混合动力式作业机械的制作方法

文档序号:14185851阅读:135来源:国知局

本发明涉及作为动力源除发动机之外还具备电动马达的液压挖掘机、轮式装载机等混合动力式作业机械。



背景技术:

已知有一种以发动机的排气气体的减少和/或节能化为目的、除发动机之外还以发电电动机为动力源的混合动力式作业机械(参照专利文献1等)。在这种混合动力式作业机械中,将发动机和发电电动机在设置于同一轴上,通过发电电动机和发动机来驱动液压泵,通过被从液压泵排出的压力油来驱动液压执行机构。在相对于泵吸收动力而言发动机动力大的情况下,通过剩余的发动机动力来驱动发电电动机从而对蓄电装置充电。在相对于泵吸收动力而言发动机动力小的情况下,通过来自蓄电装置的供电来驱动发电电动机从而对发动机动力进行辅助。这样一来通过发电电动机来填补车身所要求的输出,因此通过发动机的小型化而改善了燃料经济性。也有的在如急操作时等那样的、液压泵所请求的动力的急剧增大时、通过发电电动机的动力来补充发动机动力的不足量(参照专利文献2等)。

现有技术文献

专利文献

专利文献1:日本专利第3941951号公报

专利文献2:日本专利第4633813号公报



技术实现要素:

发明要解决的课题

在混合动力式作业机械中,若液压执行机构的负荷高的作业连续进行,则由于蓄电余量的下降而无法通过发电电动机来输出动力,恐会发生加载减速(lug-down)和/或发动机故障。与此相对,在专利文献1中公开了根据蓄电余量来限制泵吸收动力的最大值。这对于加载减速和/或发动机故障的抑制是有效的。

但是,在如专利文献2那样在负荷急剧增大时为了补充发动机输出的不足量而通过发电电动机输出动力的情况下,在蓄电余量不足时通过发电电动机所能够补充的动力是有限的,因此为了不发生发动机故障等,在起动时等将泵吸收动力设定得低。在限制了泵吸收动力的状态下,在此后的作业中无法发挥机体本来的性能。

本发明的目的提供一种即使在对电动马达的供电受到限制的状况下也能够抑制泵吸收动力被过度地限制的混合动力式作业机械。

用于解决课题的技术方案

为了达到上述目的,本发明是一种混合动力式作业机械,其具备:发动机;电动马达,其能够传递转矩地连接于所述发动机;蓄电装置,其对所述电动马达供电;监视装置,其监视所述蓄电装置的状态并获取蓄电装置信息;液压泵,其受所述发动机和所述电动马达的动力驱动;以及泵调节器,其调整所述液压泵的排出流量,所述混合动力式作业机械的特征在于,具备:增加率运算装置,其针对作为所述液压泵的吸收动力的泵吸收动力来计算与所述蓄电装置信息相应的允许增加率;限制动力运算装置,其基于所述允许增加率来计算作为所述泵吸收动力的限制值的限制泵动力;以及泵控制装置,其根据所述限制泵动力对所述泵调节器输出指令信号并控制所述液压泵的排出流量。

发明的效果

根据本发明,即使在对电动马达的供电受到限制的状况下也能够抑制泵吸收动力被过度地限制。

附图说明

图1是作为本发明的第一实施方式涉及的混合动力式作业机械的一例的混合动力式液压挖掘机的局部透视侧视图。

图2是本发明的第一实施方式涉及的混合动力式作业机械所具备的驱动系统的示意图。

图3是本发明的第一实施方式涉及的混合动力式作业机械所具备的控制器的泵流量控制的控制框图。

图4是示出本发明的第一实施方式涉及的混合动力式作业机械所具备的增加率运算装置的一例的框图。

图5是示出本发明的第一实施方式涉及的混合动力式作业机械所具备的增加率运算装置的另一例的框图。

图6是示出本发明的第一实施方式涉及的混合动力式作业机械所具备的增加率运算装置的其他的另一例的框图。

图7是示出本发明的第一实施方式涉及的混合动力式作业机械所具备的增加率运算装置的其他的另一例的框图。

图8是示出了由本发明的第一实施方式涉及的混合动力式作业机械所具备的控制器确定的泵流量指令值的运算流程的流程图。

图9是示出本发明的第一实施方式中的泵吸收动力、泵排出压力以及泵排出流量的经时变化的一例的图。

图10是以横轴为排出压力、纵轴为流量的方式示出了图9的例子的pq线图。

图11是本发明的第一实施方式的效果的说明图。

图12是本发明的第二实施方式涉及的混合动力式作业机械所具备的控制器的泵流量控制的控制框图。

图13是示出本发明的第二实施方式中的泵吸收动力、泵排出压力以及泵排出流量的经时变化的一例的图。

具体实施方式

以下利用附图对本发明的实施方式进行说明。

(第一实施方式)

