多功能水路以及混水阀的制作方法

文档序号:19313905发布日期:2019-12-03 23:48阅读:244来源:国知局
多功能水路以及混水阀的制作方法

本申请涉及水处理领域,尤其涉及一种多功能水路以及混水阀。



背景技术:

随着人们的生活水平不断提高,对于饮食健康的观念也越来越重视,越来越敏感。而平常所食用的水果、蔬菜以及其他一些农副产品中的农药残留一直影响着消费者的食品安全,在农药残留超标严重时会引发疾病、发育不正常,甚至导致中毒,因此,去除农药残留至关重要。

目前,对于水果食品去除农药残留时,大多采用洗涤浸泡的方式,在洗涤浸泡时通过滴加清洗剂达到去除农残的效果。但是,现有的清洗剂存在去除效果差,不能满足消费者日益增长的饮食安全需求。另外,目前所使用的清洗剂还可能造成二次污染。



技术实现要素:

鉴于上述不足,本申请的一个目的是提供一种多功能水路以及混水阀,以能够提升农残去除效果。

本申请的另一个目的是提供一种多功能水路以及混水阀,以能够在去除农残时降低对环境的污染。

为达到上述至少一个目的,本申请采用如下技术方案:

一种多功能水路,包括:

第一水路;

第二水路;所述第一水路和所述第二水路所输出的水用于混合形成混水;

流量传感器;所述流量传感器设置于所述第一水路和所述第二水路中的至少一个水路上;

温度传感器;所述温度传感器设置于所述第一水路和所述第二水路中的至少一个水路上;

臭氧发生模块;所述臭氧发生模块设置于所述第一水路和所述第二水路中的至少一个水路上。

作为一种优选的实施方式,所述第二水路中的水温大于所述第一水路的水温。

作为一种优选的实施方式,所述温度传感和所述臭氧发生模块位于第一水路,或者,所述温度传感和所述臭氧发生模块位于第二水路。

作为一种优选的实施方式,还包括与所述至少一个流量传感器、所述至少一个温度传感器、以及所述臭氧发生模块相连接的控制器;所述控制器用于使所述混水的臭氧浓度位于预定浓度范围。

作为一种优选的实施方式,所述臭氧发生模块所在水路内的水温在50摄氏度以下。

作为一种优选的实施方式,所述第一水路设有温度传感器,和/或,所述第二水路上设有温度传感器。

作为一种优选的实施方式,所述第一水路设有流量传感器,和/或,所述第二水路上设有所述流量传感器。

作为一种优选的实施方式,所述第一水路和所述第二水路中的一个水路上设有流量传感器、温度传感器、以及臭氧发生模块;另一个水路上设有流量传感器和/或温度传感器。

作为一种优选的实施方式,所述第一水路上设有一个温度传感器、一个流量传感器、以及臭氧发生模块;所述第二水路上设有一个温度传感器。

作为一种优选的实施方式,所述臭氧发生模块能够将所在水路内的水电解形成臭氧,进而向所在水路内的水中混入臭氧。

作为一种优选的实施方式,所述臭氧发生模块包括位于所述第一水路或第二水路内的发生电极、以及连接所述发生电极的控制器;所述控制器能够控制向所述发生电极提供的电流或电压。

作为一种优选的实施方式,所述控制器连接所述流量传感器、所述温度传感器,所述控制器根据所述流量传感器和所述温度传感器的检测数据控制向所述发生电极提供的电流或电压。

作为一种优选的实施方式,在所述第二水路的水温位于预定温度区间内的情况下,所述控制器在所述第二水路的水温提升时,降低向所述发生电极提供的电流或者电压。

作为一种优选的实施方式,在所述第二水路的流量位于预定流量区间内的情况下,所述控制器在所述第二水路的流量提升时,增大向所述发生电极提供的电流或电压。

作为一种优选的实施方式,所述多功能水路包括壳体,位于所述壳体上的第一输入接口、第二输入接口、第一输出接口、第二输出接口;

所述第一水路包括位于所述壳体中的连接第一输入接口和第一输出接口的第一管道;

