25.在所述步骤4中,所述干燥为20~80℃保持0.5~5h。
26.上述制备方法获得的光动力型过滤抗菌复合膜。
27.上述光动力型过滤抗菌复合膜在提高pm2.5粒子的过滤效率中的应用。
28.与现有技术相比,本发明有益效果在于:
29.(1)本发明将zif
‑
8粉末加入到静电纺丝液中,利用静电纺丝法将pcl/zif
‑
8纺丝液喷涂在ppcl@pda/taeg熔喷膜的表面,形成具有串珠结构的光动力型过滤抗菌复合膜。
30.(2)光动力型过滤抗菌复合膜对pm2.5粒子的过滤效率最高达到99.9%。
31.(3)通过静电纺丝法将pcl/zif
‑
8纺丝液喷涂在ppcl@pda/taeg熔喷膜上可以增加复合膜的可充电、可储存和抗菌性能,从而得到一种新型过滤抗菌复合材料。
附图说明
32.图1为光动力型过滤抗菌复合膜的制备过程;
33.图2为实施例和对比例制备所得光动力型过滤抗菌复合膜/抗菌复合膜的红外光谱图;
34.图3为实施例和对比例制备所得光动力型过滤抗菌复合膜/抗菌复合膜的抗菌的热重曲线;
35.图4为实施例和对比例制备所得光动力型过滤抗菌复合膜/抗菌复合膜的透湿性测试;
36.图5为实施例和对比例的水接触角;
37.图6(a)为实施例1和对比例制备所得光动力型过滤抗菌复合膜/抗菌复合膜的过滤效率;图6(b)为实施例1和对比例制备所得光动力型过滤抗菌复合膜/抗菌复合膜对pm2.5的过滤效率;
38.图7为串珠式过滤器空气过滤示意图;
39.图8为串珠结构示意图及实施例4所得光动力型过滤抗菌复合膜的扫描电镜图;
40.图9(a)为日光照射1小时后放置在黑暗条件下,实施例和对比例制备所得光动力型过滤抗菌复合膜/抗菌复合膜释放的
·
oh(a)的浓度;图9(b)为日光照射1小时后放置在黑暗条件下,实施例和对比例制备所得光动力型过滤抗菌复合膜/抗菌复合膜释放的h2o2的浓度;
41.图10为实施例和对比例制备所得光动力型过滤抗菌复合膜/抗菌复合膜(a)
·
oh的浓度与时间的关系、(b)h2o2的浓度与时间的关系;
42.图11为反复充电和淬灭七个循环来评估实施例4所得光动力型过滤抗菌复合膜的可充电性;
43.图12(a)为黑暗和光照的条件下实施例4与e.coli接触培养0min、10min、20min、30min、40min、60min后的杀菌率;图12(b)为黑暗和光照的条件下实施例4与s.aureus接触培养0min、10min、20min、30min、40min、60min后的杀菌率。
具体实施方式
44.下面结合具体实施例进一步说明本发明的技术方案。
45.六水硝酸锌购自天津市大茂化学试剂厂。无水甲醇和n,n
‑
二甲基甲酰胺购自天津渤化化学试剂有限公司。二氯甲烷购自天津市风船化学试剂科技有限公司。以上试剂均为分析纯。2
‑
甲基咪唑购自阿拉丁,纯度为98%。聚己内酯购自美国苏威,分子量为8万。沸石咪唑化物骨架为实验室自备。大肠杆菌和金黄色葡萄球菌购自北京北钠创联生物技术研究院。单螺旋杆熔喷机购自天津市盛锐源机械技术有限公司。
46.质量份数的单位为g,体积份数的单位为ml。
47.实施例1
48.一种光动力型过滤抗菌复合膜的制备方法,包括以下步骤:
49.1)将二氯甲烷和n,n
‑
二甲基甲酰胺混合均匀,得到第一液体,向第一液体中加入pcl颗粒,搅拌2h至均匀,得到静电纺丝液,再向静电纺丝液中加入zif
‑
8粉末,超声分散2h,得到pcl/zif
‑
8纺丝液,其中,按体积份数计,二氯甲烷和n,n
‑
二甲基甲酰胺的比为3:1,第一液体的体积份数和pcl颗粒的质量份数的比为20:1.97,pcl/zif
