多个机器人清洁器及其控制方法与流程

文档序号:23954724发布日期:2021-02-18 18:37阅读:104来源:国知局
多个机器人清洁器及其控制方法与流程

[0001]
本公开涉及多个移动机器人及其控制方法,该多个移动机器人在其中的任何一个跟随其中另一个的同时自主移动。


背景技术:

[0002]
通常,移动机器人是在没有用户的操作的情况下在预定区域中移动同时自动执行预定操作的装置。移动机器人感测位于该区域中的障碍物,并通过靠近或远离此类障碍物移动来执行其操作。
[0003]
这样的移动机器人可以包括在区域内移动的同时执行清洁的机器人清洁器。机器人清洁器是在没有用户的操作的情况下在自行移动的同时进行清洁的清洁器。
[0004]
以此方式,随着这种在没有用户的操作的情况下在自行移动的同时进行清洁的机器人清洁器的发展,需要开发多个机器人清洁器,以在没有用户的操作的情况下在其中任何一个跟随其中的另一个的同时或者在彼此协作的同时进行清洁。
[0005]
例如,现有技术文献wo2017-036532公开了一种方法,在该方法中,主机器人清洁器(以下称为主机器人)控制至少一个从机器人清洁器(以下称为从机器人)。
[0006]
该现有技术文献公开了一种配置,在该配置中,主机器人通过使用障碍物检测装置来检测相邻的障碍物,并使用从障碍物检测装置得到的位置数据来确定其与从机机器人有关的位置。
[0007]
另外,现有技术公开了一种配置,在该配置中,主机器人和从机器人使用无线局域网(wlan)技术经由服务器彼此进行通信。
[0008]
根据该现有技术文献,主机器人可以确定从机器人的位置,但是从机器人无法确定主机器人的位置。
[0009]
此外,为了使从机器人使用现有技术文献中公开的配置来确定(决定)主机器人的位置,主机器人必须将主机器人确定的与从机器人有关的相对位置信息通过服务器发送给从机器人。
[0010]
然而,现有技术未能公开主机器人经由服务器将相对位置信息发送到从机器人这样的配置。
[0011]
另外,即使假定主机器人发送了相对位置信息,主机器人和从机器人也应该仅通过服务器进行通信。因此,当主机器人或从机器人位于难以与服务器通信的位置时,与服务器的这种通信可能断开。
[0012]
在这种情况下,由于从机器人无法从服务器接收相对位置信息,因此从机器人无法知道主机器人的位置。因此,可能会出现以下问题:多个机器人清洁器之间的跟随或协作未有效地进行。
[0013]
此外,机器人清洁器在移动以清洁指定的清洁空间的同时多次改变其移动方向。例如,经常需要根据清洁空间的形状、机器人清洁器的移动模式、障碍物的检测、地板的地形特性等频繁地改变当前的移动方向。
[0014]
当多个机器人清洁器中的任何一个跟随另一个机器人清洁器以进行协作清洁时,当领先的清洁器改变其移动方向时,与在后移动的跟随的清洁器的碰撞问题可能发生。另外,在改变移动方向时,根据旋转的程度,在预定的时间段之后,领先的清洁器和跟随的清洁器的前后位置可能会反转。即使在这种情况下,也可能出现不能有效地执行多个机器人清洁器之间的跟随或协作的问题。对于能够协作的多个移动机器人也是如此。


技术实现要素:

[0015]
【技术问题】
[0016]
因此,本公开的一个目的是提供多个移动机器人及其控制方法,这些移动机器人能够在不用经过服务器的情况下在其任何一个遵循其另一个的移动路径的同时进行移动而彼此之间没有干扰或碰撞。
[0017]
此外,本公开的另一个目的是提供多个移动机器人及其控制方法,当多个移动机器人中的任何一个跟随其另一个时,这些移动机器人可以被控制以执行灵活的跟随而没有任何中断。
[0018]
另外,本公开的又一个目的是提供多个移动机器人及其控制方法,这些移动机器人允许无碰撞避免设计,其中即使领先的移动机器人在多个移动机器人的跟随过程中改变其当前的移动方向时,也不会与跟随的移动机器人发生碰撞。
[0019]
此外,本公开的又一个目的是提供多个移动机器人及其控制方法,即使领先的移动机器人改变其移动方向并且在视觉上位于跟随的移动机器人的后面时,多个移动机器人也能够连续地进行跟随而没有任何干扰。
[0020]
【技术方案】
[0021]
在本公开中,为了在多个移动机器人之间没有任何中断地进行灵活的跟随,实现了基于信号识别跟随的移动机器人的相对位置,并基于识别的相对位置沿着领先的移动机器人的移动路径进行跟随。
[0022]
此外,当领先的移动机器人的移动方向改变时,将其通知给跟随的移动机器人的信号可以被发送,并且领先的移动机器人或跟随的移动机器人可以感测信号的接收方向的变化,以感测到移动方向已在逐渐接近跟随的移动机器人的方向上发生了变化,从而实现了无碰撞避免设计,并允许领先的移动机器人连续地移动而不会干扰跟随的移动机器人。
[0023]
这里,信号的接收方向的变化可以通过多个接收天线感测到移动终端100的接收方向从向前改变为向后或从向后改变为向前,多个接收天线分别设置在移动机器人的后侧和前侧上,或者设置为在移动机器人的前侧彼此间隔开,或者设置为在移动机器人的后侧彼此间隔开。
[0024]
另外,当在多个移动机器人之间感测到信号的接收方向的变化时,领先的移动机器人可以输出跟随限制命令。跟随限制命令可以包括跟随的移动机器人的移动停止命令。
[0025]
另外,可以在再次感测到多个移动机器人之间的信号的接收方向的变化的时间点解除跟随限制。当输出跟随限制解除命令时,跟随的移动机器人再次执行跟随移动。此时,领先的移动机器人可以减速移动或暂时停止移动,使得与跟随的移动机器人的跟随距离不超过指定范围。
[0026]
当跟随的移动机器人与前面的领先的移动机器人类似地改变其移动方向时,再次
附加地感测到信号的接收方向的变化,并且当领先的移动机器人的移动方向与跟踪的移动机器人的移动方向一致时,领先的移动机器人可以开始以原始的移动速度移动。
[0027]
具体地,根据本公开的实施例的移动机器人可以包括:行进单元,其被配置为移动主体;通信单元,其被配置为与发出信号的另一移动机器人通信;以及控制器,其被配置为基于信号识别另一移动机器人的位置,并基于识别的位置,控制另一移动机器人的移动以沿着主体的移动路径进行跟随,其中,控制器响应于移动方向的变化而向主体发送对应于移动方向的变化的信号,并且根据移动方向的变化来感测信号的接收方向的变化,以向另一移动机器人发送用于限制跟随的控制命令。
[0028]
此外,在一个实施例中,用于限制跟随的控制命令可以包括另一移动机器人的移动停止命令和用于主体的跟随解除命令,并且跟随的限制可以继续直到在感测到信号的接收方向的变化之后满足指定条件为止。
[0029]
此外,在一个实施例中,当以下中的至少一个被满足时,跟随的限制可以被解除:在感测到信号的接收方向的变化之后经过预定时间段、主体与另一移动机器人之间的间隔距离的增加大于预定范围、以及信号的接收方向的再次变化。
[0030]
此外,在一个实施例中,控制器可以改变行进单元的移动速度或将停止命令发送到另一移动机器人,使得另一移动机器人在另一移动机器人遵循所述主体的移动路径的同时不偏离指定的临界跟随距离。
[0031]
此外,在一个实施例中,当根据移动方向的变化感测到主体在参考范围内接近另一移动机器人时,控制器可以发送控制命令以控制另一移动机器人在避开该主体的同时移动或旋转。
[0032]
此外,在一个实施例中,在主体在移动方向变化之后在下一个移动区域中移动的同时,当从相对于主体的移动方向的前侧接收到信号时,控制器可以将用于限制跟随的控制命令发送到另一移动机器人,而当从相对于主体的移动方向的后侧接收到信号时,控制器可以控制另一移动机器人再次遵循主体的移动路径。
[0033]
此外,在一个实施例中,当根据移动方向的变化感测到主体在参考范围内接近另一移动机器人,并且确定另一移动机器人不能在避开主体的同时移动或旋转时,控制器可以控制行进单元以允许主体移出当前的移动区域同时避开另一移动机器人。
[0034]
此外,在一个实施例中,当根据移动方向的变化感测到主体在参考范围内接近另一移动机器人,并且确定主体和另一移动机器人都无法移出当前的移动区域时,控制器可以发送控制命令以控制另一移动机器人通过偏离指定的临界跟随距离执行反向移动。
[0035]
另外,多个移动机器人可以是包括第一移动机器人和第二移动机器人的多个移动机器人,其中,第一移动机器人与第二移动机器人进行通信,发出第一信号以识别第二移动机器人的位置,并基于识别的位置控制第二移动机器人的移动,以遵循第一移动机器人的移动路径,并且第二移动机器人与第一移动机器人进行通信,发出第二信号以识别第一移动机器人的位置,并响应于第一移动机器人的移动方向的变化接收对应的信号,第一移动机器人根据移动方向的变化来感测第一信号的接收方向的变化,以控制第二移动机器人,以便限制对第一移动机器人的跟随。
[0036]
此外,在一个实施例中,第一移动机器人可以改变第一移动机器人的移动速度或将停止命令发送到第二移动机器人,使得在第二移动机器人跟随第一移动机器人的同时,
第二移动机器人不会偏离指定的临界跟随距离。
[0037]
此外,在一个实施例中,当根据移动方向的变化感测到第一移动机器人在参考范围内接近第二移动机器人时,第一移动机器人可以在通过移出当前的移动区域而避开第二移动机器人的同时,控制第二移动机器人移动。
[0038]
此外,在一个实施例中,在第一移动机器人在移动方向的变化之后在下一个移动区域中移动的同时,当从相对于第一移动机器人的移动方向的前侧接收到第一信号时,第二移动机器人可以中断对第一移动机器人的跟随,而当从相对于第二移动机器人的移动方向的后侧接收到的第一信号时,第二移动机器人可以再次跟随第一移动机器人的移动路径。
[0039]
另外,根据本公开的实施例的控制多个移动机器人的方法可以包括:允许发出第一信号的第一移动机器人与发出第二信号的第二移动机器人通信;基于第一信号和第二信号相互识别第一移动机器人和第二移动机器人的位置;基于识别的位置,允许第二移动机器人沿着第一移动机器人的移动路径进行跟随;以及响应于第一移动机器人的移动方向的变化,在第二移动机器人处接收与第一移动机器人的移动方向的变化相对应的信号,并允许第一移动机器人根据移动方向的变化来感测第二信号的接收方向的变化以限制跟随。
[0040]
此外,在一个实施例中,所述限制跟随可以包括第二移动机器人的移动停止和对第一移动机器人的跟随解除,并且当在第二信号的接收方向的变化之后满足指定条件时,可以终止跟随的限制。
[0041]
此外,在一个实施例中,当以下中的至少一个被满足时,所述跟随的限制可以被解除:在感测到第二信号的接收方向的变化之后经过预定时间段、多个移动机器人之间的间隔距离的增加大于预定范围、以及第二信号的接收方向的再次变化。
[0042]
此外,在一个实施例中,所述沿着第一移动机器人的移动路径进行跟随可以包括改变第一移动机器人的行进单元的移动速度或使第二移动机器人停止,使得第二移动机器人在遵循第一移动机器人的移动路径的同时不偏离指定的临界跟随距离。
[0043]
此外,在一个实施例中,该方法还可以包括:当根据移动方向的变化感测到第一移动机器人在参考范围内接近第二移动机器人时,控制第二移动机器人在通过移出当前的移动区域而避开第一移动机器人的同时移动。
[0044]
此外,在一个实施例中,可以在移动方向变化之后从相对于第一移动机器人的移动方向的前方接收到第二信号的同时,执行所述感测第二信号的接收方向的变化以限制跟随,并且还可以包括:当从相对于第一移动机器人的移动方向的后侧接收到第二信号时,允许第二移动机器人再次遵循第一移动机器人的移动路径。
[0045]
如上所述,根据根据本公开的实施例的多个移动机器人,跟随的移动机器人可以在不通过服务器而跟随领先的移动机器人的同时没有任何中断地移动。
[0046]
此外,当跟随的清洁器根据移动模式或通过感测地板的地形特征、障碍物等来改变移动方向时,领先的清洁器、跟随的清洁器或领先的清洁器和跟随的清洁器可以暂时改变它们的移动路径以在避开彼此的同时进行移动,从而以更自然和有效的方式执行跟随控制。
[0047]
此外,当根据领先的清洁器的移动方向的变化,领先的清洁器视觉上位于跟随的清洁器的后面时,可以检测从跟随的清洁器接收的信号的方向以在跟随的清洁器在领先的
清洁器的前面时为等待,并且在确认跟随的清洁器在领先的清洁器的后面之后恢复跟随,从而在没有信号干扰和错误发生的情况下进行跟随。
[0048]
方向的变化
[0049]
【有益效果】
[0050]
如上所述,根据本公开的实施例的多个机器人清洁器,跟随的清洁器可以在跟随领先的清洁器的同时在没有任何中断的情况下执行清洁。此外,当跟随的清洁器感测到障碍物等以进行转向时,领先的清洁器、跟随的清洁器或领先的清洁器和跟随的清洁器可以暂时改变其移动路径以在彼此避开的同时进行移动,从而以更自然和有效的方式执行跟随控制。而且,当领先的清洁器的移动方向变化时,在确认跟随的清洁器在领先的清洁器的后面之后,可以检测从跟随的清洁器接收的信号的方向以恢复跟随,从而在没有信号干扰和错误发生的情况下进行跟随。。
附图说明
[0051]
被包括以提供对本发明的进一步理解并且被并入本说明书并构成本说明书的一部分的附图示出了本发明的实施例,并与说明书共同用于说明本发明的原理。在图中:
[0052]
图1是示出根据本公开的移动机器人的示例的透视图。
[0053]
图2是图1所示的移动机器人的平面图。
[0054]
图3是图1所示的移动机器人的侧视图。
[0055]
图4是示出根据本公开的实施例的移动机器人的示例性组件的框图。
[0056]
图5a是示出根据本公开的实施例的多个移动机器人之间的网络通信的概念图,图5b是示出图5a的网络通信的示例的概念图。
[0057]
图5c是示出根据本公开的实施例的在多个移动机器人之间的跟随移动的概念图。
[0058]
图6、图7、图8a、图8b和图8c是用于具体说明在根据本公开的实施例的多个移动机器人彼此保持预定距离的同时更灵活地执行跟随的方法的视图。
[0059]
图9是用于说明根据本公开的实施例的在执行第一清洁器的转向的同时限制第二清洁器的跟随的过程的示例性流程图。
[0060]
图10a、图10b、图10c、图10d和图10e是用于说明根据本公开的实施例的在第一清洁器的转向之后第二清洁器在避开第一清洁器的同时移动的操作的概念图。
[0061]
图11a、图11b、图11c、图11d和图11e是用于说明根据本公开的实施例的在第一清洁器的转向之后第二清洁器无法避开的情况下第一清洁器在避开第二清洁器的同时移动的示例的概念图。
[0062]
图12a、图12b、图12c、图12d和图12e是用于说明根据本公开的实施例的在第一清洁器的转向之后第一清洁器和第二清洁器都无法避开的情况下允许第二清洁器移动的另一示例的概念图。
[0063]
图13是用于说明根据本公开的实施例的第一清洁器和第二清洁器在彼此避开的同时在没有任何中断的情况下移动的操作的视图。
[0064]
图14a、图14b和图14c是用于说明根据本公开的修改的实施例的在移动机器人与其他移动装置之间的跟随注册和跟随控制的概念图。
具体实施方式
[0065]
在下文中,将参照附图详细描述根据本公开的移动机器人。
[0066]
在下文中,将详细给出本文公开的实施例的描述。在本说明书中使用的技术术语仅用于解释特定实施例,因此不应被解释为限制本文公开的技术的范围。
[0067]
首先,本文公开的术语“移动机器人”可以与“(用于特定功能的)机器人”、“机器人清洁器”、“用于清洁的机器人”和“自主清洁器”的含义相同,因此这些术语将被等同地使用。
[0068]
此外,本公开中公开的术语“多个移动机器人”可以用作“多个机器人清洁器”或“多个清洁器”。此外,术语“第一移动机器人”可以被称为“第一机器人”、“第一机器人清洁器”、或“第一清洁器”。此外,术语“第二移动机器人”可以被称为“第二机器人”、“第二机器人清洁器”、或“第二清洁器”。
[0069]
图1至图3示出了根据本公开的作为移动机器人的示例的机器人清洁器。
[0070]
具体地,图1是示出根据本公开的移动机器人100的示例的透视图,图2是图1所示的移动机器人100的平面图,图3是图1所示的移动机器人100的侧视图。
[0071]
在本说明书中,移动机器人、机器人清洁器以及执行自主移动的清洁器可以以相同的意义使用。此外,在本说明书中,被描述为多个移动机器人的示例的多个清洁器可包括图1至图3所示的配置的至少一部分。
[0072]
参照图1至图3,机器人清洁器100在其自身在预定区域上移动的同时执行清洁地板的功能。这里提到的地板清洁包括吸地板上的灰尘(包括异物)或擦拭地板。
[0073]
机器人清洁器100可包括清洁器主体110、清洁单元120、感测单元130和集尘器140。
[0074]
除用于控制机器人清洁器100的控制器(未示出)之外,清洁器主体110还设置有各种组件。此外,清洁器主体110还设置有用于使机器人清洁器100移动的轮单元111。机器人清洁器100可以通过轮单元111向前、向后、向左和向右移动。
[0075]
参照图3,轮单元111包括主轮111a和副轮111b。
[0076]
主轮111a设置在清洁器主体110的两侧,并且被配置为根据控制器的控制信号在一个方向或另一方向上可旋转。每个主轮111a可被配置为彼此独立地被驱动。例如,每个主轮111a可以由不同的马达驱动。或者,每个主轮111a可以由设置在一个马达中的多个不同的轴驱动。
[0077]
副轮111b被配置为与主轮111a一起支撑清洁器主体110,并通过主轮111a辅助机器人清洁器100的移动。副轮111b也可以设置在稍后要描述的清洁单元120上。
[0078]
控制器被配置为以机器人清洁器100自主地在地板上移动的方式控制轮单元111的驱动。
[0079]
同时,用于向机器人清洁器100供电的电池(未示出)安装在清洁器主体110上。该电池可以被配置为可充电的,并且被配置为可从清洁器主体110的底部拆卸。
[0080]
在图1中,清洁单元120可以以从清洁器主体110的一侧突出的形式设置,以便吸取包含灰尘的空气或擦拭区域。这一侧可以是清洁器主体110沿向前方向f移动的一侧,即,清洁器主体110的前侧。
[0081]
在该图中,清洁单元120被示出为具有从清洁器主体110的一侧向前以及左右两侧
突出的形状。具体地,清洁单元120的前端部设置在与清洁器主体110的一侧向前间隔开的位置处,清洁单元120的左端部和右端部设置在在左右方向上与清洁器主体110的一侧间隔开的位置处。
[0082]
由于清洁器主体110形成为圆形,并且清洁单元120的后端部的两侧从清洁器主体110向左右两侧突出,因此可以在清洁器主体110和清洁单元120之间形成空的空间(即,空隙)。空的空间是清洁器主体110的左右两端部与清洁单元120的左右两端部之间的空间,并且具有在机器人清洁器100的向内的方向上凹入的形状。