所述第二水路包括位于所述壳体中的连接第二输入接口和第二输出接口的第二管道;

至少一个流量传感器、至少一个温度传感器、以及臭氧发生模块设置于所述壳体。

作为一种优选的实施方式,所述第一水路用于连接混水阀的冷水接口;所述第二水路用于连接混水阀的热水接口。

一种混水阀,包括出水端、与所述出水端相连接的混水结构、冷水接口、热水接口;所述冷水接口和所述混水结构之间通过第一水路连通;所述热水接口和所述混水结构之间通过第二水路连通;其中,所述混水阀还包括:

流量传感器;所述流量传感器设置于所述第一水路和所述第二水路中的至少一个水路上;

温度传感器;所述温度传感器设置于所述第一水路和所述第二水路中的至少一个水路上;

臭氧发生模块;所述臭氧发生模块设置于所述第一水路和所述第二水路中的至少一个水路上。

作为一种优选的实施方式,所述混水阀包括水龙头或者花洒。

有益效果:

本申请所提供的多功能水路通过在水路中设置臭氧发生模块,所述臭氧发生模块用于向所在水路的水中混入臭氧,从而在第一水路和第二水路混合后形成混合的臭氧水,在用户利用臭氧水清洗果蔬时可以去除农残,并且,多余臭氧可快速自然分解为氧气,不会造成二次污染。

并且,本实施例所提供的多功能水路,通过获取第一水路和/或第二水路的流量、温度,调整臭氧发生模块所发生的臭氧量,从而调整混水中的臭氧浓度,通过控制臭氧发生模块可以实现不同条件下臭氧浓度的稳定和有效性,保证用户得到合适浓度的臭氧水,方便用户在清洗果蔬时去除农药残留。

参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。

针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。

应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1是本申请一个实施例所提供的多功能水路示意图;

图2是本申请另一个实施例所提供的多功能水路示意图;

图3是本申请另一个实施例所提供的多功能水路示意图;

图4是本申请另一个实施例所提供的多功能水路示意图;

图5是本申请另一个实施例所提供的多功能水路示意图。

具体实施方式

为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的另一个元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中另一个元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。

除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。

申请人在记载本申请实施例之前将相关背景知识进行相应说明和描述,以便于对本申请具有更清晰的认知和理解。

臭氧是氧的同素异构体,为强氧化剂,臭氧在室温下可以自然衰变为氧气,衰变期为15分钟到25分钟,臭氧在水中则迅速转化为“生态氧”,而且没有残留问题,臭氧水通过强氧化破坏有机农药的化学键,使其失去药性,同时杀灭食品物料表面的各种细菌病毒。臭氧去除细菌效果是氯气的1.5倍,其杀菌速度比氯气快600-3000倍。

臭氧是高效、快速的除农残杀菌剂,臭氧能迅速地在短时间内使农药残留物化解,可有效降解大米、蔬菜、瓜果中的农药残留,另外可使细菌、病毒迅速被消灭,延长保存期。而且,臭氧消毒所需时间短,消毒后无需再清洗,臭氧消毒后无有害残留物、无二次污染,臭氧消毒后自行分解为氧气,无异味、无污染,而且消毒全面、效果好,使用成本低。

虽然臭氧具有以上优点,但是,由于臭氧会从水中逸出,臭氧在水中保持合适且不超标的浓度却非常难,尤其考虑到臭氧作为强氧化剂,几乎能与任何生物组织发生反应这一点,在生活用水中更需要将臭氧保持在不能超标的合适浓度。

由于臭氧很难储存,目前只能采用随产随用的方式。现有臭氧发生的方式基本是通过利用高压电离作用,使空气中的部分氧气转化为臭氧。而目前向水中混入的方式也基本是先通过高压电离空气方式将臭氧制备,之后再通过送气管道将臭氧送入到水中溶解,这需要特殊复杂的溶气结构、较高的溶气压力,以及还需要面对未溶解臭氧的处理问题。再考虑到水的流速以及溶解需要时间,这就使得目前的臭氧水中臭氧浓度变化幅度大,导致无法掌控水中臭氧浓度,从而限制了臭氧在日常生活中的进一步的发展和应用。