1.混合动力式作业机械

图1是作为本发明的第一实施方式涉及的混合动力式作业机械的一例的混合动力式液压挖掘机的局部透视侧视图。但是,混合动力式液压挖掘机是一个应用例,本发明也可以应用于混合动力式的轮式装载机等其他的混合动力式作业机械。图1所示的混合动力式液压挖掘机具备行驶体10、能够旋转地设置在行驶体10上的旋转体20、以及设置于旋转体20的挖掘机构(前作业机)30。

行驶体10具备:左右一对履带(crawler)11a、11b及履带框架12a、12b;分别驱动左右的履带11a、11b的行驶用液压马达13、14;以及行驶用液压马达13、14的减速机等。关于履带11a、11b和履带框架12a、12b分别仅在图1示出左侧部分。

旋转体20包括驾驶室、发动机室等,隔着旋转框架21被搭载于履带框架12a、12b的上部。在驾驶室设置有对液压执行机构(后面叙述)的工作进行指示的操作装置70(参照图2)等。旋转框架21以能够经由旋转轮而以铅垂轴为中心而旋转的方式设置在履带框架12a、12b的上部。虽然没有特别图示,但是旋转轮为如下构成:具备连接于履带框架12a、12b的内轮和连接于旋转框架21的外轮、且外轮相对于内轮转动。在旋转框架21上设置有旋转用发电电动机25和旋转用液压马达27。旋转用发电电动机25和旋转用液压马达27一起被支撑于旋转轮的外轮,经由减速机26使输出轴啮合于内轮的内齿轮。旋转用液压马达27设置成与旋转用发电电动机25同轴。另外,在旋转用发电电动机25连接有蓄电装置24,通过来自蓄电装置24的供电来驱动旋转用发电电动机25。通过该构成,旋转用液压马达27和旋转用发电电动机25的驱动力经由减速机26被传递到旋转轮,旋转体20与旋转框架21一起相对于行驶体10旋转。

挖掘机构30是具备动臂31、斗杆33、铲斗35的多关节构造的前作业机。动臂31能够在上下方向上转动地连结于旋转体20的旋转框架21。斗杆33能够在前后方向上转动地连结于动臂31的顶端部。铲斗35能够转动地连结于斗杆33的顶端部。并且,动臂31、斗杆33以及铲斗35分别由动臂油缸32、斗杆油缸34以及铲斗油缸36来驱动。动臂油缸32、斗杆油缸34以及铲斗油缸36为液压缸。

2.驱动系统

在上述旋转框架21上搭载有用于驱动各种执行机构的驱动系统。该驱动系统包括液压系统40、电动系统以及控制器80(参照图2)。液压系统40是对行驶用液压马达13、14、旋转用液压马达27、动臂油缸32、斗杆油缸34、铲斗油缸36等液压执行机构进行驱动的装置。以下,将行驶用液压马达13,14、旋转用液压马达27、动臂油缸32、斗杆油缸34、铲斗油缸36等统称并适当地记载为液压执行机构。电动系统是除了旋转用发电电动机25之外、还驱动后面叙述的辅助发电电动机23等电动执行机构的装置。对液压系统40和电动系统进行控制的是控制器80。将驱动系统的示意图示于图2。

·液压系统

如图2所示,液压系统40包括液压泵41、泵调节器43以及控制阀42。液压泵41是产生液压的可变容量型的液压泵,受发动机22所输出的动力驱动,排出对液压执行机构进行驱动的压力油。在发动机22设置有转速传感器,通过转速传感器来检测发动机转速n。在液压泵41的排出管路设置有排出压力传感器44,通过排出压力传感器44来检测液压泵41的排出压力p。控制阀42是对各液压执行机构进行驱动控制的阀单元,通过来自处于驾驶室内的操作装置70的操作信号(本实施方式中为液压先导信号)使对应的阀芯(spool)工作,来控制从液压泵41分别向各液压执行机构供给的压力油的流量和方向。来自操作装置70的操作信号还被变换成电信号也被输入控制器80。泵调节器43基于来自控制器80的信号来调整液压泵41的排量(排出流量)。