[0083]
当障碍物进入空的空间中时,机器人清洁器100可能被障碍物阻挡而不能移动。为了防止这种情况,可以设置盖构件129以覆盖至少一部分空的空间。
[0084]
盖构件129可以设置在清洁器主体110或清洁单元120上。根据本实施例,示出了盖构件129以突出的方式形成在清洁器的后端部的两侧上,并且设置为覆盖清洁器主体110的外周表面。
[0085]
盖构件129设置为填充至少一部分空的空间,即,清洁器主体110和清洁单元120之间的空的空间。这可以得到实现能够防止障碍物进入空的空间中的结构,或者即使障碍物进入空的空间中也能轻松地逃离障碍物。
[0086]
从清洁单元120突出的盖构件129可以被支撑在清洁器主体110的外周表面上。
[0087]
如果盖构件129从清洁器主体110突出,则盖构件129可以被支撑在清洁单元120的后部上。根据该结构,当清洁单元120由于与障碍物的碰撞而受到冲击时,一部分冲击被传递到清洁器主体110从而被分散。
[0088]
清洁单元120可以可拆卸地耦接到清洁器主体110。当清洁单元120从清洁器主体110拆卸时,擦拭模块(未示出)可以代替拆卸的清洁单元120而被可拆卸地耦接到清洁器主体110。
[0089]
因此,当用户希望去除地板上的灰尘时,用户可以将清洁单元120安装在清洁器主体110上,而当用户想要擦拭地板时,用户可以将擦拭模块安装在清洁器主体110上。
[0090]
当清洁单元120被安装在清洁器主体110上时,安装可以由上述的盖构件129引导。换句话说,由于盖构件129被设置为覆盖清洁器主体110的外周表面,所以清洁单元120相对于清洁器主体110的相对位置可以被确定。
[0091]
清洁单元120可以设置有脚轮123。脚轮123被配置为辅助机器人清洁器100的移动,并且还支撑机器人清洁器100。
[0092]
清洁器主体110设置有感测单元130。如图所示,感测单元130可以设置在清洁器主体110的清洁单元120所在的一侧,即,清洁器主体110的前侧。
[0093]
感测单元130可以被设置为在清洁器主体110的上下方向上与清洁单元120重叠。感测单元130设置在清洁单元120的上部处以感测机器人清洁器100前方的障碍物或地理特征,从而位于机器人清洁器100最前处的清洁单元120不会与障碍物碰撞。
[0094]
感测单元130可以被配置为除了该感测功能之外还执行另一种感测功能。
[0095]
举例来说,感测单元130可以包括用于获取周围图像的摄像头131。摄像头131可以包括透镜和图像传感器。摄像头131可以将清洁器主体110的周围图像转换成可以由控制器处理的电信号。例如,摄像头131可以将与向上的图像相对应的电信号发送到控制器。与向上的图像相对应的电信号可以由控制器用来检测清洁器主体110的位置。
[0096]
另外,感测单元130可以检测机器人清洁器100的移动表面或移动路径上的障碍物,例如墙壁、家具和跌落处(cliff)。此外,感测单元130可以感测执行电池充电的对接装置的存在。另外,感测单元130可以检测天花板信息,以便绘制机器人清洁器100的移动区域或清洁区域。
[0097]
清洁器主体110设置有集尘器140,该集尘器140可拆卸地耦接到清洁器主体110,用于从吸入的空气中分离和收集灰尘。
[0098]
集尘器140设置有覆盖集尘器140的集尘器盖150。在实施例中,集尘器盖150可以通过铰链耦接至清洁器主体110以可旋转。集尘器盖150可以固定到集尘器140或清洁器主体110以保持覆盖集尘器140的上表面。当集尘器盖150设置为覆盖集尘器140的上表面时,通过集尘器盖150可以防止集尘器140与清洁器主体110分离。
[0099]
集尘器140的一部分可以容纳在集尘器容纳部中,而集尘器140的另一部分朝向清洁器主体110的后方(即,与向前的方向f相反的相反方向r)突出。
[0100]
集尘器140设置有通过其引入包含灰尘的空气的入口和通过其排出与灰尘分离的空气的出口。当将集尘器140安装在清洁器主体110上时,入口和出口通过开口155彼此连通,开口155通过清洁器主体110的内壁形成。因此,可以形成清洁器主体110内部的进气通道和排气通道。
[0101]
根据这种连接,通过清洁单元120引入的包含灰尘的空气通过清洁器主体110内部的进气通道流入集尘器140,并且空气在经过集尘器140的过滤器和旋风分离器(cyclone)的同时与灰尘分离。灰尘收集在集尘箱140中,空气从集尘箱140排出,然后通过清洁器主体110中的排出口112并最终通过排出口112排出到外部。
[0102]
下面将参照图4描述与机器人清洁器100的组件有关的实施例。
[0103]
根据本公开的实施例的机器人清洁器100或移动机器人可包括通信单元1100、输入单元1200、行进单元1300、感测单元1400、输出单元1500、电源单元1600、存储器1700、控制器1800和清洁单元1900,或其组合。
[0104]
在此,不用说,图4所示的组件不是必需的,因此可以实现具有比图4所示的组件更多或更少的机器人清洁器。另外,如上所述,本公开中描述的多个机器人清洁器中的每一个可以等同地仅包括以下将要描述的组件中的一些。换句话说,多个机器人清洁器可以包括不同的组件。
[0105]
在下文中,将描述每个组件。
[0106]
首先,电源单元1600包括可由外部商用电源充电的电池以向移动机器人供电。电源单元1600向移动机器人中包括的每个组件提供驱动功率,以供应移动机器人移动或执行特定功能所需的运行功率。
[0107]
在此,控制器1800可以感测电池的剩余电量,并且当剩余电量不足时,控制电池1800将功率移动到连接到外部商用电源的充电基座,从而可以从充电基座供应充电电流,以为电池充电。电池可以连接到电池感测单元,并且电池剩余量和充电状态可以被传递到控制器1800。输出单元1500可以在控制器的控制下显示剩余的电池电量水平。
[0108]
电池可以位于机器人清洁器中心的下部,也可以位于左侧和右侧之一。在后一种情况下,移动机器人还可包括用于消除电池的重量偏差的平衡重量。
[0109]
控制器1800基于人工智能技术执行处理信息的作用,并且可以包括至少一个模
块,用于执行信息的学习、信息的推断、信息的感知以及自然语言的处理中的至少一个。
[0110]
控制器1800可以使用机器学习技术来执行对诸如存储在清洁器中的信息、清洁器周围的环境信息、存储在可通信的外部存储中的信息等大量信息(大数据)的学习、推断和处理中的至少一项。此外,控制器1800可以基于使用机器学习技术学习到的信息来预测(或推断)清洁器的至少一项可执行操作,并控制清洁器执行至少一项预测的操作中最可行的操作。
[0111]
机器学习技术是基于至少一种算法来收集和学习大量信息,并基于学习到的信息来确定和预测信息的技术。信息的学习是掌握信息的特征、规则和判断标准、量化信息和信息之间的关系、并使用量化的模式预测新数据的操作。
[0112]
机器学习技术使用的算法可以是基于统计的算法,例如,使用树结构类型作为预测模型的决策树、模仿神经网络结构和生物的功能的人工神经网络、基于生物进化算法的遗传规划、将观察到的示例分布到类的子集中的聚类、使用随机提取的随机数将函数值计算为概率的蒙特卡洛方法等。
[0113]
作为机器学习技术的一个领域,深度学习是使用深度神经网络(dnn)算法执行学习信息、确定信息和处理信息中的至少一项的技术。深度神经网络(dnn)可以具有链接层并在层之间转移数据的结构。可以采用该深度学习技术,以使用针对并行计算优化的图形处理单元(gpu),通过深度神经网络(dnn)学习巨大量信息。
[0114]
控制器1800可以使用存储在外部服务器或存储器中的训练数据,并且可以包括用于检测用于识别预定对象的特性的学习引擎。在此,用于识别对象的特性可以包括对象的尺寸、形状和阴影。
[0115]
具体地,当控制器1800将通过设置在清洁器上的摄像头获取的图像的一部分输入到学习引擎中时,学习引擎可以识别输入图像中包括的至少一个对象或生物。
[0116]
当学习引擎应用于清洁器的移动时,控制器1800可以识别在清洁器周围是否存在阻碍清洁器的行进的障碍物,例如椅子腿、风扇、特定形状的阳台间隙。这可以得到提高清洁器移动的效率和可靠性。
[0117]
另一方面,学习引擎可以安装在控制器1800上或者外部服务器上。当学习引擎安装在外部服务器上时,控制器1800可以控制通信单元1100将要进行分析的至少一个图像发送到外部服务器。
[0118]
外部服务器可以将从清洁器接收到的图像输入到学习引擎,从而识别相关图像中包括的至少一个对象或生物。另外,外部服务器可以将与识别结果有关的信息发送回清洁器。在此,与识别结果有关的信息可以包括经受分析的图像中包括的对象的数量、每个对象的名称有关的信息。
[0119]
另一方面,行进单元1300可以包括马达,并且运行马达以使左右主轮双向旋转,从而主体可以旋转或移动。此时,左右主轮可以独立地移动。行进单元1300可以使移动机器人的主体向前、向后、向左、向右、曲线地或在原地前进。。
[0120]
同时,输入单元1200从用户接收用于机器人清洁器的各种控制命令。输入单元1200可以包括一个或多个按钮,例如,输入单元1200可以包括确定按钮、设置按钮等。确定按钮是用于从用户接收用于确认感测信息、障碍物信息、位置信息和地图信息的命令的按钮,而设置按钮是用于从用户接收用于设置信息的命令的按钮。
[0121]
另外,输入单元1200可以包括:输入重置按钮,其用于取消先前的用户输入并再次接收用户输入;删除按钮,其用于删除预设的用户输入;用于设置或改变操作模式的按钮;用于接收要恢复到充电基座的命令的按钮等。
[0122]
此外,诸如硬键、软键、触摸板等输入单元1200可以安装在移动机器人的上部。另外,输入单元1200可以与输出单元1500一起具有触摸屏的形式。
[0123]
另一方面,输出单元1500可以安装在移动机器人的上部。当然,安装位置和安装类型可以变化。例如,输出单元1500可以在屏幕上显示电池状态、移动模式等。
[0124]
另外,输出单元1500可以输出由感测单元1400检测到的移动机器人内部的状态信息,例如,移动机器人中包括的每个配置的当前状态。此外,输出单元1500可以在屏幕上显示由感测单元1400检测到的外部状态信息、障碍物信息、位置信息、地图信息等。输出单元1500可以由发光二极管(led)、液晶显示器(lcd)、等离子显示面板和有机发光二极管(oled)中的任何一个形成。
[0125]
输出单元1500还可包括声音输出装置,其用于可听地输出由控制器1800执行的移动机器人的操作过程或操作结果。例如,输出单元1500可根据控制器1800生成的警报信号向外部输出警告声音。
[0126]
在这种情况下,音频输出模块(未示出)可以是诸如蜂鸣器、扬声器等用于输出声音的装置,并且输出单元1500可以使用存储在存储器1700中的具有预定模式的音频数据或消息数据通过音频输出模块向外部输出声音。
[0127]
因此,根据本公开的实施例的移动机器人可以在屏幕上输出关于移动区域的环境信息或将其作为声音输出。根据另一实施例,移动机器人可以通过通信单元1100将地图信息或环境信息发送到终端装置,以通过输出单元1500输出要输出的屏幕或声音。
[0128]
存储器1700存储用于控制或驱动机器人清洁器的控制程序及结果数据。存储器1700可以存储音频信息、图像信息、障碍物信息、位置信息、地图信息等。此外,存储器1700可以存储与移动模式有关的信息。
[0129]
存储器1700主要使用非易失性存储器。在此,非易失性存储器(nvm,nvram)是即使不向其供电也能够连续存储信息的存储装置,例如,非易失性存储器可以是rom、闪存、磁计算机存储装置(例如,硬盘、软盘驱动器、磁带)、光盘驱动器、磁性ram、pram等。
[0130]
同时,感测单元1400可以包括外部信号检测传感器、前检测传感器、防跌落检测传感器、二维摄像头传感器和三维摄像头传感器中的至少一个。
[0131]
外部信号检测传感器可以感测移动机器人的外部信号。外部信号检测传感器可以是例如红外线传感器、超声传感器、射频(rf)传感器等。
[0132]
移动机器人可以使用外部信号检测传感器接收由充电基座生成的引导信号,以检查充电基座的位置和方向。此时,充电基座可以发送指示方向和距离的引导信号,以允许移动机器人返回。换句话说,移动机器人可以接收从充电基座发送的信号以确定当前的位置、设置移动方向并返回到充电基座。
[0133]
另一方面,前检测传感器可以以预定的间隔安装在移动机器人的前侧处,具体地沿着移动机器人的侧向外周表面而安装。前传感器位于移动机器人的至少一个侧表面上,以检测移动机器人前方的障碍物。前传感器可以检测在移动机器人的移动方向上存在的对象,特别是障碍物,并将检测信息发送到控制器1800。换句话说,前传感器可以检测在移动
机器人的移动路径上的突起、家用电器、家具、墙壁、墙角等,并将该信息发送到控制器1800。
[0134]
例如,前传感器可以是红外线(ir)传感器、超声波传感器、rf传感器、地磁传感器等,并且移动机器人可以使用一种类型的传感器作为前传感器或如有必要可以使用两种或更多种类型的传感器。
[0135]
例如,超声波传感器通常主要用于感测远处的障碍物。超声波传感器可以包括发送器和接收器,并且控制器1800可以基于通过发送器辐射的超声波是否被障碍物等反射并在接收器处被接收来确定是否存在障碍物,并且使用超声波发射时间和超声波接收时间计算到障碍物的距离。
[0136]
此外,控制器1800可以比较从发送器发出的超声波和在接收器处接收的超声波,以检测与障碍物的尺寸有关的信息。例如,控制器1800可以确定障碍物越大,则在接收器处接收到的超声波越多。
[0137]
在一个实施例中,多个(例如,五个)超声传感器可以沿着侧向外周表面设置在移动机器人的前侧处。此时,超声传感器可以优选地以交替布置发送器和接收器的方式安装在移动机器人的前表面上。
[0138]
换句话说,发送器可以向左侧和右侧与主体的前中心间隔开,并且一个或两个(或更多个)发送器可以设置在接收器之间以形成从障碍物等反射的*?*超声波信号的接收区域。通过这种布置,可以在减少传感器数量的同时扩大接收面积。超声波的发送角度可以保持不影响不同信号的角度范围,以防止串扰现象。此外,接收器的接收灵敏度可以被设置为彼此不同。
[0139]
另外,超声传感器可以以预定角度向上安装以在向上的方向上输出从超声传感器传输的超声波,并且在此,超声传感器还可以包括预定的阻挡构件以防止超声波向下辐射。
[0140]
另一方面,如上所述,前传感器可以通过一起使用两种或更多种类型的传感器来实现,因此,前传感器可以使用ir传感器、超声传感器、rf传感器等中的任何一个。
[0141]
例如,除了超声传感器之外,前传感器还可以包括ir传感器,作为另一个传感器。
[0142]
ir传感器可以与超声传感器一起安装在移动机器人的外周表面上。红外传感器也可以感测在前方或侧面存在的障碍物,以将障碍物信息发送到控制器1800。换句话说,红外传感器可以感测在移动机器人的移动路径上的突起、家用电器、家具、墙壁、墙角等,并将信息发送到控制器1800。因此,移动机器人可以在特定区域内移动而不会与障碍物碰撞。
[0143]
另一方面,防跌落检测传感器(或防跌落传感器)可以主要使用各种类型的光学传感器来感测支撑移动机器人的主体的地板上的障碍物。
[0144]