虽然目前存在一些产品应用臭氧进行杀菌消毒,但是大部分是在加热前进行混入臭氧,而在加热到高温后水中臭氧基本全部逸出,从而输出的水基本丧失除农残效果,相应的,此类产品也主要是利用臭氧进行杀菌消毒。即使有些产品将臭氧混入冷水中进行去除农残,但由于无法控制所输出水中臭氧的处于合适浓度,限制了其进一步的发展。

其中,臭氧浓度可以理解为单位体积水中臭氧的含量。臭氧以溶解在水中和/或以气泡的形式存在。

如图1至图5所示。本申请的一个实施例中提供一种多功能水路1,该多功能水路1可以集成于热水器、水龙头、混水阀50等用水设备,还可以作为单独的水路模块进行制造并使用于热水器、水龙头、混水阀50外部的水路中,本申请并不作特别的限制。

具体的,该多功能水路1包括:第一水路100、第二水路200、流量传感器10、温度传感器20、以及臭氧发生模块30。其中,所述第一水路100和所述第二水路200所输出的水用于混合形成混水。

在本实施例中,所述流量传感器10设置于所述第一水路100和所述第二水路200中的至少一个水路上。所述温度传感器20设置于所述第一水路100和所述第二水路200中的至少一个水路上。所述臭氧发生模块30设置于所述第一水路100和所述第二水路200中的至少一个水路上。所述臭氧发生模块30用于向所在水路的水中混入臭氧。

本实施例所提供的多功能水路1通过在水路中设置臭氧发生模块30,利用所述臭氧发生模块30向所在水路的水中混入臭氧,从而在第一水路100和第二水路200混合后的混水为臭氧水,在用户利用臭氧水清洗果蔬时可以去除农残,并且,臭氧在逸出后可快速分解为氧气,从而不会对环境形成污染。

并且,本实施例所提供的多功能水路1,通过获取第一水路100和/或第二水路200的流量、温度,调整臭氧发生模块30所发生的臭氧量,从而调整混水中的臭氧浓度,通过控制臭氧发生模块30可以实现不同条件下臭氧浓度的稳定和有效性,保证用户得到合适浓度的臭氧水,方便用户在清洗果蔬时去除农药残留。

本实施例中,流量传感器10、温度传感器20、以及臭氧发生模块30可以设置于第一水路100、和第二水路200中的任意一条水路或者两条水路上,通过获取第一水路100和/或第二水路200的流量、温度,调整臭氧发生模块30所发生的臭氧量,从而调整混水中的臭氧浓度,保证用户得到合适浓度的臭氧水,方便用户在清洗果蔬时去除农药残留。

第一水路100和第二水路200具有供水流动的流道,其可以为管道,也可以为孔道结构,本申请并不作特别的限定。第一水路100和第二水路200中的水温可以相同,也可以不同,本申请并不作特别的限定。

臭氧发生模块30所在的水路为臭氧发生水路,所输出的水与另一个水路的水混合后供用户使用,例如,在洗衣机中第一水路100可以为主水路,第二水路200设有臭氧发生模块30,在臭氧洗衣模式下,将第二水路200打开形成臭氧水再与第一水路100的水混合形成混合臭氧水,进行衣服清洗,此时,第一水路100和第二水路200中的水均可以为冷水(自来水)。

在本实施例中,为满足用户对于温水的需求,所述第二水路200中的水温大于所述第一水路100的水温。第二水路200和第一水路100输出混合后的具有合适温度的臭氧水,可以满足用户在低温环境下的用水需求,并且,本实施例所提供的多功能水路1可以保证所输出温水处于合适的臭氧浓度下,满足用户在低温环境(例如冬季)条件下去除农残的要求。

其中,第二水路200可以连接热水供应装置,例如:热水器(诸如电热水器、燃气热水器、热泵热水器、太阳能热水器)的热水输出端。当然,该多功能水路1也可以集成于热水设备中,例如,第一水路100和第二水路200位于热水器中,第二水路200可以连接热水器的内胆或者热交换器。第一水路100和第二水路200可以在热水器中混水输出,也可以在热水器中独立输出,形成冷水输出端和热水输出端,本申请并不作特别的限定。