‑
8纺丝液中zif
‑
8粉末为0.3wt%;
50.2)使用静电纺丝机将12ml的pcl/zif
‑
8纺丝液喷涂在176.71cm2的ppcl@pda/taeg熔喷膜上,得到光动力型过滤抗菌复合膜。
51.实施例2
52.一种光动力型过滤抗菌复合膜的制备方法,包括以下步骤:
53.1)将二氯甲烷和n,n
‑
二甲基甲酰胺混合均匀,得到第一液体,向第一液体中加入pcl颗粒,搅拌2h至均匀,得到静电纺丝液,再向静电纺丝液中加入zif
‑
8粉末,超声分散2h,得到pcl/zif
‑
8纺丝液,其中,按体积份数计,二氯甲烷和n,n
‑
二甲基甲酰胺的比为3:1,第
一液体的体积份数和pcl颗粒的质量份数的比为20:1.97,pcl/zif
‑
8纺丝液中zif
‑
8粉末为0.5wt%;
54.2)使用静电纺丝机将12ml的pcl/zif
‑
8纺丝液喷涂在176.71cm2的ppcl@pda/taeg熔喷膜上,得到光动力型过滤抗菌复合膜。
55.实施例3
56.一种光动力型过滤抗菌复合膜的制备方法,包括以下步骤:
57.1)将二氯甲烷和n,n
‑
二甲基甲酰胺混合均匀,得到第一液体,向第一液体中加入pcl颗粒,搅拌2h至均匀,得到静电纺丝液,再向静电纺丝液中加入zif
‑
8粉末,超声分散2h,得到pcl/zif
‑
8纺丝液,其中,按体积份数计,二氯甲烷和n,n
‑
二甲基甲酰胺的比为3:1,第一液体的体积份数和pcl颗粒的质量份数的比为20:1.97,pcl/zif
‑
8纺丝液中zif
‑
8粉末为0.7wt%;
58.2)使用静电纺丝机将12ml的pcl/zif
‑
8纺丝液喷涂在176.71cm2的ppcl@pda/taeg熔喷膜上,得到光动力型过滤抗菌复合膜。
59.实施例4
60.一种光动力型过滤抗菌复合膜的制备方法,包括以下步骤:
61.1)将二氯甲烷和n,n
‑
二甲基甲酰胺混合均匀,得到第一液体,向第一液体中加入pcl颗粒,搅拌2h至均匀,得到静电纺丝液,再向静电纺丝液中加入zif
‑
8粉末,超声分散2h,得到pcl/zif
‑
8纺丝液,其中,按体积份数计,二氯甲烷和n,n
‑
二甲基甲酰胺的比为3:1,第一液体的体积份数和pcl颗粒的质量份数的比为20:1.97,pcl/zif
‑
8纺丝液中zif
‑
8粉末为0.9wt%;
62.2)使用静电纺丝机将12ml的pcl/zif
‑
8纺丝液喷涂在176.71cm2的ppcl@pda/taeg熔喷膜上,得到光动力型过滤抗菌复合膜。
63.实施例5
64.一种光动力型过滤抗菌复合膜的制备方法,包括以下步骤:
65.1)将二氯甲烷和n,n
‑
二甲基甲酰胺混合均匀,得到第一液体,向第一液体中加入pcl颗粒,搅拌2h至均匀,得到静电纺丝液,再向静电纺丝液中加入zif
‑
8粉末,超声分散2h,得到pcl/zif
‑
8纺丝液,其中,按体积份数计,二氯甲烷和n,n
‑
二甲基甲酰胺的比为3:1,第一液体的体积份数和pcl颗粒的质量份数的比为20:1.97,pcl/zif
‑
8纺丝液中zif
‑
8粉末为1.1wt%;
66.2)使用静电纺丝机将12ml的pcl/zif
‑
8纺丝液喷涂在176.71cm2的ppcl@pda/taeg熔喷膜上,得到光动力型过滤抗菌复合膜。
67.实施例6
68.一种光动力型过滤抗菌复合膜的制备方法,包括以下步骤:
69.1)将二氯甲烷和n,n
‑
二甲基甲酰胺混合均匀,得到第一液体,向第一液体中加入pcl颗粒,搅拌2h至均匀,得到静电纺丝液,再向静电纺丝液中加入zif
‑
8粉末,超声分散2h,得到pcl/zif