换句话说,防跌落检测传感器可以安装在移动机器人底部的后表面上,但是当然可以根据移动机器人的类型而安装在不同的位置。防跌落检测传感器是位于移动机器人的背表面以感测地板上的障碍物的传感器,并且防跌落检测传感器可以是红外传感器、超声波传感器、rf传感器、psd(位置敏感检测器)传感器等,其设置有诸如障碍物检测传感器等发送器和接收器。
[0145]
例如,任何一个防跌落检测传感器可以安装在移动机器人的前面,而其他两个防跌落检测传感器可以相对地安装在后面。
[0146]
例如,防跌落检测传感器可以是psd传感器,但是也可以被配置有多种不同种类的
传感器。
[0147]
psd传感器使用半导体表面电阻,通过一个p-n结检测入射光的短距离和长距离位置。psd传感器包括仅检测一个轴方向上的光的一维psd传感器和检测平面上的光位置的二维psd传感器。这两种psd传感器都可以具有pin光电二极管结构。psd传感器是红外传感器的类型,其使用红外线来发送红外线,然后测量从障碍物反射并返回到障碍物的红外线的角度以测量距离。换句话说,psd传感器通过使用三角测量法来计算距障碍物的距离。
[0148]
psd传感器包括向障碍物发出红外线的光发射器和接收从障碍物反射并返回的红外线的光接收器,并且典型地被配置为模块类型。当通过使用psd传感器检测障碍物时,无论障碍物的反射率和色差如何,都可以获得稳定的测量值。
[0149]
清洁单元1900根据从控制器1800发送的控制命令来清洁指定的清洁区域。清洁单元1900通过刷子(未示出)将附近的灰尘散布在指定的清洁区域中,然后驱动吸风机和吸气马达吸取散落的灰尘。另外,清洁单元1900可以根据配置的替换在指定的清洁区域中执行擦拭。
[0150]
此外,控制器1800可以测量由防跌落检测传感器朝向地面发出的红外线的光信号与从障碍物反射和接收的反射信号之间的红外线角度,以便检测跌落处并分析跌落处的深度。
[0151]
同时,控制器1800可以通过使用防跌落检测传感器根据检测到的跌落处的地面状态来确定是否通过跌落处,并根据确定的结果来决定是否通过跌落处。例如,控制器1800通过防跌落传感器确定跌落处的存在或不存在以及跌落处的深度,然后仅当通过防跌落传感器检测到反射信号时才允许移动机器人通过跌落处。
[0152]
作为一个示例,控制器1800还可以使用防跌落传感器来确定移动机器人的提升。
[0153]
另一方面,二维摄像头传感器设置在移动机器人的一侧上,以在移动期间获取与主体的周围环境有关的图像信息。
[0154]
光流传感器转换从设置在传感器中的图像传感器输入的向下的图像以生成预定格式的图像数据。生成的图像数据可以被存储在存储器1700中。
[0155]
此外,一个或多个光源可以安装在光流传感器附近。一个或多个光源将光照射到由图像传感器捕获的底表面的预定区域。换句话说,当移动机器人沿底部表面在特定区域中移动时,在底部表面平坦时在图像传感器和底部表面之间保持预定距离。另一方面,当移动机器人在具有不均匀表面的底部表面上移动时,由于底部表面的不规则性和障碍物,机器人远离底部表面移动超过预定距离。此时,一个或多个光源可以由控制器1800控制以调整要照射的光量。光源可以是能够控制光量的发光器件,例如,发光二极管(led)等。
[0156]
使用光流传感器,控制器1800可以与移动机器人的滑动无关地检测移动机器人的位置。控制器1800可以比较并分析随时间由光流传感器捕获的图像数据,以计算移动距离和移动方向,并且基于移动距离和移动方向来计算移动机器人的位置。使用光流传感器,使用关于移动机器人的底侧的图像信息,控制器1800可以对由另一装置计算出的移动机器人的位置进行防滑校正。
[0157]
三维摄像头传感器可以附接到移动机器人的主体的一侧或一部分,以生成与主体的周围环境有关的三维坐标信息。
[0158]
换句话说,三维摄像头传感器可以是3d深度摄像头,其计算移动机器人和要捕获
的对象的近距离和远距离。
[0159]
具体地,三维摄像头传感器可以捕获与主体的周围环境有关的二维图像,并且生成与捕获的二维图像相对应的多个三维坐标信息。
[0160]
在一个实施例中,三维摄像头传感器可以包括获取常规二维图像的两个或更多个摄像头,并且可以以立体视觉的方式形成以组合从两个或更多个摄像头获得的两个或更多个图像,从而生成三维坐标信息。
[0161]
具体地,根据实施例的三维摄像头传感器可以包括:第一图案照射单元,其用于朝向主体的前方在向下的方向上照射具有第一图案的光;以及第二图案照射单元,其用于朝向主体的前方在向上的方向上照射具有第二图案的光;以及图像获取单元,其用于获取在主体前方的图像。因此,图像获取单元可以获取第一图案的光和第二图案的光入射的区域的图像。
[0162]
在另一个实施例中,三维摄像头传感器可以包括用于与单个摄像头一起照射红外线图案的红外线图案发射单元,并且捕获从红外线图案发射单元照射到待捕获的对象上的红外线图案的形状,从而测量传感器和待捕获的对象之间的距离。这样的三维摄像头传感器可以是ir(红外)型三维摄像头传感器。
[0163]
在又一个实施例中,三维摄像头传感器可以包括发光单元,该发光单元与单个摄像头一起发出光,接收从发光单元发出的从待捕获的对象反射的激光的一部分,并分析接收到的激光,从而测量三维摄像头传感器和待捕获的对象之间的距离。三维摄像头传感器可以是飞行时间(tof)型的三维摄像头传感器。
[0164]
具体地,上述三维摄像头传感器的激光器被配置为以沿至少一个方向延伸的形式照射激光束。在一个示例中,三维摄像头传感器可以包括第一激光器和第二激光器,其中,第一激光器照射彼此相交的线性激光,而第二激光器照射单个线性激光。据此,最下面的激光用于感测底部的障碍物,最上面的激光用于感测上部的障碍物,最下面的激光和最上面的激光之间的中间激光用于感测中间部分的障碍物。
[0165]
另一方面,通信单元1100通过有线、无线和卫星通信方法之一连接到终端装置和/或另一装置(在本文中也称为“家用电器”),以便发送和接收信号和数据。
[0166]
通信单元1100可以与位于特定区域中的另一装置发送和接收数据。在此,另一装置可以是能够连接到网络以发送和接收数据的任何装置,例如,该装置可以是空调、加热装置、空气净化装置、灯、电视、汽车等。另一装置也可以是用于控制门、窗、供水阀、气阀等的装置。另一装置可以是用于感测温度、湿度、气压、气体等的传感器。
[0167]
此外,通信单元1100可以与位于特定区域中或预定范围内的另一机器人清洁器100通信。
[0168]
参照图5a和图5b,执行自主移动的第一清洁器100a和第二清洁器100b可以通过网络通信50彼此交换数据。另外,执行自主移动的第一清洁器100a和/或第二清洁器100b可以通过经由网络通信50或其他通信从终端300接收到的控制命令执行与清洁有关的操作或对应的操作。
[0169]
换句话说,尽管未示出,但是执行自主移动的多个清洁器100a、100b还可以通过第一网络通信执行与终端300的通信,并且通过第二网络通信执行彼此的通信。
[0170]
这里,网络通信50可以指的是使用无线通信技术中的至少一种的短距离通信,诸
如无线lan(wlan)、无线个人局域网(wpan)、无线保真(wi-fi)wi-fi直连、数字生活网络联盟(dlna)、无线宽带(wibro)、全球微波接入互操作性(wimax)、zigbee、z波、蓝牙、射频识别(rfid),红外数据协会(irda)、超宽带(uwb)、无线通用串行总线(usb)等。
[0171]
网络通信50可以根据期望彼此通信的机器人清洁器的通信模式而变化。
[0172]
在图5a中,执行自主移动的第一清洁器100a和/或第二清洁器100b可以通过网络通信50将由其相应的感测单元感测到的信息提供给终端300。终端300还可以经由网络通信50将基于接收到的信息生成的控制命令发送给第一清洁器100a和/或第二清洁器100b。
[0173]
在图5a中,第一清洁器100a的通信单元和第二清洁器100b的通信单元还可以彼此直接通信或经由另一路由器(未示出)间接彼此通信,以识别与对等方的移动状态和位置有关的信息。
[0174]
在一个示例中,第二清洁器100b可以根据从第一清洁器100a接收到的控制命令来执行移动操作和清洁操作。在这种情况下,可以说第一清洁器100a作为主机运行,第二清洁器100b作为从机运行。可替代地,可以说第二清洁器100b跟随第一清洁器100a。在某些情况下,也可以说第一清洁器100a和第二清洁器100b彼此协作。
[0175]
在下文中,将参照图5b描述根据本公开的实施例的包括执行自主移动的多个清洁器100a、100b的系统。
[0176]
如图5b所示,根据本公开的实施例的清洁系统可以包括执行自主移动的多个清洁器100a、100b、网络50、服务器500以及多个终端300a和300b。
[0177]
多个清洁器100a、100b、网络50和至少一个终端300a可以设置在建筑物10中,而另一终端300b和服务器500可以位于建筑物10的外部。
[0178]
多个清洁器100a、100b是在自身移动的同时执行清洁的清洁器,并且可以执行自主移动和自主清洁。多个清洁器100a、100b中的每一个除移动功能和清洁功能之外还可以包括通信单元1100。
[0179]
多个清洁器100a、100b、服务器500以及多个终端300a和300b可以通过网络50连接在一起以交换数据。为此,尽管未示出,但是还可以设置诸如接入点(ap)装置等无线路由器。在这种情况下,位于建筑物(内部网络)10中的终端300a可以通过ap装置访问多个清洁器100a、100b中的至少一个,以对清洁器进行监测、远程控制等。而且,位于外部网络中的终端300b可以通过ap装置访问多个清洁器100a、100b中的至少一个,以对清洁器执行监测、远程控制等。
[0180]
服务器500可以直接通过终端300b无线连接。可替代地,服务器500可以连接到多个清洁器100a,100b中的至少一个,而不通过移动终端300b。
[0181]
服务器500可以包括可编程处理器,并且可以包括各种算法。举例来说,服务器500可以设置有与执行机器学习和/或数据挖掘有关的算法。作为示例,服务器500可以包括语音识别算法。在这种情况下,当接收语音数据时,接收到的语音数据可以通过被转换为文本格式的数据来输出。
[0182]
服务器500可以存储固件信息、与多个清洁器100a、100b有关的操作信息(路线信息等),并且可以注册关于多个清洁器100a、100b的产品信息。例如,服务器500可以是由清洁器制造商操作的服务器或由开放应用商店操作员操作的服务器。
[0183]
在另一个示例中,服务器500可以是家庭服务器,其设置在内部网络10中并且存储
关于家用电器的状态信息或存储由家用电器共享的内容。如果服务器500是家庭服务器,则可以存储与异物有关的信息,例如,异物图像等。
[0184]
同时,多个清洁器100a、100b可以经由zigbee、z波、蓝牙、超宽带等直接无线地彼此连接。在这种情况下,多个清洁器100a、100b可以彼此交换位置信息和移动信息。
[0185]
此时,多个清洁器100a、100b中的任何一个可以是主清洁器100a,而另一个可以是从清洁器100b。例如,第一清洁器100a可以是在清洁地板上吸灰尘的干式清洁器,第二清洁器100b可以是擦拭第一清洁器100a清洁过的地板的湿式清洁器。此外,第一清洁器100a和第二清洁器100b的结构和规格可以彼此不同。
[0186]
在这种情况下,第一清洁器100a可以控制第二清洁器100b的移动和清洁。另外,第二清洁器100b可以在跟随第一清洁器100a的同时执行移动和清洁。这里,第二清洁器100b跟随第一清洁器100a的操作是指第二清洁器100b在与第一清洁器100a保持适当距离的同时通过跟随第一清洁器100a进行移动和清洁的操作。
[0187]
参照图5c,第一清洁器100a可以控制第二清洁器100b,使得第二清洁器100b跟随第一清洁器100a。
[0188]
为此,第一清洁器100a和第二清洁器100b应存在于它们可以彼此通信的特定区域中,并且第二清洁器100b应至少识别第一清洁器100a的相对位置。
[0189]
例如,第一清洁器100a的通信单元和第二清洁器100b的通信单元交换ir信号、超声信号、载波频率、脉冲信号等,并通过三角测量对其进行分析,从而计算出第一清洁器100a和第二清洁器100b的移动位移,从而识别第一清洁器100a和第二清洁器100b的相对位置。然而,本公开不限于该方法,并且上述各种无线通信技术中的一种可以用于通过三角测量等来识别第一清洁器100a和第二清洁器100b的相对位置。这将在下面更详细地描述。
[0190]
当第一清洁器100a识别出与第二清洁器100b的相对位置时,可以基于存储在第一清洁器100a中的地图信息或存储在服务器、终端等中的地图信息来控制第二清洁器100b。另外,第二清洁器100b可以共享由第一清洁器100a感测到的障碍物信息。第二清洁器100b可以基于从第一清洁器100a接收到的控制命令(例如,与移动方向、移动速度、停止等有关的控制命令)来执行操作。
[0191]
具体地,第二清洁器100b在沿着第一清洁器100a的移动路径移动的同时执行清洁。然而,第一清洁器100a和第二清洁器100b的移动方向并不总是彼此一致。例如,当第一清洁器100a向上/向下/向右/向左移动或旋转时,第二清洁器100b可在预定时间后向上/向下/向右/向左移动或旋转,因此第一移动机器人100a和第二移动机器人100b的当前前进方向可以彼此不同。
[0192]
另外,第一清洁器100a的移动速度(va)和第二清洁器100b的移动速度(vb)可以彼此不同。
[0193]
第一移动机器人100a可以考虑第一移动机器人100a和第二移动机器人100b可以彼此通信的距离而控制第二移动机器人100b的移动速度(vb)变化。例如,如果第一清洁器100a和第二清洁器100b移动而彼此远离预定距离或更远,则第一清洁器100a可以控制第二清洁器100b的移动速度(vb)比之前更快。另一方面,当第一清洁器100a和第二清洁器100b移动而彼此靠近达预定距离或更短时,第一清洁器100a可以控制第二清洁器100b的移动速度(vb)比之前更慢或控制第二清洁器100b停止预定时间。因此,第二清洁器100b可以在连
续跟随第一清洁器100a的同时执行清洁。
[0194]
图6、7、8a、8b和8c是用于具体说明在根据本公开的实施例的多个移动机器人100a,100b彼此保持预定距离的同时更灵活地执行跟随的方法的视图。
[0195]
首先,参照图6,将描述应用于本公开以允许第二清洁器100b跟随第一清洁器100a同时多个清洁器100a、100b避免障碍物而不会突然加速/停止的虚拟阻抗控制的概念。
[0196]
在图6中,可以假设移动机器人在从第一位置602朝向第二位置601移动的同时执行清洁。此时,也可以说存在于第一位置602处的移动机器人跟随存在于第二位置601处的另一移动机器人。
[0197]
当存在于第一位置602处的移动机器人跟随存在于第二位置601处的另一移动机器人时,在移动机器人的移动路径之内或附近可能存在多个障碍物(d1、d2)。在此,多个障碍物(d1、d2)中的任一个(d1)可能是固定的障碍物,而另一个障碍物(d2)可能是移动的障碍物。
[0198]
移动机器人可以设置有用于感测多个障碍物(d1、d2)的障碍物传感器。例如,障碍物传感器可以沿着移动机器人的侧外周表面以规则的间隔布置。障碍物传感器可以朝向多个障碍物(d1、d2)发送诸如ir、超声波和无线电波等信号,并接收从多个障碍物(d1、d2)反射的信号,以确定障碍物的位置和距障碍物的距离。
[0199]