为防止臭氧发生模块30结垢,以及考虑到水温越高臭氧的溶解度越低,要产生相同浓度的臭氧水,臭氧发生模块30要具有更大的电流或者更大的溶解压力,从而对臭氧发生模块30具有更高的要求,为降低臭氧发生模块30的要求,提升臭氧发生模块30的使用寿命,所述臭氧发生模块30所在水路内的水温在50摄氏度以下。在臭氧发生模块30设置于第二水路200的情况下,第二水路200中的水温不高于50摄氏度。

在本申请实施例中,所述臭氧发生模块30能够将所在水路内的水电解形成臭氧,进而向所在水路内的水中混入臭氧。该臭氧发生模块30可以电解水路中的水形成臭氧,另外会在水中形成氢气,氢气对人体并无害处,而且在经水龙头等用水点输出后直接逸出到大气中,也并不污染环境。

因此,本实施例所采用的臭氧发生模块30在形成臭氧过程中并不会产生有害气体,从而无需额外设置有害气体处理措施。并且,电解形式的臭氧发生模块30可以直接在水中形成臭氧,从而可以直接溶解于水中,无需设置送气管或设置高压溶解措施。还有,该臭氧发生模块30通过电解水所形成的臭氧产生于处于流动状态的水中,使得臭氧可以持续溶入水中,并降低了臭氧超标的风险。

在本申请实施例中,臭氧发生模块30在所在水路内的水的流量大于零时进行臭氧发生。优选的,臭氧发生模块30所在水路设有流量传感器10,控制器40根据该流量传感器10发送的流量信号控制臭氧发生模块30的运行。当然,臭氧发生模块30也可以在所在水路的流量大于预定流量时进行臭氧发生,避免误开启。在优选的实施例中,控制器40在流量传感器10检测到流量(流量大于零)时控制臭氧发生模块30产生臭氧。

具体的,所述臭氧发生模块30包括位于所述第一水路100或第二水路200内的发生电极、以及连接所述发生电极的控制器40。所述控制器40能够控制向所述发生电极提供的电流或电压。该臭氧发生模块30可以串联在第一水路100或第二水路200中,发生电极包括位于水中的阴极和阳极,相应的,臭氧发生模块30可以在不同的电极处对应形成臭氧和氢气。

为控制混水的臭氧浓度,所述控制器40连接所述流量传感器10、所述温度传感器20,所述控制器40根据所述流量传感器10和所述温度传感器20的检测数据控制向所述发生电极提供的电流或电压。控制器40通过所述发生电极提供的电流或电压实现控制臭氧量,从而控制混水的臭氧浓度,确保用户所用的臭氧位于安全有效的浓度范围内。

为保证混水中臭氧浓度处于恒定状态或者处于预定浓度范围,在一个实施例中,在所述第二水路200的水温位于预定温度区间内的情况下,所述控制器40在所述第二水路200的水温提升时,降低向所述发生电极提供的电流或者电压。也即,第二水路200的水温位于预定温度区间内时,第二水路200的水温与向所述发生电极提供的电流或者电压呈负相关控制关系。

在第二水路200的水温提升时,在出水温度、流量保持不变的情况下,所需混入的热水量减少,相应的,所需混入的冷水量增加,进而第一水路100的流量增加,第一水路100的流速越高,臭氧发生模块30的臭氧产生效率越高,为维持臭氧浓度的稳定性,可以降低向发生电极提供的电流或者电压。

在本实施例中,为保证混水中臭氧浓度处于恒定状态或者处于预定浓度范围,在所述第二水路200的流量位于预定流量区间内的情况下,所述控制器40在所述第二水路200的流量提升时,增大向所述发生电极提供的电流或电压。也即,第二水路200的流量位于预定流量区间内时,第二水路200的流量与向所述发生电极提供的电流或者电压呈正相关控制关系。