·电动系统

电动系统除了上述的蓄电装置24之外,还包括逆变器(inverter)50、辅助发电电动机23以及蓄电装置24。辅助发电电动机23是能够传递转矩地与发动机22连接的电动马达,通过来自蓄电装置24的供电而被驱动并与发动机22一起驱动液压泵41。在本实施方式中例示了辅助发电电动机23使用了也作为发电机而发挥功能的发电电动机的情况,但也可以使用没有发电功能的单纯的电动马达。逆变器50除了辅助发电电动机23之外,还与旋转用发电电动机25(参照图1)电连接,另外还经由连接器(未图示)而连接于蓄电装置24。辅助发电电动机23和旋转用发电电动机25的驱动状态(牵引或再生),按照来自控制器80的指令而由逆变器50控制。蓄电装置24基于来自逆变器50的信号,根据辅助发电电动机23和旋转用发电电动机25的驱动状态而被充放电。在蓄电装置24设置有监视装置28,该监视装置28监视该蓄电装置24的充电余量(soc)、充放电电力量、充放电电流流量、实效电力、温度等,并获得上述蓄电装置信息。

·控制器

对控制器80输入由排出压力传感器44检测出的液压泵41的排出压力p、由转速传感器检测出的发动机转速n、来自操作装置70的操作信号、以及来自监视装置28的蓄电装置信息。控制器80基于这些种类的输入信号生成针对发动机22的燃料喷射装置、泵调节器43、逆变器50等的控制指令,并执行辅助发电电动机23和旋转用发电电动机25的牵引及再生的切换还有输出控制、液压泵41的排出流量控制、发动机22的输出控制等。

图3是涉及控制器80的泵流量控制的控制框图。该图所示的控制器80具备增加率运算装置81、限制动力运算装置82、请求动力运算装置83、可输出动力运算装置84、最小值选择装置85、泵控制装置86以及存储装置87等。

增加率运算装置81是计算驱动系统输出的动力中可被液压泵41消耗的动力(以下记载为泵吸收动力)的允许增加率r的功能部。该允许增加率r是根据蓄电装置24的状态而定的值,以使得泵吸收动力以比发动机22的输出动力we(以下记载为发动机动力we)的增加率高的增加率增加的方式,与操作装置70的操作信号所相应的泵吸收动力的请求值wpreq(以下记载为请求泵动力wpreq)无关地根据蓄电装置信息来设定允许增加率r。在增加率运算装置81预先存储有蓄电装置信息(蓄电余量、充放电电流量、实效电力、蓄电装置温度等中的至少一个)与允许增加率r的关系,在增加率运算装置81中,基于该关系来计算与从监视装置28输入的蓄电装置信息相应的允许增加率r。

在此,图4是示出增加率运算装置81的一例的框图。该图例示的增加率运算装置81a,从监视装置28输入蓄电余量作为蓄电装置信息。在作为允许增加率r的计算基础而输入蓄电余量的情况下,在增加率运算装置81a保存有蓄电余量越小则允许增加率r越小的关系,被输入了的蓄电余量越小则允许增加率r被计算得越小。在本实施方式中,在蓄电余量为设定的规定值a1以下的区域,与蓄电余量从规定值a1减少成正比例地也减小允许增加率r。

图5是示出增加率运算装置81的另一例的框图。该图例示的增加率运算装置81b,从监视装置28输入蓄电装置24的充放电电力作为蓄电装置信息。在作为允许增加率r的计算基础而输入充放电电力的情况下,在增加率运算装置81b保存有实效电力越大则允许增加率r越小的关系。实效电力通过蓄电装置24的设定时间的充放电电力的二次方平均平方根来求出。例如若使设定时间为100秒,则求出从100秒前到当前的蓄电装置24的充放电电力的均方,采用均方根从而能够获得实效电力。实效电力的计算也可以设为,在不在监视装置28中执行的情况下在增加率运算装置81b中执行。增加率运算装置81b中存储着实效电力越大则允许增加率r越小的关系,求出的实效电力越大则允许增加率r被计算得越小。在本实施方式中,在实效电力为设定的规定值a2以上的区域,允许增加率r与实效电力从规定值a2开始增加成正比例地减小。