虚拟阻抗控制是使用弹簧阻尼器(spring-damper)对移动机器人与障碍物(d1、d2)之间的相对距离和相对速度进行建模然后使用这些力的关系来执行移动和跟随同时灵活地避免障碍物的概念。
[0200]
具体地,假设在移动机器人与多个障碍物(d1、d2)之间生成排斥力(f0),吸引力(fm)作用于移动机器人与第二位置601之间或者第一位置602处的移动机器人与第二位置601处的另一移动机器人之间,并且移动机器人的实际移动方向在排斥力(f0)和吸引力(fm)的合成矢量(fs)的方向上确定。
[0201]
例如,在图6中,在多个障碍物(d1、d2)和障碍物传感器之间存在弹簧和阻尼器的假设下,距多个障碍物(d1、d2)的相应的距离可以被放入弹簧中,并且相应的速度可以被放入阻尼器以计算多个障碍物(d1、d2)与清洁器之间的排斥力。
[0202]
为此,1)使用与在第二位置601处的移动机器人前面的第一位置602处的移动机器人的间隔距离和速度差计算吸引力(fm)。接下来,2)使用第一障碍物610与移动机器人602之间的间隔距离和速度差获得第一排斥力(fo,s),使用第二障碍物620与移动机器人602之间的间隔距离和速度差获得第二排斥力(fo,d),从而获得第一排斥力(fo,s)和第二排斥力(fo,d)的合成值(fo)。然后,3)获得通过组合吸引力(fm)和先前的合成值(fo)而获得的排斥力(fo)。最后,4)移动机器人沿fs方向移动,该方向是以上1)中计算出的吸引力(fm)与以上2)中计算出的排斥力合成值(fo)的合成矢量。
[0203]
另一方面,在上述虚拟阻抗控制的概念中,位于前方点601处的移动机器人(即,第一清洁器100a)实际上继续执行移动和清洁,并继续向后方点602处的另一移动机器人(即,第二清洁器100b)发送关于移动方向和移动速度的信息。另外,第一清洁器100a的移动方向和移动速度可以根据清洁区域的地板结构、灰尘状况等而变化。
[0204]
当第一清洁器100a和第二清洁器100b独立地执行清洁时,另一清洁器可被视为障碍物,并且在移动的同时可仅考虑排斥力。然而,在本公开中,由于第二清洁器100b在跟随
第一清洁器100a的同时执行清洁,所以吸引力(fm)和排斥力(fo)被交替地施加到同一对象。
[0205]
具体地,虽然第二清洁器100b跟随第一清洁器100a,但是吸引力(fm)和排斥力(fo)可以基于确定的跟随距离而交替。
[0206]
在一个示例中,吸引力(fm)和排斥力(fo)的交替程度可以根据清洁区域的地板状态(例如,倾斜度、平坦度、地毯的存在等)、障碍物的存在、清洁空间的灰尘状态(需要密集清洁的区域/位置)等而变化。
[0207]
此外,这里的跟随距离是指在跟随期间必须在多个清洁器之间保持的间隔距离。当多个清洁器之间的间隔距离与跟随距离相差太远时,可能不再能确定彼此之间的相对位置而中断跟随。相反,当多个清洁器之间的间隔距离与跟随距离相比太小时,清洁器彼此碰撞或突然停止而干扰移动。
[0208]
因此,第一清洁器100a的控制器可以在多个清洁器之间的间隔距离在跟随距离之内或远于跟随距离时施加并控制吸引力(fm),而当多个清洁器之间的间隔距离在跟随距离之内时施加并控制排斥力(fo)。
[0209]
吸引力(fm)的施加对应于第一清洁器100a的移动速度的减速度。此外,排斥力(fo)的施加对应于第一清洁器100a的移动速度的加速度。
[0210]
为此,多个清洁器100a,100b中的每一个可基于使用超声波传感器、bwm传感器、ir传感器等发送和接收的信号,使用三角测量技术连续测量相对位置(例如,距离、方向等)。另外,使用在两个不同时间点交换的信号连续地计算多个清洁器100a、100b、特别是前方的第一清洁器100a的移动方向和移动速度。
[0211]
第一清洁器100a的移动速度可以通过以下等式来计算。
[0212]
v1=v0+k(d
min-d
ab
)
[0213]
这里,v0是第一清洁器100a的基本移动速度,k是比例常数,d
min
是跟随距离,d
ab
是多个清洁器100a、100b之间的当前的间隔距离。因此,当多个清洁器之间的间隔距离大于跟随距离时,第一清洁器100a以减速的速度进行移动,而当多个清洁器之间的间隔距离在跟随距离内减小时,第一清洁器100a加速。因此,跟随第一清洁器100a的第二清洁器100b可以不突然加速或突然停止。
[0214]
如上所述,根据本公开,根据间隔距离,排斥力可以施加到障碍物,并且吸引力和排斥力可以交替地施加在多个清洁器100a、100b之间,从而允许避开障碍物,以及灵活地进行跟随而没有任何中断。
[0215]
在下文中,将参照图7的流程图详细描述用于多个清洁器之间的灵活跟随的控制方法。
[0216]
首先,第一清洁器100a的通信单元和第二清洁器100b的通信单元彼此可通信地连接,并且开始识别彼此之间的相对位置的处理(s10)。
[0217]
具体地,第一清洁器100a和第二清洁器100b通过ir传感器、超声传感器、uwb传感器等向和从彼此发送和接收信号,该ir传感器、超声传感器、uwb传感器等设置在每个清洁器的侧面外周表面上或嵌入主体中以确定彼此之间的方向和距离。由于前述传感器是用于允许多个清洁器100a、100b确定彼此之间的相对位置的组件,因此该传感器可以以与通信单元相同的概念来使用。
[0218]
第一清洁器100a和第二清洁器100b分别发送和接收信号,并且识别彼此之间的相对位置。在此,除了例如超宽带(uwb)信号、红外信号、激光信号和超声信号之外,信号也可以是使用诸如zigbee、z-wave和蓝牙等无线通信技术的无线通信信号中的任何一种。
[0219]
第一清洁器100a可以通过前述传感器发送第一信号并且从第二清洁器100b接收第二信号,从而基于第一清洁器100a识别第二清洁器100b的相对位置。
[0220]
此外,第二清洁器100b可以通过前述传感器发送第二信号并接收从第一清洁器100a接收的第一信号,从而基于第二清洁器100b识别第一清洁器100a的相对位置。
[0221]
具体地,例如,一个uwb传感器可以设置在多个清洁器100a,100b的每一个中,或者单个uwb传感器可以设置在第一清洁器100a中,并且至少两个uwb传感器设置在第二清洁器100b中。
[0222]
uwb模块(或uwb传感器)可以被包括在第一清洁器100a和第二清洁器100b的通信单元1100中。考虑到uwb模块用于感测第一清洁器100a和第二清洁器100b的相对位置的事实,uwb模块可以被包括在第一清洁器100a和第二清洁器100b的感测单元1400中。
[0223]
例如,第一清洁器100a可以包括用于发送超宽带信号的uwb模块。发送uwb模块可以被称为第二类型发送传感器或“uwb标签”。
[0224]
此外,第二清洁器100b可以包括接收uwb模块,其用于接收从设置在第一清洁器100a中的发送uwb模块输出的超宽带信号。接收uwb模块可以称为第二类型接收传感器或“uwb锚点”。
[0225]
在uwb模块之间发送/接收的uwb信号可以在特定空间内被平滑地发送和接收。因此,即使在第一清洁器100a和第二清洁器100b之间存在障碍物,如果第一清洁器100a和第二清洁器100b存在于特定空间内,则它们也可以发送和接收uwb信号。
[0226]
第一清洁器和第二清洁器可以测量在uwb标签和uwb锚点之间发送和接收的信号的时间,以确定第一清洁器100a和第二清洁器100b之间的间隔距离。
[0227]
具体地,例如,多个清洁器100a、100b中的每一个可以设置有一个uwb传感器,或者第一清洁器100a可以设置有单个uwb传感器,并且跟随第一清洁器100a的第二清洁器100b可以设置有单个uwb传感器和至少一个天线,或者设置有至少两个uwb传感器,使得第一清洁器100a可以在两个不同的时间点(t1、t2)测量距第二清洁器100b的距离。
[0228]
第一清洁器100a的uwb传感器和第二清洁器100b的uwb传感器向彼此辐射uwb信号,并使用到达时间(toa)来测量距离和相对速度,该到达时间是信号被从机器人反射回来的时间。然而,本公开不限于此,并且可以使用到达时间差(tdoa)或到达角度(aoa)定位技术来识别多个清洁器100a、100b的相对位置。
[0229]
具体地,将给出使用aoa定位技术确定第一清洁器100a和第二清洁器100b的相对位置的方法的描述。为了使用aoa(到达角)定位技术,第一清洁器100a和第二清洁器100b中的每一个均应设置有一个接收器天线或多个接收器天线。第一清洁器100a和第二清洁器100b可以使用分别设置在清洁器中的接收器天线接收信号的角度差来确定它们的相对位置。为此,第一清洁器100a和第二清洁器100b中的每一个必须能够感测来自接收器天线阵列的准确的信号方向。
[0230]
由于分别在第一清洁器100a和第二清洁器100b中生成的信号(例如,uwb信号)仅在特定方向的天线中接收,所以可以确定(识别)信号的接收角度。在假定设置在第一清洁
器100a和第二清洁器100b中的接收器天线的位置已知的情况下,第一清洁器100a和第二清洁器100b的相对位置可以基于接收器天线的信号接收方向来计算。
[0231]
此时,如果安装了一个接收器天线,则可以在预定范围的空间中计算2d位置。另一方面,如果安装了至少两个接收器天线,则可以确定3d位置。在后一种情况下,接收器天线之间的距离d用于位置计算,以便准确地确定信号接收方向。
[0232]
此外,本公开可以被实现为仅通过第一清洁器100a确定第二清洁器100b的相对位置,或者仅通过第二清洁器100b计算并确定第一清洁器100a的相对位置。在该实现示例中,第一清洁器100a可以将与相对位置有关的信息发送到第二清洁器100b,或者第二清洁器100b可以将与相对位置有关的信息发送到第一清洁器100a。
[0233]
如上所述,根据本公开,由于多个清洁器100a、100b可以确定彼此的相对位置,因此跟随控制可以通过确定彼此的相对位置而在没有任何中断的情况下执行,而与服务器的通信状态无关。
[0234]
另外,第一清洁器100a和第二清洁器100b可以通过相应的通信单元彼此共享移动状态信息和地图信息。移动状态信息、地图信息、障碍物信息等通常可以根据多个清洁器100a,100b之间的跟随关系从第一清洁器100a发送到第二清洁器100b,但是第二清洁器100b感测到的信息(例如,新的障碍物信息)也可以被发送到第一清洁器100a。
[0235]
接下来,第二清洁器100b在遵循第一清洁器100a的移动路径的同时执行清洁(s20)。
[0236]
具体地,第一清洁器100a最初清洁指定的清洁区域,并且第二清洁器100b在遵循第一清洁器100a已经通过的移动路径的同时执行清洁。此时,第二清洁器100b还可以在跟随第一清洁器100a的移动速度和相关路径上的清洁模式的同时执行清洁。
[0237]
同时,在一个示例中,第二清洁器100b的实际移动路径可能与第一清洁器100a的移动路径不一致。
[0238]
例如,当在第一清洁器100a已通过时未检测到的障碍物在第二清洁器100b通过时被新感测到时,第二清洁器100b的移动路径可能与第一清洁器的移动路径略有不同。此时,可以在避开新的障碍物时从最接近的位置跟随第一清洁器100a。
[0239]
在第二清洁器100b跟随第一清洁器100a的同时,第一清洁器100a连续地监测与第二清洁器100b的间隔距离(s30)。
[0240]
第一清洁器100a的控制器基于通过分别设置在其中的诸如uwb传感器、ir传感器、超声波传感器等的传感器获取的信号值,连续地监测第一清洁器100a和第二清洁器100b之间的相对位置,并确定与相对位置相对应的间隔距离是在远离移动还是越来越近。
[0241]
根据监测,第一清洁器100a的控制器可以确定距第二清洁器100b的间隔距离是否偏离临界跟随距离(s40)。此时,第一清洁器100a的控制器可以确定第一清洁器100a的当前移动速度。
[0242]
在此,临界跟随距离表示圆范围内的四向距离,该圆范围比其中多个清洁器能够确定彼此之间的相对位置的范围小预定值。
[0243]
临界跟随距离可以包括多个清洁器100a、100b可以彼此最大程度地靠近的“最小跟随距离”和多个清洁器100a,100b可以彼此最大程度地远离的“最大跟随距离”。因此,是否偏离临界跟随距离可以表示多个清洁器100a、100b之间的间隔距离小于最小跟随距离或
大于最大跟随距离。
[0244]
当间隔距离接近最小跟随距离时,排斥力施加在第一清洁器100a和第二清洁器100b之间,以控制第一清洁器100a和第二清洁器100b彼此远离移动。此外,间隔距离接近最大跟随距离,吸引力施加在第一清洁器100a和第二清洁器100b之间,以控制第一清洁器100a和第二清洁器100b彼此更靠近地移动。
[0245]
作为确定的结果,当距离没有偏离临界跟随距离时,处理返回到步骤s20。因此,第二清洁器100b在跟随第一清洁器100a的同时继续清洁。
[0246]
作为确定的结果,当该距离偏离或预期偏离临界跟随距离时,第一清洁器100a的控制器改变第一清洁器100a的行进单元的移动速度或将停止命令发送到第二清洁器100b(s50)。
[0247]
图8a至图8c示出了各种示例,其中,第一清洁器100a基于临界跟随距离来控制其自身或第二清洁器100b的移动速度。
[0248]
首先,图8a的(a)示出了以下情况:第一清洁器100a与第二清洁器100b之间的间隔距离(d1)不偏离临界跟随距离(例如,最小临界跟随距离),而是基于第二清洁器100a和第二清洁器100b的当前移动速度(v1,v0),被确定为小于临界跟随距离。
[0249]
此时,如图8a的(b)所示,第一清洁器100a将通过从临界跟随距离减去期望的间隔距离而得到的值(正值)与当前移动速度(v1)相加而改变第一车辆100a的移动速度。因此,第一清洁器100a以加速的移动速度(v2)移动,因此距第二清洁器100b的间隔距离(d2)增大。
[0250]
接下来,图8b的(a)示出了以下情况:第一清洁器100a和第二清洁器100b之间的间隔距离(d3)不偏离临界跟随距离(例如,最大临界跟随距离),但是基于第二清洁器100a和第二清洁器100b的当前移动速度(v1,v0)被确定为大于临界跟随距离。
[0251]
此时,如图8b的(b)所示,第一清洁器100a将通过从临界跟随距离减去期望的间隔距离而得到的值(负值)与当前移动速度(v1)相加来改变第一车辆100a的移动速度。因此,第一清洁器100a以减速的移动速度(v3)移动,因此距第二清洁器100b的间隔距离(d4)减小。
[0252]
这里,减速的移动速度(v3)可以包括“0”。例如,当第二清洁器100b的移动速度进一步减小时,或者当第一清洁器100a与第二清洁器100b之间的间隔距离(d3)稍微偏离临界跟随距离时,可以控制第一清洁器100a停止。
[0253]
接下来,图8c的(a)示出了与图8a相同的情况,其中,第一清洁器100a与第二清洁器100b之间的间隔距离(d5)被确定为小于临界跟随距离(例如,最大临界跟随距离),但是第一清洁器100a不能根据周围情况以加速的速度移动。
[0254]
此时,如图8c的(b)所示,第一清洁器100a可以在保持其自身的移动速度的同时向第二清洁器100b发送停止命令。在预定的时间段过去之后,当第一清洁器100a与第二清洁器100b之间的间隔距离(d6)增大时,驱动命令可以被发送至第二清洁器100b,从而第二清洁器100b被控制为继续进行跟随
[0255]