在第二水路200的流量提升时,通常情况下为用户所需更高温度的出水发生,此时,所需混入的热水量增多,在出水流量保持不变的情况下,相应的,所需混入的冷水量减少,进而第一水路100的流量减少,第一水路100的流速越低,臭氧发生模块30的臭氧产生效率越低,为维持臭氧浓度的稳定性,可以增大向发生电极提供的电流或者电压。

需要说明的是,在针对本申请实施例中所提供的多功能水路1的控制中,上述预定温度区间和预定流量区间仅表明存在某一个区间(例如预定温度区间为[30℃,75℃];预定流量区间为[1l/min,10l/min]),第二水路200的温度、流量和向所述发生电极提供的电流或者电压呈负相关或者正相关的控制,位于区间外的温度或者流量,本申请并不限制具体的控制关系。

本实施例多功能水路1的控制器40通过降低或提升向发生电极提供的电流或电压,可以控制发生电极电解形成的臭氧量,借此控制在水中的臭氧量,从而在热水(第二水路200中的水)水温提升或流量提升的情况下,为避免混水中臭氧的浓度降低,通过控制向发生电极提供的电流或电压,实现不同条件下臭氧浓度的稳定和有效性。

在本申请实施例中,臭氧发生模块30可以为一个,设置于第一水路100或者第二水路200。当然,在其他实施例中,臭氧发生模块30可以为多个,并分别设置于第一水路100或第二水路200上,本申请并不作唯一的限定。

温度传感器20可以至少为一个,其可以为温度探头。温度传感器20可以仅设置于第一水路100,也可以仅设置于第二水路200,当然,第一水路100和第二水路200也可以均设置有温度传感器20。流量传感器10同样为至少一个,与温度传感器20相类似,其可以仅设置于第一水路100,也可以仅设置于第二水路200,当然,第一水路100和第二水路200也可以均设置流量传感器10。为保证检测精度,避免高温影响流量传感器10寿命,流量传感器10优选的设置于第一水路100。

在本实施例中,温度传感器20和臭氧发生模块30位于同一水路,即,所述温度传感器20和所述臭氧发生模块30位于第一水路100,或者,所述温度传感器20和所述臭氧发生模块30位于第二水路200。如此通过温度传感器20可以检测臭氧发生模块30所在水路的水温,得到臭氧发生水温,从而更好更准确地控制臭氧发生模块30所产生臭氧的量。

该多功能水路1还可以包括与所述至少一个流量传感器10、所述至少一个温度传感器20、以及所述臭氧发生模块30相连接的控制器40。所述控制器40用于使所述混水的臭氧浓度位于预定浓度范围。控制器40可以集成于臭氧发生模块30上,也可以通过导线45连接流量传感器10、温度传感器20以及臭氧发生模块30,本申请并不作特别的限定。控制器40可以连接有向其供电的电源60。

在本实施例中,所述第一水路100设有温度传感器20,和/或,所述第二水路200上设有温度传感器20。所述第一水路100和所述第二水路200的至少一个水路设有温度传感器20,从而获取第一水路100和第二水路200中至少一个水路的水温,以便于臭氧发生模块30调整所形成的臭氧量。较佳的,第一水路100和第二水路200均设有温度传感器20。如此,不仅可以检测臭氧发生水温,监测臭氧发生模块30所在水路环境,并且,两路水温可以更准确地控制臭氧发生模块30所产生臭氧的量。

在本实施例中,所述第一水路100设有流量传感器10,和/或,所述第二水路200上设有流量传感器10。第一水路100和第二水路200的至少一个水路设有流量传感器10,从而获取第一水路100和第二水路200中至少一个水路的流量,以便于臭氧发生模块30调整所形成的臭氧量。在第二水路200中水温大于第一水路100的实施例中,流量传感器10优选地设置于第一水路100中,从而可以获得更长的使用寿命以及准确测量数据,避免流量传感器10因水温过高而产生误差或者使用寿命缩短。

进一步地,所述第一水路100和所述第二水路200中的一个水路上设有流量传感器10、温度传感器20、以及臭氧发生模块30;另一个水路上设有流量传感器10和/或温度传感器20。进一步地,所述第一水路100上设有一个温度传感器20、一个流量传感器10、以及臭氧发生模块30;所述第二水路200上设有一个温度传感器20。温度传感器20可以检测所在水路的水温。