图6是示出增加率运算装置81的其他的另一例的框图。该图所例示的增加率运算装置81c,从监视装置28输入蓄电装置24的蓄电余量作为蓄电装置信息。图6的增加率运算装置81c所存储的蓄电余量与允许增加率r的关系,在蓄电余量越小则允许增加率r越小这一点上与图4的例子相同,但是在由于蓄电余量而使允许增加率r的增减率具有差异这一点上不同。在图6的例子中,在蓄电余量从规定值a3减小到a4(<a3)的范围,允许增加率r以固定比例α1减小、在低于规定值a4地减小时允许增加率r以更大的固定比例α2(>α1)减小。在由于蓄电余量而使允许增加率r有差异的情况下,也可以考虑将蓄电余量与允许增加率r的关系线设定为如蓄电余量越小则允许增加率r的减少率越大那样的曲线。

图7是示出增加率运算装置81的其他的另一例的框图。该图例示的增加率运算装置81d,从监视装置28输入蓄电装置24的充放电电力作为蓄电装置信息。图7的增加率运算装置81d所存储的实效电力与允许增加率r的关系,在实效电力越大则允许增加率r越小这一点上与图5的例子相同,但是在由于实效电力而使允许增加率r的增减率具有差异这一点上不同。在图7的例子中,在实效电力从规定值a5增加到a6(>a5)时允许增加率r以固定比例α3减小,在超过规定值a6地增加时允许增加率r以更大的固定比例α4(>α3)减小。在由于实效电力而使允许增加率r有差异的情况下,也可以考虑将实效电力与允许增加率r的关系线设定为如实效电力越大则允许增加率r的减小率越大那样的曲线。

返回图3,限制动力运算装置82基于与蓄电装置信息相应的允许增加率r来计算泵吸收动力的限制值wplim(以下记载为限制泵动力wplim)。在本实施方式中限制动力运算装置82使用了加法计算器。限制泵动力wplim通过在限制动力运算装置82中将前次(在前一个循环中)最小值选择装置58中计算出的目标泵动力wp(在后叙述)与这次(在当前的循环中)增加率运算装置81中计算出的允许增加率r相加来计算。限制泵动力wplim伴随控制器80的循环处理的推进以允许增加率r经时变化。

请求动力运算装置83是计算上述的请求泵动力wpreq的功能部。请求动力运算装置83中预先存储有操作装置70的操作量与请求泵动力wpreq的关系,在请求动力运算装置83中,基于该关系来计算被从操作装置70输入的操作信号所对应的请求泵动力wpreq。

可输出动力运算装置84使计算可输出动力wfull(以下记载为可输出动力wfull)的功能部。所谓的可输出动力wfull是在该时刻(在当前的循环中)驱动系统不发生发动机故障、加载减速等地、能够由发动机22和辅助发电电动机23输出的最大动力。因为发动机22的扭矩曲线(torquecurve)因发动机转速n而变化,所以该可输出动力wfull的值根据发动机转速n而变化,但是其计算没有考虑蓄电装置信息。可输出动力运算装置84中预先存储有发动机转速n与可输出动力wfull的关系,在可输出动力运算装置84中,基于该关系来计算与发动机转速n相应的可输出动力wfull。

最小值选择装置85输入限制泵动力wplim、请求泵动力wpreq以及可输出动力wfull,将从这三个输入值中选出的最小值作为当前循环中的泵吸收动力的目标值wp(以下记载为目标泵动力wp)而输出。该目标泵动力wp,为了如上述那样进行下一次(一个之后的循环)的限制泵动力wplim的计算也被向限制动力运算装置82输出。

泵控制装置86是基于目标泵动力wp来控制泵调节器43的功能部。该泵控制装置86包括乘法计算部88和除法计算部89。在泵控制装置86中,在乘法计算部88中将被从最小值选择装置85输入的目标泵动力wp与被从存储装置87读出的液压泵41的泵效率e相乘,进而在除法计算部89中将相乘结果除以被从排出压力传感器44输入的液压泵41的当前的循环的排出压力p,从而算出泵流量指令值q。控制器80将该泵流量指令值q向泵调节器43输出。由此,控制液压泵41的排出流量(容积),以使得液压泵41的吸收动力变为目标泵动力wp。

3.泵流量指令值q的运算流程

图8是示出由控制器80控制的泵流量指令值q的运算流程的流程图。如图8所示,控制器80在例如通过发动机转速n而识别出发动机22处于旋转驱动期间时,按设定时间δt(例如0.1秒)的循环来执行图8的步骤s1-s8的流程,反复计算与状况相应的泵流量指令值q并向泵调节器43输出。