另一方面,当第二清洁器100b的移动路径根据周围情况从第一清洁器100a的移动路径改变时,在改变后的移动路径进一步远离距第一清洁器100a的间隔距离的情况下,第一清洁器100a可以接收这样的状态信息以减慢第一清洁器100a的移动速度或停止第一清
洁器100a的移动达预定的时间段,以便不中断跟随。
[0256]
另一方面,在跟随多个机器人清洁器的同时,当作为领先的清洁器的第一清洁器改变其移动方向以造成与第二清洁器不同的移动方向时,应考虑以下几点。
[0257]
具体地,当作为领先的清洁器的第一清洁器改变其移动方向并逐渐接近作为跟随的清洁器的第二清洁器时,在多个机器人清洁器中需要没有碰撞的灵活的无碰撞避免设计。
[0258]
此外,当第一清洁器改变其移动方向并逐渐接近作为跟随的清洁器的第二清洁器时,第一清洁器和第二清洁器之间的跟随关系在视觉和信号接收方向方面都相反,需要设计计划以继续执行跟随。
[0259]
因此,在本公开中,当作为领先的清洁器的第一清洁器改变其移动方向并逐渐接近作为跟随的清洁器的第二清洁器时,实现了能够允许没有碰撞的灵活的无碰撞避免并且防止跟随关系被反转的方案。
[0260]
首先,参考图9,将详细描述根据本公开的实施例的根据第一清洁器的移动方向的变化来限制第二清洁器的跟随。
[0261]
参照图9,开始基于信号以可通信的方式将第一清洁器100a连接到第二清洁器100b以获得彼此之间的相对位置的过程(901)。更具体地,第一清洁器100a和第二清洁器100b之间的直接通信无需服务器通信而通过使用设置在第一清洁器100a中的传感器和设置在第二清洁器100b中的传感器向/从彼此发送和接收信号(例如,uwb信号)进行。
[0262]
第一清洁器100a可以基于通过设置在第一清洁器100a中的传感器(例如,uwb传感器)发送和接收的第一信号以及通过设置在第二清洁器100b中的传感器(例如,uwb传感器)发送和接收的第二信号来识别第二清洁器100b的相对位置。由于上面已经描述了传感器的类型和用于获得彼此之间的相对位置的信号,因此这里将省略其详细描述。
[0263]
基于如此识别的相对位置,第一清洁器100a控制第二清洁器100b遵循第一清洁器100a的移动路径(902)。
[0264]
第一清洁器100a可以基于向第二清洁器100b发送和从第二清洁器100b接收的信号的飞行时间(tof)来计算距第二清洁器100b的间隔距离。随着tof减小,第一清洁器100a确定距第二清洁器100b的间隔距离较小,而随着tof增大,第一清洁器100a确定距第二清洁器100b的间隔距离较大。另外,间隔距离的变化可以使用在两个不同时间点处使第一清洁器100a在圆心处的第二清洁器100b的距离来确定。
[0265]
可替代地,在另一示例中,第一清洁器100a和第二清洁器100b可以使用在其中分别设置的接收器天线处接收的信号接收角的差来确定彼此之间的相对位置,以获得间隔距离的变化。
[0266]
第一清洁器100a的移动相关信息以及计算的间隔距离一起被发送到第二清洁器100b。此外,在一个示例中,第二清洁器100b可以将其自身的状态信息发送到第一清洁器100a。
[0267]
在此,移动相关信息可以包括关于障碍物信息、地图信息、移动模式、移动路径和移动速度的所有信息。因此,第二清洁器100b可以基于第一清洁器100a感测到的障碍物信息、地板的地形信息以及移动模式信息来感测障碍物,并且沿着第一清洁器100a的移动路径移动。
[0268]
另一方面,第一清洁器100a的相对位置可以由第二清洁器100b获得,因此第二清洁器100b可能能够自行生成移动控制命令,而不是遵循从第一清洁器100a接收到的控制命令,并且沿着第一清洁器100a的移动轨迹移动。在这种情况下,第二清洁器100b还可以包括用于存储与第一清洁器100a的移动轨迹有关的数据的存储器。
[0269]
另外,在第二清洁器100b跟随第一清洁器100a的同时,为了不偏离跟随,根据虚拟阻抗控制的概念的吸引力(fm)和排斥力(fo)可以基于确定的跟随距离而交替地施加。
[0270]
具体地,第一清洁器100a可以将计算的间隔距离与指定的跟随距离进行比较,并且基于比较结果根据虚拟阻抗控制的概念来交替地施加吸引力和排斥力,从而可变地控制清洁器100a和第二清洁器100b的移动速度。因此,第二清洁器100b自然可以无缝地遵循第一清洁器100a的移动路径而没有任何中断。
[0271]
例如,当计算出的间隔距离大于跟随距离时,第一清洁器100a的控制器可以施加吸引力以使第一清洁器100a的移动速度减速、或者以使第二清洁器100b的移动速度加速,或执行这两种操作,从而减小间隔距离。此外,当计算出的间隔距离与跟随距离相比太小时,第一清洁器100a的控制器可以施加排斥力以加速第一清洁器100a的移动速度或者减速第二清洁器100b的移动速度或执行这两种操作,从而增加间隔距离。
[0272]
此外,在本公开中,接收传感器可以放置在第一清洁器100a的后侧和前侧上,以允许第一清洁器100a的控制器识别从第二清洁器100a接收的信号(例如,uwb信号)的接收方向。为此,uwb传感器可以设置在第一清洁器100a的后侧处,并且uwb传感器或多个光学传感器可以从第一清洁器100a的前侧间隔开。另外,第二清洁器100b可以设置有一个或多个uwb传感器和多个接收天线。
[0273]
第一清洁器100a可以识别从第二清洁器100b接收到的信号的接收方向,以确定第二清洁器100b是否位于第一清洁器100a的后侧。因此,第一清洁器100a可以确定第一清洁器100a和第二清洁器100b的顺序是否相反。
[0274]
当在第二清洁器100b跟随第一清洁器100a的同时第一清洁器100a的移动方向变化时(903),第一清洁器100a可以将与移动方向的变化相对应的信号发送到第二清洁器100b(904)。
[0275]
在此,第一清洁器100a的移动方向的变化可以通过一个或多个感测信号来执行。感测信号包括以下之一:基于地图信息与第一清洁器100a的移动模式相对应的信号、与外部信号传感器的信号接收相对应的信号、与通过前传感器/3d传感器/摄像头传感器/碰撞传感器对障碍物的感测相对应的信号、与通过防跌落传感器/地磁传感器对地板的地形特征的感测相对应的信号、以及与进入设置为虚拟区域(例如,虚拟墙壁等)的区域的感测相对应的信号以及与进入通过深度学习(dl)/深度神经网络(dnn)学习的陷阱的感测相对应的信号。
[0276]
此外,移动方向的变化表示通过从当前的移动方向在5至360
°
的范围内执行旋转移动来改变移动方向和移动区域。例如,移动方向的变化可以是第一清洁器100a面向墙壁并且以相反的方向旋转360度以移动到下一移动区域(下一移动线)的情况。此外,例如,移动方向的变化可以是第一清洁器100a通过防跌落传感器感测到跌落处并且从当前的移动方向左转90度的情况。此外,移动方向的变化可以是第一清洁器100a识别到下一个移动区域是学习的陷阱并且沿着陷阱区域的边界移动的情况。
[0277]
另外,可以响应于障碍物的感测来执行移动方向的变化。
[0278]
这里,障碍物可以包括跌落处以及固定的障碍物以及移动的障碍物,固定的障碍物例如墙壁、家具、固定装置等从清洁区域的地板突出而阻碍清洁器移动。
[0279]
另外,移动方向的变化可以包括转向。例如,当以之字形(zigzag)方式清洁清洁区域时,如果在清洁单条线之后感测到诸如墙壁、门槛和门等障碍物,则第一清洁器100a可以执行转向以根据移动模式清洁下一条线。
[0280]
这里,在广义上,转向仅表示清洁器使轮单元100从当前的移动方向在左右方向上旋转以改变移动方向。在狭义上,转向可以表示其中清洁器在左右方向上旋转轮单元100以执行原地旋转、然后在反方向上改变移动方向的连续操作。在下文中,将在狭义的转向的假设下进行描述,但是只要不矛盾或一致,则也可以包括在广义上的上述转向操作。
[0281]
当第一清洁器100a的移动方向变化时,第一清洁器100a可以将其通知给第二清洁器100b,从而允许第二清洁器100b通过在预定时间段之后改变移动方向来以对应的方式移动。
[0282]
接下来,第一清洁器100a根据移动方向的变化,将与从第二清洁器100b接收到的信号的接收方向的变化相对应的跟随限制命令发送给第二清洁器100b(905)。
[0283]
如上所述,在本公开中,接收传感器可以放置在第一清洁器100a的后侧和前侧/左侧和右侧,以允许第一清洁器100a的控制器通过区分前侧和后侧而识别从第二清洁器100b接收到的信号的接收方向。
[0284]
为此,uwb传感器可以设置在第一清洁器100a的后侧处,并且uwb传感器或多个光学传感器可以与第一清洁器100a的前侧间隔开。第一清洁器100a可以识别从第二清洁器100b接收的光信号的接收方向,以确定第二清洁器100b是来自第一清洁器100a的后侧还是以反转的方式位于第一清洁器100a的前侧。
[0285]
可替代地,接收传感器可以设置在第二清洁器100b的前侧和后侧或左侧和右侧上,以允许第二清洁器100b的控制器通过区分分前侧和后侧而识别从第一清洁器100a接收到的信号的接收方向。
[0286]
这里,用于限制跟随的控制命令包括用于第二清洁器100b的移动停止命令和用于主体的跟随解除命令。然而,此时,维持第一清洁器100a和第二清洁器100b的连接状态,并且获得彼此之间的相对位置以维持临界跟随距离。换句话说,第一清洁器100a和第二清洁器100b之间的间隔距离不偏离预定的临界跟随距离。
[0287]
在解除跟随限制之后,与在第二清洁器100b的跟随被限制的同时已经由第一清洁器100a移动的移动路径有关的信息可以被发送到第二清洁器100b。可替代地,即使在第二清洁器100b的跟随被限制的同时,第二清洁器100b也可以将与第一清洁器100a的移动路径有关的信息存储在存储器等中,并解除跟随限制,然后进行操作以首先清理先前的移动路径,然后恢复跟随。
[0288]
用于限制跟随的控制命令可以继续,直到在改变移动方向之后,例如在第二清洁器100b进行转向之后,感测到从第二清洁器100b接收的信号的接收方向的变化之后,满足指定条件为止。
[0289]
这里,指定条件可以是在第一清洁器100a转向之后经过预定时间段、第一清洁器100a与第二清洁器100b之间的间隔距离的变化(例如,间隔距离减小然后再次增加的时间
点,或间隔距离增加到最大临界跟随距离)、以及从第二清洁器100b发送的信号的接收方向的再次变化。
[0290]
在一个示例中,恢复跟随的时间点可以与满足指定条件时的时间点重合。例如,可以是在由第一清洁器100a执行转向之后经过了预定时间段的时间点。可替代地,可以是在第一清洁器100a执行转向之后在第一清洁器1a和第二清洁器100b之间的间隔距离减小并且然后再次增加的时间点。可替代地,可以是从第二清洁器100b发送的信号的接收方向第二次改变的时间点,即,在第一清洁器100a进行转向之后从第一清洁器100b的后侧再次接收到第二清洁器100b的信号的时间点。
[0291]
在此,从第二清洁器100b发送的信号的接收方向的变化可以基于以下情况确定:从布置在第一清洁器100a的外周表面上的多个光学传感器(例如,ir传感器、超声波传感器等)之中或设置在第一清洁器100a中的多个天线之中强烈地识别出从第二清洁器100b接收的信号(例如,uwb信号)。
[0292]
例如,当在第一清洁器100a保持当前的移动方向的同时,第二清洁器100b改变其移动方向时,从第二清洁器100b发送的信号的接收方向可以改变。可替代地,在第二清洁器100b保持当前的移动方向或处于停止状态的同时,当在第一清洁器100a的转向操作之后第一清洁器100a改变其移动方向时,从第二清洁器100b发送的信号的接收方向可以改变。在后一种情况下,第一清洁器100a超过第二清洁器100b时,信号的接收方向再次改变。
[0293]
另一方面,在另一示例中,当第一清洁器100a在转向操作之后改变其移动方向时,第二清洁器100a可以感测到从第一清洁器100a发送到第二清洁器100b的信号的接收方向的变化。
[0294]
此外,随着在转向操作之后第二清洁器100b改变其移动方向,当第一清洁器100a和第二清洁器100b的移动方向彼此一致时,第一清洁器100a可以感测从第二清洁器100b发送的信号的接收方向的再次变化。在这种情况下,第一清洁器100a继续以其原始移动速度移动,并且第二清洁器100b沿着第一清洁器100a的移动路径进行跟随移动。
[0295]
在下文中,将参考附图详细描述各种示例,这些示例与当第一清洁器100a在转向操作之后通过改变其移动方向而移动时限制第二清洁器100b的跟随以防止第一清洁器100a与第二清洁器100b碰撞以及前后位置的反转有关。
[0296]
首先,参考图10a、10b、10c、10d和10e,第一清洁器将在转向之后改变其移动方向,然后第二清洁器将远离第一清洁器。
[0297]
首先,如图10a所示,第一清洁器100a领先执行之字形模式,并且第二清洁器100b在沿着第一清洁器100a的移动路径进行跟随的同时进行清洁。
[0298]
当第一清洁器100a完成第一线(l1)的清洁并执行转向或原地旋转(lr)时,当根据之字形模式遇到墙壁10时,同时遵循墙壁10以移动到第二线(l2)。此时,可以控制在墙壁10和第一清洁器100a之间保持预定距离,从而利于原地旋转(lr)。可以通过以不同的速度驱动主轮111a和副轮111b或沿不同的方向驱动主轮111a和副轮111b来执行原地地旋转(lr)。
[0299]
在第一清洁器100a如上所述执行转向的同时,如图10所示,第二清洁器100b直线向前移动,同时沿着第一清洁器100a的移动路径进行跟随直到指定的跟随距离(dmin),然后停止。
[0300]
为此,第一清洁器100a感测到第二清洁器100b已经进入了指定的跟随距离
(dmin),在该时间点向第二清洁器100b发送停止命令。可替代地,第一清洁器100a可以发送一次停止命令,并且第二清洁器100b可以在清洁器100b进入指定的跟随距离(dmin)的时间点执行停止命令。这样的停止命令属于限制跟随的控制命令。可替代地,第二清洁器100b也可以识别第一清洁器100a的相对位置,因此,当第二清洁器100b在指定的跟随距离(dmin)内更靠近第一清洁器100a时,第二清洁器100b本身可以输出限制跟随的控制命令。
[0301]
接下来,参照图10c,在遵循墙壁10的同时已经进行原地旋转的第一清洁器100a进入第二线(l2)。此时,第二线(l2)中的移动方向是第一线(l1)中的移动方向的相反方向。
[0302]
当第二清洁器100b不存在于第二线(l2)上时,第一清洁器100a可以执行直线移动。
[0303]
另一方面,由于第一线(l1)与第二线(l2)部分重叠,所以当第一清洁器100a继续沿着第二线(l2)移动时,第一清洁器100a与第二清洁器100b碰撞。第一清洁器100a可以在通过障碍物传感器等避开第二清洁器100b的同时进行移动,但是在这种情况下,第一清洁器100a的清洁路径计划中可能发生错误。随着第一清洁器100a避开第二清洁器100b的次数增加,这种错误可能增加。
[0304]
当第一清洁器100a感测到随着第一清洁器100a改变其移动方向,第一清洁器100a在参考范围内(例如,在10cm之内)接近第二清洁器100b时,第二清洁器100b可通过避开第一清洁器100a而进行移动。
[0305]
为此,参考图10c,第一清洁器100a通过设置在第一清洁器100a中的传感器(例如,uwb或光学传感器)感测从第二清洁器100b发出的信号a的信号强度和信号方向,从而感测到其靠近第二清洁器100b的位置。此外,从第一清洁器100a发出的信号a的信号强度和信号方向(