‑
8纺丝液,其中,按体积份数计,二氯甲烷和n,n
‑
二甲基甲酰胺的比为3:1,第一液体的体积份数和pcl颗粒的质量份数的比为20:1.48,pcl/zif
‑
8纺丝液中zif
‑
8粉末为0.3wt%;
70.2)使用静电纺丝机将12ml的pcl/zif
‑
8纺丝液喷涂在176.71cm2的ppcl@pda/taeg
熔喷膜上,得到光动力型过滤抗菌复合膜。
71.实施例7
72.一种光动力型过滤抗菌复合膜的制备方法,包括以下步骤:
73.1)将二氯甲烷和n,n
‑
二甲基甲酰胺混合均匀,得到第一液体,向第一液体中加入pcl颗粒,搅拌2h至均匀,得到静电纺丝液,再向静电纺丝液中加入zif
‑
8粉末,超声分散2h,得到pcl/zif
‑
8纺丝液,其中,按体积份数计,二氯甲烷和n,n
‑
二甲基甲酰胺的比为3:1,第一液体的体积份数和pcl颗粒的质量份数的比为20:1.48,pcl/zif
‑
8纺丝液中zif
‑
8粉末为0.5wt%;
74.2)使用静电纺丝机将12ml的pcl/zif
‑
8纺丝液喷涂在176.71cm2的ppcl@pda/taeg熔喷膜上,得到光动力型过滤抗菌复合膜。
75.实施例8
76.一种光动力型过滤抗菌复合膜的制备方法,包括以下步骤:
77.1)将二氯甲烷和n,n
‑
二甲基甲酰胺混合均匀,得到第一液体,向第一液体中加入pcl颗粒,搅拌2h至均匀,得到静电纺丝液,再向静电纺丝液中加入zif
‑
8粉末,超声分散2h,得到pcl/zif
‑
8纺丝液,其中,按体积份数计,二氯甲烷和n,n
‑
二甲基甲酰胺的比为3:1,第一液体的体积份数和pcl颗粒的质量份数的比为20:1.48,pcl/zif
‑
8纺丝液中zif
‑
8粉末为0.7wt%;
78.2)使用静电纺丝机将12ml的pcl/zif
‑
8纺丝液喷涂在176.71cm2的ppcl@pda/taeg熔喷膜上,得到光动力型过滤抗菌复合膜。
79.实施例9
80.一种光动力型过滤抗菌复合膜的制备方法,包括以下步骤:
81.1)将二氯甲烷和n,n
‑
二甲基甲酰胺混合均匀,得到第一液体,向第一液体中加入pcl颗粒,搅拌2h至均匀,得到静电纺丝液,再向静电纺丝液中加入zif
‑
8粉末,超声分散2h,得到pcl/zif
‑
8纺丝液,其中,按体积份数计,二氯甲烷和n,n
‑
二甲基甲酰胺的比为3:1,第一液体的体积份数和pcl颗粒的质量份数的比为20:1.48,pcl/zif
‑
8纺丝液中zif
‑
8粉末为0.9wt%;
82.2)使用静电纺丝机将12ml的pcl/zif
‑
8纺丝液喷涂在176.71cm2的ppcl@pda/taeg熔喷膜上,得到光动力型过滤抗菌复合膜。
83.实施例10
84.一种光动力型过滤抗菌复合膜的制备方法,包括以下步骤:
85.1)将二氯甲烷和n,n
‑
二甲基甲酰胺混合均匀,得到第一液体,向第一液体中加入pcl颗粒,搅拌2h至均匀,得到静电纺丝液,再向静电纺丝液中加入zif
‑
8粉末,超声分散2h,得到pcl/zif
‑
8纺丝液,其中,按体积份数计,二氯甲烷和n,n
‑
二甲基甲酰胺的比为3:1,第一液体的体积份数和pcl颗粒的质量份数的比为20:1.48,pcl/zif
‑
8纺丝液中zif
‑
8粉末为1.1wt%;
86.2)使用静电纺丝机将12ml的pcl/zif
‑
8纺丝液喷涂在176.71cm2的ppcl@pda/taeg熔喷膜上,得到光动力型过滤抗菌复合膜。
87.对比例1
88.一种抗菌复合膜的制备方法,包括以下步骤:
89.1)将二氯甲烷和n,n