·步骤s1

开始进行图8的流程,控制器80从监视装置28输入蓄电装置信息,在增加率运算装置81中对与蓄电装置信息相应的泵吸收动力的允许增加率r进行计算。计算出的允许增加率r在限制动力运算装置82中与在前一个处理循环中计算出的液压泵41的目标泵动力wp(t-δt)相加,并作为限制泵动力wplim被向最小值选择装置85输出。

·步骤s2-s4

在转移到接下来的步骤s2时,控制器80在最小值选择装置85中判断在步骤s1中算出的限制泵动力wplim是否小于基于发动机转速n在可输出动力运算装置84中计算出的可输出动力wfull。控制器80,在与蓄电装置信息相应的限制泵动力wplim比可输出动力wfull小且在最小值选择装置85中步骤s2的判定为肯定的情况下,将流程向步骤s3转移。相反地,控制器80,在限制泵动力wplim为可输出动力wfull以上且在最小值选择装置85中判定为否定的情况下,将流程向步骤s4转移。在行进到了步骤s3的情况下,控制器80将作为小的一方的值的限制泵动力wplim设定为中间变量wpa。另一方面,在行进到了步骤s4的情况下,控制器80将作为小的一方的值的可输出动力wfull设定为中间变量wpa。

·步骤s5-s7

在接着的步骤s5中,控制器80在最小值选择装置85中判断在步骤s3或s4中计算出的中间变量wpa是否比基于操作信号在请求动力运算装置83中计算出的请求泵动力wpreq小。控制器80,在中间变量wpa比请求泵动力wpreq小且在最小值选择装置85中判定为肯定的情况下,将流程向步骤s6转移。相反地,控制器80,在中间变量wpa为请求泵动力wpreq以上且在最小值选择装置85中判定为否定的情况下,将流程向步骤s7转移。在行进到了步骤s6的情况下,控制器80将作为小的一方的值的中间变量wpa设定为当前循环的目标泵动力wp(t)。另一方面,在行进到了步骤s7的情况下,控制器80将作为小的一方的值的请求泵动力wpreq设定为目标泵动力wp(t)。通过步骤s2-s7的处理,限制泵动力wplim、请求泵动力wpreq以及可输出动力wfull的最小值被设定为目标泵动力wp(t)。

·步骤s8

若步骤s6或s7的流程结束,则控制器80将流程向步骤s8转移,利用步骤s2-s7中计算出的目标泵动力wp(t)、泵效率e以及当前的泵排出压力p(t),在泵控制装置86中算出当前循环中的泵流量指令值q(t),并向泵调节器43输出。

通过以设定时间δt反复执行以上的流程,从而按每个循环随时更新的泵流量指令值q被向泵调节器43输出,以使得泵吸收动力接近目标泵动力wp(t)的方式控制液压泵41的排出流量。

4.目标泵动力的举动

图9是示出本实施方式中的泵吸收动力、泵排出压力以及泵排出流量的经时变化的一例的图。在图9中时刻t0是操作装置70的操作开始时刻。另外,由于蓄电装置24的蓄电余量少等原因,最小值选择装置85中选择限制泵动力wplim来作为目标泵动力wp。

若设为操作装置70的操作量为例如最大操作量,则对于液压泵41的请求泵动力wpreq如虚线所示那样急剧地升高。与此相对,在本实施方式中,根据蓄电装置信息目标泵动力wp以比请求泵动力wpreq平缓的增加率升高,之后目标泵动力wp达到请求泵动力wpreq。在该图中例示了增加率不同的目标泵动力wp1、wp2。目标泵动力wp1在时刻t2(>t0)时追平请求泵动力wpreq,相对而言增加率低的目标泵动力wp2在时刻t3(>t2)追平请求泵动力wpreq。两者的增加率的差异因蓄电装置24的状态而起,在计算目标泵动力wp1时相对而言例如蓄电余量少的情况下,如该图那样目标泵动力wp2被设定为具有比目标泵动力wp1平缓的增加率。在目标泵动力wp小的情况下,即使液压泵41的排出压力p(液压负荷)相同,泵流量指令值q也设定得小。q1、q2是分别基于目标泵动力wp1、wp2而计算出的泵流量指令值。在该图的情况下,从时刻t0到t3,泵流量指令值q2被计算成小于泵流量指令值q1。