),从而感测到第一清洁器100a接近。因此,处于静止状态的第二清洁器100b在远离第一清洁器100a和第二线(l2)的方向上上移动(

)。在图10c中,示出了第二清洁器100b向右移动,但是本公开不限于此,例如,第二清洁器100b可以向上或向后移动45度。
[0306]
在此,第二清洁器100b的移动方向是远离第一清洁器100a的预期位置的方向,并且移动距离可以在第一清洁器100a的半径或直径内。
[0307]
在一个示例中,可以在图10b中实现在第一清洁器100a感测到另一墙壁10b作为障碍物并将其发送到第二清洁器100b的时间点提前移动第二清洁器100b。在这种情况下,由于第二清洁器100b已经通过避开第一清洁器100a而提前移动,因此第一清洁器100a不需要减速第二线l2。
[0308]
另一方面,尽管未示出,但是在另一示例中,在转向之后,第一清洁器100a的控制器可以感测第二清洁器100b存在于主体的下一个移动区域(即,第二线(l2))中,并且当接近第二清洁器100b时,控制行进单元1300在移出作为当前的移动区域的第二线(l2)的同时,沿着第二清洁器100b的外边缘移动。换句话说,第一清洁器100a可被实现为在避开第二清洁器100b的同时移动。在这种情况下,不必移动处于静止状态的第二清洁器100b。
[0309]
此时,第一清洁器100a可以在沿着第二清洁器100b的外边缘画弧的同时移动。这里,弧的长度可以与感测到在接近第二清洁器100b之后第二清洁器100b与第二清洁器100b分离的时间点成比例。另外,弧可以尽可能地靠近第二清洁器100b的外边缘绘制。这是因为随着第一清洁器100a在远离第二清洁器100b的外边缘的同时移动以画弧,从清洁区域排除的区域增加。在第一清洁器100a在如上所述的避开第二清洁器100b的同时移动时,第二清
洁器100b可以根据跟随限制继续保持静止状态或原地进行清洁操作。
[0310]
在一个示例中,在第一清洁器100a如上所述向第二清洁器100b发送用于限制跟随的控制命令时,同时相对于第一清洁器100a的当前移动方向从前侧接收到从第二清洁器100b接收的信号。换句话说,在相对于第一清洁器100a的当前移动方向从前侧接收到从第二清洁器100b接收的信号的同时,第二清洁器100b保持静止状态或在移动的时间点处保持静止状态。
[0311]
接下来,如图10d所示,随着第一清洁器100a在当前的移动方向(即,第二线(l2))上连续移动,在相对于第一清洁器100a的当前移动方向从后侧感测到从第二清洁器100b接收的信号的时间点(

),第二清洁器100b开始在第一线(l1)上移动(

)以遵循第一清洁器100a的移动路径。
[0312]
换句话说,如图10d所示,第二清洁器100b的跟随恢复时间点可以与从相对于第一清洁器100a的移动方向的后侧接收到从第二清洁器100b发送的信号b的时间点或者从第一清洁器100a发送的信号b的接收方向被反转的时间点重合。
[0313]
换句话说,在转向之后,第二清洁器100b位于处于领先的第一清洁器100a的前方。因此,当在这种状态下进行跟随时,可能会发生干扰。因此通过区分接收信号的前向和后向方向,需要进行如下控制:当作为跟随的清洁器的第二清洁器100b位于第一清洁器100a的前方时用于暂时解除跟随的控制,以及当第二清洁器位于第一清洁器100a的后面时连接跟随的控制。
[0314]
为此,除了用于获得相对位置的传感器(例如,uwb)之外,用于ir、超声波等的接收光学传感器或天线可以布置在第一清洁器100a的前面和后面,并且还可以附加地布置发送光学传感器,或者多个天线可以布置在第二清洁器100b中以确定第二清洁器100b相对于第一清洁器100a的当前移动方向是在前侧还是在后侧。
[0315]
换句话说,在图10c中,第二清洁器100b位于第一清洁器100a的前方,因此,维持第一清洁器100a和第二清洁器100b之间的跟随限制。因此,第二清洁器100b执行静止状态或原地清洁。在图10d中,当确定第二清洁器100b位于第一清洁器100a的后面时,在时间点1010恢复第二清洁器100b对第一清洁器100a的跟随。
[0316]
第一清洁器100a保持跟随限制直到其位于第二清洁器100b的前面为止的原因是为了解决由于前后位置的反转而导致的跟随控制的错误和控制复杂性。
[0317]
在图10d中,第一清洁器100a在向第二清洁器100b发送跟随恢复命令之后停止(

)。当在第二清洁器100b朝向墙壁10移动以执行转向的同时第一清洁器100a继续移动时,多个清洁器之间的间隔距离进一步增加。这是因为以这种方式,当第一清洁器100a与第二清洁器100b之间的间隔距离增加太多时,妨碍跟随关系的视觉稳定性。
[0318]
通过上述对信号接收方向的变化的感测,即使在第一清洁器100a停止时,第一清洁器100a也可以感测第二清洁器100b的转向和移动方向的变化。现在,根据第二清洁器100b的跟随移动,多个清洁器之间的间隔距离减小。因此,在一个示例中,当感测到从第二清洁器100b发送的信号的接收方向的再次改变时,第一清洁器100a可以进行操作以恢复移动。
[0319]
如上所述,第二清洁器100b直线向前移动(

),然后在遵循墙壁10的同时进行原地旋转,并进入第二线(l2)以跟随第一清洁器100a已经通过的移动路径。在此时间期间,第
一清洁器100a保持处于静止状态。
[0320]
当第一清洁器100a和第二清洁器100b之间的间隔距离根据第二清洁器100b的移动而在指定的跟随距离内减小时,第一清洁器100a再次恢复移动,并且第二清洁器100b沿着第一清洁器100a的移动路径进行跟随。
[0321]
此时,如图10e所示,第二清洁器100b沿着第二线(l2)直线向前移动,并且当基于从第一清洁器100a发送的信号c或从第二清洁器100b发送的信号c感测到两个清洁器之间的间隔距离在指定跟随距离内减小时,第一清洁器100a再次开始移动。第二清洁器100b如之前那样沿着第一清洁器100a的移动路径进行跟随。
[0322]
然而,由于第二清洁器100b当前正移出第一线(l1),因此它可以在画弧的同时进入第一线(l1),然后遵循第一清洁器100a的先前移动路径(

)。此时,在遵循第一线(l1)的同时画弧。具体地,画弧以通过最短距离进入第一线(l1),但是考虑轮单元111的状态和第二清洁器100b的移动速度,通过校正的值画弧。
[0323]
另一方面,如果第一清洁器100a在避开第二清洁器100b的同时移动,则第一清洁器100a已经通过的移动路径画出了弧。然后,当第二清洁器100b沿着第一清洁器100a已经通过的移动路径移动时,如果在第二线(l2)的移动区域内没有其他障碍物,则第二清洁器100b可以执行直线移动,这与车辆100a的移动路径不同。
[0324]
换句话说,在第一清洁器100a的移动方向变化之后第二清洁器100b沿着第一清洁器100a的移动路径进行跟随的同时,第一清洁器100a可以忽略偏离第一清洁器自身的移动区域的移动路径,并向前直线移动以避开第二清洁器100b。
[0325]
第一清洁器100a可以保持移动停止状态,直到第二清洁器100b进入第二线(l2)为止,或者直到在第二清洁器100b进入第二线(l2)之后第一清洁器100a与第二清洁器100a之间的间隔距离在最小临界跟随距离内减小为止。这允许第一清洁器100a至少在第二清洁器100b遵循墙壁10的同时进行等待,以便不中断跟随。
[0326]
在图10e中,当基于信号c第一清洁器100a和第二清洁器100b彼此足够接近时,第一清洁器100a再次执行移动,并且第二清洁器100b沿着第一清洁器100a的移动路径进行跟随。
[0327]
接下来,图11a、图11b、图11c、图11d和图11e示出了第一清洁器在转向之后改变其移动方向,并且在第二清洁器无法避开第一清洁器的情况下第一清洁器在避开第二清洁器的同时进行移动的实施例。
[0328]
如图11a所示,本文示出了以下情况:第一清洁器100a在其上移动的第一线(ll)的侧向侧被另一墙壁10b阻挡,并且第二清洁器100b无法稍后避开第一清洁器100a。
[0329]
参照图11b,第一清洁器100a可以在沿着第一线(l1)移动的同时将位于移动方向左侧的墙壁10b感测为障碍物。这样的障碍物信息也可以由第二清洁器100b感测。
[0330]
当第一清洁器100a完成第一线(l1)的清洁并执行转向或原地旋转(lr)时,当根据之字形模式遇到墙壁10时,同时遵循墙壁10以移动到第二线(l2)。此时,可以控制在墙壁10和第一清洁器100a之间保持预定距离,从而利于原地旋转(lr)。可以通过以不同的速度驱动主轮111a和副轮111b或沿不同的方向驱动主轮111a和副轮111b来执行原地旋转(lr)。
[0331]
在第一清洁器100a如上所述执行转向的同时,如图11b所示,第二清洁器100b直线向前移动,同时沿着第一清洁器100a的移动路径进行跟随直到指定的跟随距离(dmin),然
后停止。
[0332]
为此,第一清洁器100a感测到第二清洁器100b已经进入了指定的跟随距离(dmin),在该时间点向第二清洁器100b发送停止命令。可替代地,第一清洁器100a可以发送一次停止命令,并且第二清洁器100b可以在清洁器100b进入指定的跟随距离(dmin)的时间点执行停止命令。这样的停止命令属于限制跟随的控制命令。可替代地,第二清洁器100b也可以识别第一清洁器100a的相对位置,因此,当第二清洁器100b在指定的跟随距离(dmin)内更靠近第一清洁器100a时,第二清洁器100b本身可以输出限制跟随的控制命令。
[0333]
接下来,如图11c所示,如果基于信号a确定当第一清洁器100a接近第二清洁器100b时第二清洁器100b不能向右移动的情况,即,如果确定不移出第二线(l2),则第一清洁器100a的控制器可以控制行进单元1300移出作为当前移动区域的第二线(l2),并且在接近第二清洁器100b时,沿着第二清洁器100b的外边缘移动。换句话说,第一清洁器100a可被实现为在避开第二清洁器100b的同时移动。这是因为第二清洁器100b由于墙壁10b的存在而不能远离第一清洁器100a移动。
[0334]
第一清洁器100a可以在沿着第二清洁器100b的外边缘画弧的同时移动。这里,弧的长度可以与感测到接近第二清洁器100b之后第二清洁器100b与第二清洁器100b分离的时间点成比例。另外,弧可以尽可能地靠近第二清洁器100b的外边缘绘制。这是因为随着第一清洁器100a在远离第二清洁器100b的外边缘的同时移动以画弧,从清洁区域排除的区域增加。在第一清洁器100a在如上所述的避开第二清洁器100b的同时移动时,第二清洁器100b可以根据跟随限制继续保持静止状态或原地进行清洁操作。
[0335]
如上所述,如图11d所示,第一清洁器100a在画弧的同时移动并再次进入第二线(l2)以沿着第二线(l2)移动,直到其位于第二清洁器100b的前面为止。此外,当基于信号b感测到第二清洁器100b位于第一清洁器100a的后面时,第一清洁器100a停止移动(