‑
二甲基甲酰胺混合均匀,得到第一液体,向第一液体中加入pcl颗粒,搅拌2h至均匀,得到静电纺丝液,其中,按体积份数计,二氯甲烷和n,n
‑
二甲基甲酰胺的比为3:1,第一液体的体积份数和pcl颗粒的质量份数的比为20:1.48;
90.2)使用静电纺丝机将12ml的静电纺丝液喷涂在176.71cm2的ppcl@pda/taeg熔喷膜上,得到抗菌复合膜。
91.在本发明的技术方案中,ppcl@pda/taeg熔喷膜可参考文献:ting
‑
ting li,heng zhang,et al.daylight
‑
driven photosensitive antibacterial melt
‑
blown membranes for medical use[j].journal of cleaner production,2021.,制备上述实施例1~10和对比例1所采用ppcl@pda/taeg熔喷膜的方法为:
[0092]
步骤1,制备pp和pcl混合的母粒,制备母粒的方法为:将聚丙烯(pp)与聚己内酯(pcl)分别在鼓风干燥箱中于50℃干燥12h,加入单螺杆造粒机中,混合、挤出得到母粒,其中,按质量份数计,母粒中pp和pcl的比为90:10。
[0093]
在鼓风干燥箱中将母粒于50℃干燥12h,采用单螺杆熔喷机将母粒制备成熔喷膜,其中,母料在剪切力的作用下熔融混合并向前推动,最后,在热空气的作用下,将熔融挤出的聚合物拉伸成丝收集在网帘上,得到熔喷膜;
[0094]
步骤2,将三羟甲基氨基甲烷盐酸盐、盐酸多巴胺和去离子水混合,滴加3
‑
氨丙基三乙氧基硅烷调节ph至8,得到聚多巴胺(pda)溶液,将熔喷膜浸入聚多巴胺溶液中12h,取出,采用去离子水洗涤,40℃干燥12h,得到ppcl@pda熔喷膜,其中,三羟甲基氨基甲烷盐酸盐的质量份数、盐酸多巴胺的质量份数和去离子水的体积份数的比为0.12:0.2:100;
[0095]
步骤3,将tdpa、多磷酸和二恶烷混合均匀,得到第二液体,在第二液体搅拌的条件下,将ppcl@pda熔喷膜浸入60℃的第二液体中2h,取出,采用丙酮洗涤,在真空干燥箱中于40℃真空干燥2h,得到ppcl@pda/ta抗菌熔喷膜,其中,tdpa的质量份数、多磷酸的质量份数和二恶烷的体积份数的比为0.2:0.2:20;
[0096]
步骤4,将egcg、多磷酸和二恶烷混合均匀,得到第三液体,在第三液体搅拌的条件下,将ppcl@pda/ta抗菌熔喷膜浸入80℃的第三液体中2h,取出,采用丙酮洗涤,在真空干燥箱中于40℃真空干燥2h,得到ppcl@pda/taeg熔喷膜,其中,egcg的质量份数、多磷酸的质量份数和二恶烷的体积份数的比为0.2:0.2:20。
[0097]
图1为光动力型过滤抗菌复合膜的制备过程。
[0098]
图2为实施例和对比例的红外光谱图,并得到1582,1432,1310,1146,995,759,693,420cm
‑1处是zif8的特征吸收峰,相较于对比例,实施例在1432,995,759,420cm
‑
1处具有明显的特征吸收峰。由此表明,zif8成功的负载到光动力型过滤抗菌复合膜上。
[0099]
由图3可以看到在745.3℃左右实施例4的残余质量明显大于对比例的残余质量,说明zif8的加入改善了实施例的光动力型过滤抗菌复合膜的热稳定性。
[0100]
图4在透湿性实验中,将光动力型过滤抗菌复合膜放在温度为38℃,相对湿度为90%的环境下,光动力型过滤抗菌复合膜的水蒸气透过率表现出良好的性能。实施例4水蒸气透过率最大为3363.31g/(m2
·