图10是以横轴为排出压力、纵轴为流量的方式示出了图9的例子的pq线图。图中的虚线表示等马力线、实线表示泵流量指令值q的变化。图中的点a1、b1是表示图9的时刻t1时的泵排出压力p和泵流量指令值q的点、点a2、b2表示时刻t2时的泵排出压力p和泵流量指令值q的点、点a3、b3是表示时刻t3时的泵排出压力p和泵流量指令值q的点。在该图中越朝向右上方则输出(马力)越大。可知:在到时刻t3为止的期间,在同一时刻(t1,t2)基于泵流量指令值q2的输出相对于基于泵流量指令值q1的输出受到抑制。另外,在时刻t目标泵动力wp2追平wp1,之后基于泵流量指令q1、q2的输出变得相同。

5.效果

图11是本实施方式的效果的说明图。从防止发动机故障和/或加载减速的观点出发,发动机动力we根据发动机转速n而受到限制。因此,例如在通过急操作实现的起动时,即使请求泵动力wpreq急剧地升高并达到了发动机22的额定最大输出wemax,对于发动机动力we也只能使其以规定的增加率增加。与此相对,在如本实施方式那样的混合动力式作业机械的情况下,能够通过辅助发电电动机23的动力来填补起动时的发动机动力we相对于请求泵动力wpreq的不足量。此时,例如在蓄电余量足够的情况那样的、不会由于蓄电装置24的状态而限制对辅助发电电动机23的供电的情况下,能够通过辅助发电电动机23的动力(图11(a)中的影线部分)来填补与如图11(a)所示的发动机动力we的不足量相当的量,对液压泵41赋予与请求泵动力wpreq相当的动力。

但是,也有由于蓄电装置24的状态、通过辅助发电电动机23的动力无法完全填补发动机动力we相对于请求泵动力wpreq的不足量的情况。该情况下,若使目标泵动力wp跟随请求泵动力wpreq而升高,则限制泵动力wplim的最大值wpmax(以下记载为最大限制泵动力wpmax)被设定成如图11(b)那样必然比发动机22的额定最大输出wemax低。这是因为:如果不抑制最大限制泵动力wpmax,则在蓄电余量耗尽、不会再通过辅助发电电动机23实现动力附加时就会发生发动机故障和/或加载减速。在此对目标泵动力wp变得等于限制泵动力wplim相等的例子进行了说明,因此目标泵动力wp的最大值等于最大限制泵动力wpmax。因此,若最大限制泵动力wpmax被设定得比额定最大输出wemax低,则变得无法输出原本在之后发动机转速n上升了时能输出的动力。例如能够使刚刚开始操作之后的时刻t1时的目标泵动力wp(t1)跟随请求泵动力wpreq,但是在时刻t2目标泵动力wp(t2)就会达到最大限制泵动力wpmax。其结果,即使到了原本之后发动机应该能单独输出额定最大输出wemax的时刻t3,目标泵动力wp(t3)仍为最大限制泵动力wpmax不变,无法输出额定最大输出wemax。

与此相对,在本实施方式中,在对辅助发电电动机23的供电受到限制的情况下,如图11(c)所示,目标泵动力wp以即使在供电的限制之下之后也能够达到额定最大输出wemax的方式、较之请求泵动力wpreq更平缓地上升。因此,能够不过度地抑制目标泵动力wp的最大值地、在限制的范围内通过辅助发电电动机23的动力来辅助起动时的发动机动力we。在图11(c)的例子的情况下,操作刚开始之后的时刻t1时的目标泵动力wp(t1)与图11(b)的例子相比变低,但是能够使目标泵动力wp以比发动机动力we高的增加率增加,在时刻t3目标泵动力wp(t3)能够达到额定最大输出wemax。

如以上那样,根据本实施方式,即使在向辅助发电电动机23的供电受到限制的状况下,也能够抑制泵吸收动力被过度地限制,能够抑制作业效率的下降。

另外,在如图4所示基于蓄电余量来确定允许增加率r的情况下,具有能够抑制蓄电余量的减少的优点。而且,在如图6所示由于蓄电余量而使允许增加率r的减少率出现差异的情况下,能够以例如在该图的规定值a3-a4的区域为虽然有电力消耗抑制的必要性但是优先抑制输出降低的区域、规定值a4以下的区域为电力消耗抑制比输出低下抑制优先的区域之类的方式,根据蓄电余量根据场合使目标泵动力wp的设定变得灵活。