)。然后,恢复第二清洁器100b的跟随,并且第二清洁器100b沿着第一清洁器100a的先前移动路径从当前位置(

)开始进行跟随。
[0336]
接下来,如图11e所示,如果基于信号c第一清洁器100a和第二清洁器100b彼此足够靠近(

),则第一清洁器100a再次执行移动(

),并且第二清洁器100b沿着第一清洁器100a的移动路径进行跟随。
[0337]
对于另一示例,图12a、图12b、图12c和图12d示出了在第一清洁器转向之后第一清洁器和第二清洁器都无法避开彼此的情况下第二清洁器的控制示例。
[0338]
如图12a中所示,本文示出了作为第一清洁器100a应进入的第二线(l2)的侧向侧被另一墙壁10b阻挡,并且第二清洁器100b的侧向侧也被障碍物(例如,另一个墙壁10c等)阻挡的情况的第一清洁器100a和第二清洁器100b两者都不能避开彼此的情况。
[0339]
参照图12b,第一清洁器100a考虑到第一墙壁10a和第二墙壁10c这两者执行原地旋转,并且在该时间点,第二清洁器100b的跟随被暂时解除。在第一清洁器100a旋转90度的时间点处,位于前侧的第三墙壁10b可被感测为障碍物。这样的障碍物信息可以被发送到位于跟随距离内的第二清洁器100b。
[0340]
接下来,参考图12c,当第一清洁器100a在遵循第一墙壁和第二墙壁的同时执行转向然后进入新的线时,第一清洁器100a识别出存在于移动方向前方的多个障碍物,即,第三墙壁10c和第二清洁器100b。
[0341]
在一个示例中,取决于在转向之后感测到单个障碍物还是感测到多个障碍物,可以不同地执行第一清洁器100a对第二清洁器100a的控制。
[0342]
当在已经进入新的线的第一清洁器100a的前面感测到多个障碍物时,控制为第二清洁器100b执行反向移动,直到仅检测到单个障碍物,即,第三墙壁10c(

)。这里,反向移动表示在反向方向上执行第二清洁器100b已通过的移动路径。此时,第二清洁器100b与第一清洁器100a之间的间隔距离可能偏离指定的跟随距离。换句话说,沿相反方向的移动距离可能偏离跟随距离。这是因为第二清洁器100b没有移出第一清洁器100a的移动路径。
[0343]
在执行第二清洁器100b的反向移动的同时或在执行反向移动之后,第一清洁器100a在新进入的线上执行直线移动(

)。第二清洁器100b的反向移动可以继续直到第一清洁器100a没有感测到第三墙壁10c为止,或者可以在每次第一清洁器100a感测到多个障碍物时重复进行。换句话说,在后一种情况下,第二清洁器100b可以重复执行反向移动和停止。
[0344]
接下来,如图12d所示,第一清洁器100a移动直到第二清洁器100b位于第一清洁器100a的后面为止,然后恢复第二清洁器100b的跟随。具体地,第一清洁器100a停止(

),然后第二清洁器100b在遵循第一清洁器100a的移动路径的同时再次进行正常移动以进行清洁(

)。
[0345]
接下来,将参照图13描述作为另一个限制命令而允许第一清洁器和第二清洁器在避开彼此的同时执行移动的方法。
[0346]
图13是用于说明领先的机器人和跟随的机器人更自然地同时避开彼此的方法的视图。首先,作为领先的清洁器的第一清洁器100a感测作为跟随的清洁器的第二清洁器100b的存在。感测信息被发送到第二清洁器100b。接着,在第一清洁器100a在沿着围绕第二清洁器100b的外周面画弧的同时移动的时间点处,发送控制命令以允许第二清洁器100b也围绕第一清洁器100a在相同方向上画弧的同时进行移动。因此,第一清洁器100a和第二清洁器100b在绘制虚拟圆的同时沿不同的移动方向移动。
[0347]
此时,可以说虚拟阻抗的排斥力(即,推力)施加到形成于第一清洁器100a与第二清洁器100b之间的内圆,并且虚拟阻抗的吸引力(即,拉力)被施加到形成于第一清洁器100a与第二清洁器100b外部的外圆。
[0348]
在第一清洁器100a和第二清洁器100b之间的指定跟随距离的可允许范围足够大的情况下,当实现了第一清洁器100a和第二清洁器100b在避开彼此的同时进行移动时,则第一清洁器100a和第二清洁器100b可以不需要停止,从而以更有效和快速的方式完成清洁。
[0349]
另一方面,已经描述了两个清洁器中的任何一个跟随另一个的情况作为示例,但是本公开不限于此,并且本公开的实施例可以适用于三个或更多清洁器在保持跟随关系的同时进行清洁的情况。在这种情况下,可以将其设计为以下关系:三个清洁器中的一个是领先的清洁器,另外两个跟随领先的清洁器,或者其他两个中的任一个跟随另一个。
[0350]
图14a、14b和14c是根据本公开的前述实施例的在第一清洁器和第二清洁器之间的跟随控制的修改的示例,并且这里,将详细描述第一清洁器和移动装置之间的跟随控制。这里,本文公开的跟随控制仅意味着移动装置遵循第一清洁器的移动路径。
[0351]
参照图14a,第一清洁器100a可以通过与移动装置200而不是第二清洁器进行通信
来控制移动装置200的跟随。
[0352]
在此,移动装置200可以不具有清洁功能,并且可以是任何设置有驱动功能的电子装置。例如,移动装置200可以包括各种类型的家用电器或其他电子装置,例如除湿机、加湿器、空气净化器、空调、智能电视、人工智能扬声器、数字摄影装置等,没有限制。
[0353]
另外,移动装置200可以是配备有移动功能的任何装置,并且可能不具有用于自行检测障碍物或移动到预定目的地的导航功能。
[0354]
第一清洁器100a是具有导航功能和障碍物检测功能的机器人清洁器,并且可以控制移动装置200的跟随。第一清洁器100a可以是干式清洁器或湿式清洁器。
[0355]
第一清洁器100a和移动装置200可以通过网络(未示出)彼此通信,但是可以直接彼此通信。
[0356]
在此,使用网络的通信可以是使用例如wlan、wpan、wi-fi、wi-fi直连、数字生活网络联盟(dlna)、无线宽带(wibro)、全球微波接入互通性(wimax)等的通信。相互直接通信可以使用例如uwb、zigbee、z波、蓝牙、rfid和红外数据协会(irda)等来执行。
[0357]
如果第一清洁器100a和移动装置200彼此靠近,则可以通过第一清洁器100a中的操纵来将移动装置200设置为跟随第一清洁器100a。
[0358]
如果第一清洁器100a和移动装置200彼此远离,尽管未示出,但是可以通过外部终端300(见图5a)中的操纵将移动装置200设置为跟随第一清洁器100a。
[0359]
具体地,第一清洁器100a和移动装置200之间的跟随关系可以通过与外部终端300的网络通信来建立。这里,外部终端300是能够执行有线或无线通信的电子装置,可以是平板电脑、智能手机、笔记本电脑等。至少一个与第一清洁器100a的跟随控制有关的应用程序(以下称为“跟随相关应用程序”)可以安装在外部终端300中。
[0360]
用户可以执行安装在外部终端300中的跟随相关应用程序以选择和注册受到第一清洁器100a的跟随控制的移动装置200。当受到跟随控制的移动装置200被注册时,外部终端可以识别该移动装置的产品信息,并且这样的产品信息可以经由网络提供给第一清洁器100a。
[0361]
外部终端300可以通过与第一清洁器100a和注册的移动装置200的通信来识别第一清洁器100a的位置和注册的移动装置200的位置。之后,根据从外部终端300发送的控制信号,第一清洁器100a可以朝向注册的移动装置200的位置移动,或注册的移动装置200可以朝向第一清洁器100a的位置移动。当检测到第一清洁器100a和注册的移动装置200的相对位置在预定的跟随距离之内时,则第一清洁器100a对移动装置200的跟随控制开始。之后,跟随控制通过第一清洁器100a与移动装置200之间的直接通信来执行,而无需外部终端300的干预。
[0362]
跟随控制的设置可以通过外部终端300的操作来释放,或者可以随着第一清洁器100a和移动装置200移动远离预定跟随距离而自动终止。
[0363]
用户可以通过操纵第一清洁器100a或外部终端300来改变、添加或移除要由第一清洁器100a控制的移动装置200。例如,参考图14b,第一清洁器100a可以对另一清洁器200a或100b、空气净化器200b、加湿器200c和除湿器200d中的至少一个移动装置200执行跟随控制。
[0364]
通常,由于移动装置200在功能、产品尺寸和移动能力方面与第一清洁器100a不
同,所以移动装置200难以原样遵循移动终端100a的移动路径。例如,可能存在例外情况,其中根据空间的地理特征、障碍物的尺寸等,移动装置200难以遵循第一清洁器100a的移动路径。
[0365]
考虑到这种例外情况,移动装置200即使识别出第一清洁器100a的移动路径也可以通过省略部分移动路径来移动或等待。为此,第一清洁器100a可以检测是否出现例外情况,并且控制移动装置200将与第一清洁器100a的移动路径相对应的数据存储在存储器等中。然后,根据情况,第一清洁器100a可以控制移动装置200在删除部分存储的数据的情况下移动或在停止状态下等待。
[0366]
图14c示出了第一清洁器100a与移动装置200(例如,具有移动功能的空气净化器200b)之间的跟随控制的示例。第一清洁器100a和空气净化器200b可以分别包括用于确定其相对位置的通信模块a和b。通信模块a和b可以是用于发射和接收ir信号、超声信号、载波频率或脉冲信号的模块之一。上面已经详细描述了通过通信模块a和b对相对位置的识别,因此将省略其描述。
[0367]
空气净化器200b可以从第一清洁器100a接收与移动命令(例如,包括移动方向和移动速度的移动变化、移动停止等)相对应的移动信息,根据接收到的移动信息进行移动,并执行空气净化。
[0368]
因此,空气净化可以相对于第一清洁器100a在其中运行的清洁空间实时地执行。另外,由于第一清洁器100a已经识别出与移动装置200有关的生产信息,因此第一清洁器100a可以控制空气净化器200b记录第一清洁器100a的移动信息,并且在删除移动信息的部分的情况下移动或在停止状态下等待。
[0369]
如上所述,根据本公开的实施例的多个机器人清洁器,跟随的清洁器可以在跟随领先的清洁器的同时在没有任何中断的情况下执行清洁。此外,当跟随的清洁器感测到障碍物等以进行转向时,领先的清洁器、跟随的清洁器或领先的清洁器和跟随的清洁器可以暂时改变其路径以在避开彼此的同时进行移动,从而以更自然和有效的方式执行跟随控制。而且,当领先的清洁器的移动方向变化时,在确认跟随的清洁器在领先的清洁器的后面之后,可以检测从跟随的清洁器接收的信号的方向以恢复跟随,从而在没有信号干扰和错误发生的情况下进行跟随。。
[0370]
上述本公开可以被实现为程序记录介质上的计算机可读代码。计算机可读介质包括其中存储有计算机系统可读的数据的所有类型的记录装置。计算机可读介质的示例包括硬盘驱动器(hdd)、固态磁盘(ssd)、硅磁盘驱动器(sdd)、rom、ram、cd-rom、磁带、软盘、光学数据存储装置等,并且也可以以载波的形式实现(例如,通过互联网传输)。另外,计算机还可以包括控制单元1800。上面的详细描述在所有方面不应被限制地解释,应被认为是说明性的。本发明的范围应该由所附权利要求的合理解释来确定,并且在本发明的等同范围内的所有改变都包括在本公开的范围内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1