d),达到医用防护服的标准。
[0101]
图5可知,对比例1接触角最小为98.49
°
,zif8的加入改善了亲水性,使得光动力型过滤抗菌复合膜变成一种疏水性材料。
[0102]
由图6(a)发现随着zif8含量的增加,光动力型过滤抗菌复合膜的过滤效率增大,
拦截小分子的能力也逐渐增强。当zif8的含量增大到0.9wt%时,实施例4对于直径大于500nm的超细颗粒拦截效率达到99.9%以上。由图6(b)表明,实施例的过滤效率增大,且实施例4过滤效率达到99.99%。
[0103]
图7的串珠式过滤器有助于拦截病菌以及空气杂质,且纳米式的珠子能够减少填充密度和减轻过滤器的阻力。
[0104]
图8为串珠结构示意图及光动力型过滤抗菌复合膜的扫描电镜。
[0105]
图9(a)为将实施例所得光动力型过滤抗菌复合膜和对比例制备所得抗菌复合膜日光照射1小时后放置在黑暗条件下,光动力型过滤抗菌复合膜/抗菌复合膜释放的
·
oh的浓度,图9(b)为释放的h2o2的浓度。其中,实施例4表现出最大的电容量,
·
oh和h2o2的释放量分别为13009.41μg/g和405.72μg/g,分别对应于216.82和6.76μg
·
g
‑1·
min
‑1的充电速率,表明光能被光动力型过滤抗菌复合膜利用率高。
[0106]
图10将实施例4所得光动力型过滤抗菌复合膜和对比例制备所得抗菌复合膜日光照射后放置在黑暗条件下,如此反复,光动力型过滤抗菌复合膜/抗菌复合膜释放的
·
oh(a)和h2o2(b)的浓度与时间的关系如图10所示(图10中白色表示日光照射和灰色柱体表示黑暗条件下),图10的(a)和(b)主要观察到
·
oh和h2o2在照射期间产生,并在黑暗中停止。但光动力型过滤抗菌复合膜的活性并未降低,辐照后
·
oh和h2o2的量稳定增加。
[0107]
图11为反复充电和淬灭七个循环来评估光动力型过滤抗菌复合膜的可充电性,首先将光动力型过滤抗菌复合膜在光照下辐照1h,然后用0.1mol/l的硫代硫酸盐水溶液淬灭,淬灭过程会破坏二苯甲酮结构。之后再将光动力型过滤抗菌复合膜放在光照下进行辐射1h,再用过量的硫代硫酸盐水溶液淬灭,如此经过七个循环之后,未观察到充电容量的显著降低,即实施例9分别保留了其原来的
·
oh和h2o2的89.9%和65.1%,表明其可以用作多次重复利用的医用防护材料。
[0108]
图12(a)和图12(b)为黑暗(light(
‑
))和光照(light(+))的条件下,实施例4所得光动力型过滤抗菌复合膜分别与e.coli和s.aureus接触培养0min、10min、20min、30min、40min、60min后的杀菌率。由图12(a)和12(b)可知,为了评估光动力型过滤抗菌复合膜的活性,使用两种典型的菌种,革兰氏阴性大肠杆菌与革兰氏阳性金黄色葡萄球菌对光动力型过滤抗菌复合膜表面进行攻击。无论是在光照或黑暗条件下,光动力型过滤抗菌复合膜在相同接触时间内对革兰氏阳性金黄色葡萄球菌(s.aureus)的杀菌率比革兰氏阴性大肠杆菌(e.coli)高。而且在光照条件下细菌与光动力型过滤抗菌复合膜接触30min,光动力型过滤抗菌复合膜对s.aureus的杀菌率达到99%以上。说明光动力型过滤抗菌复合膜对s.aureus的杀菌速率比较快,同时表明光动力型过滤抗菌复合膜对革兰氏阳性细菌比较敏感。尽管,光动力型过滤抗菌复合膜对e.coli的杀菌速率不是很快,但随着接触时间的增加,杀菌率也会达到95%以上。
[0109]
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。