另外,短时间的急剧的充放电能够使蓄电装置24的劣化发展,但是在如图5所示以实效电力为允许增加率r的计算基础、实效电力大且放电急剧的情况下抑制允许增加率r,从而也能够有助于蓄电装置24的保护和长寿命化。而且,在如图7所示由于实效电力而使允许增加率r的减少率出现差异的情况下,能够以例如该图的规定值a5-a6的区域为虽然有放电抑制的必要性但是优先抑制输出降低的区域、规定值a6以上的区域为放电抑制比输出低下抑制更受抑制的区域之类的方式,根据实效电力根据场合使目标泵动力wp的设定变得灵活。此外,在还考虑蓄电装置24的使用强度来决定目标泵动力wp的观点之下,也可以构成为,取代实效电力而是根据实效电流和/或蓄电装置24的温度在增加率运算装置81中计算许增加率r。实效电流可以基于被从监视装置28输入的充放电电流而通过设定时间的充放电电流的均方根来求。蓄电装置24的温度可以使用在监视装置28的温度传感器中测量到的蓄电装置24的温度信息。另外,在监视装置28中能够进行实效电力和/或实效电流的测定或计算的情况下,也可以设为,将实效电力和/或实效电流从监视装置28输入增加率运算装置81。

(第二实施方式)

图12是本发明的第二实施方式涉及的混合动力式作业机械所具备的控制器的泵流量控制的控制框图。该图与第一实施方式的图3相对应。图12所示的控制器80a与图3的控制器80的不同点在于还具备计算上述的最大限制泵动力wpmax(限制泵动力wplim的最大值)的最大限制动力运算装置90这一点。这以外的要素与图3的控制器80相同,在图12中标注与第一实施方式相同的附图标记并省略说明。

最大限制动力运算装置90中预先存储有蓄电装置信息与最大限制泵动力wpmax的关系。最大限制动力运算装置90基于该关系来计算与被从监视装置28输入的蓄电装置信息相应的最大限制泵动力wpmax,并向最小值选择装置85输出。在最小值选择装置85中,从限制泵动力wplim、请求泵动力wpreq、可输出动力wfull以及最大限制泵动力wpmax中选择最小值,将该最小值作为目标泵动力wp向泵控制装置86输出。关于本实施方式的其他的构成和工作,与第一实施方式相同。

图13是示出本实施方式中的泵吸收动力、泵排出压力以及泵排出流量的经时变化的一例的图。在本实施方式中,在蓄电余量比规定值少的情况下,能够根据蓄电余量来抑制最大限制泵动力wpmax。在如对辅助发电电动机23的供电被限制的那样的情况下,在限制泵动力wplim为最大限制泵动力wpmax以下的区域,限制泵动力wplim作为目标泵动力wp而被输出,在限制泵动力wplim超过最大限制泵动力wpmax的区域,最大限制泵动力wpmax作为目标泵动力wp而被输出。

因此,在蓄电余量少的情况或实效电力大的情况等,在本实施方式中,也与第一实施方式同样地将目标泵动力wp设定为具有相对于请求泵动力wpreq而言更平缓的增加率,也能够获得与第一实施方式同样的效果。不过,即使在相同的条件下,在限制泵动力wplim超过最大限制泵动力wpmax的范围中,如图13所示在本实施方式中目标泵动力wp也设定为比第一实施方式低、泵流量指令值q也变小。该情况下,最大限制泵动力wpmax伴随蓄电余量的减少而变低,因此具有与第一实施方式相比能够抑制蓄电装置24的连续放电量的优点。

附图标记说明

13,14…行驶用液压马达(液压执行机构)、22…发动机、23…辅助发电电动机(电动马达)、24…蓄电装置、27…旋转用液压马达(液压执行机构)、28…监视装置、32…动臂油缸(液压执行机构)、34…斗杆油缸(液压执行机构)、36…铲斗油缸(液压执行机构)、41…液压泵、43…泵调节器、70…操作装置、81,81a-81d…增加率运算装置、82…限制动力运算装置、83…请求动力运算装置、85…最小值选择装置、86…泵控制装置、90…最大限制动力运算装置、q…泵流量指令值(指令信号)、r…允许增加率、we…发动机动力(发动机输出动力)、wp…目标泵动力、wplim…限制泵动力、wpmax…最大限制泵动力、wpreq…请求泵动力。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1