如图2所示,一个实施例中提供一种多功能水路1,包括一个流动冷水的第一水路100(可以称为冷水水路)和流动热水的第二水路200(可以称为热水水路)。其中,第一水路100上设有臭氧发生模块30、流量传感器10a和温度传感器20a(例如:温度探头)。臭氧发生模块30用来产生臭氧并将臭氧溶解在水中。流量传感器10a用来检测第一水路100的管路流量,温度传感器20a用来检测第一水路100的水温。当流量传感器10a检测到第一水路100有流量信号的时,臭氧发生模块30启动并产生臭氧。第二水路200同样设有流量传感器10b和温度传感器20b,用于检测第二水路200上的流量和水温。

在该实施例中,根据第一水路100上的流量传感器10a和温度传感器20a检测的流量、温度,以及第二水路200上流量传感器10b和温度传感器20b所检测的流量、温度,再结合混水(水龙头50出水)的目标臭氧浓度,控制器40计算出需要施加在臭氧发生模块30的发生电极上的电流或电压,并反馈给臭氧发生模块30,从而实现所需臭氧浓度的输出。

如图3所示,一个可行的实施例中提供一种多功能水路1,包括一个流动冷水的第一水路100和一个流动热水的第二水路200。其中,第一水路100中设有臭氧发生模块30、一个流量传感器10和一个温度传感器20。臭氧发生模块30用来产生臭氧并将臭氧溶解在水中。流量传感器10用来检测第一水路100中水的流量,温度传感器20头用来检测第一水路100的水温。当流量传感器10检测到第一水路100有流量信号时,臭氧发生模块30启动产生臭氧。

在此实施例中,可以根据经验数据设定用户的用水温度(水龙头50出水水温)和流量(例如,用户常用的流量为5-7l/min,水温在20摄氏度-40摄氏度)。如此,通过设定的水龙头出水水温和流量、以及第一水路100的水温、流量计算出第二水路200水温和流量。进而,根据第一水路100上的流量传感器10和温度传感器20检测的流量、温度,以及所计算出的第二水路200上的流量、温度,再结合混水(水龙头出水)的目标臭氧浓度,控制器40计算出需要施加在臭氧发生模块30的发生电极上的电流或电压,并反馈给臭氧发生模块30,从而实现所需臭氧浓度的输出。

如图4所示,一个具体的实施例中提供一种多功能水路1,包括一个流动冷水的第一水路100和一个流动热水的第二水路200。其中,第一水路100中设有臭氧发生模块30、一个流量传感器10和一个温度传感器20a。臭氧发生模块30用来产生臭氧并将臭氧溶解在水中。流量传感器10用来检测第一水路100中水的流量,温度传感器20a用来检测第一水路100的水温。当流量传感器10检测到第一水路100有流量信号的时,臭氧发生模块30启动产生臭氧。第二水路200中设有一个温度传感器20b,用于检测第二水路200中的水温。

在此实施例中,可以根据经验数据设定用户的用水温度(例如,用户常用的水温在20摄氏度-40摄氏度)。如此,可以通过第一水路100的水温、第一水路100的流量、第二水路200水温和设定的水龙头出水水温计算出热水的流量(第二水路200的流量)。根据第一水路100的流量和温度、第二水路200的流量和温度,再结合混水(水龙头出水)的目标臭氧浓度,控制器40计算出需要施加在臭氧发生模块30的发生电极上的电流或电压,并反馈给臭氧发生模块30,从而实现所需臭氧浓度的输出。

当然,在此实施例中,还可以根据经验数据设定用户的用水流量(例如,用户常用的流量为5-7l/min)。如此,可以通过第一水路100的水温、第一水路100的流量、第二水路200的水温和设定的水龙头输出流量计算出热水的流量(第二水路200的流量)。根据第一水路100的流量和温度、第二水路200的流量和温度,再结合混水(水龙头出水)的目标臭氧浓度,控制器40计算出需要施加在臭氧发生模块30的发生电极上的电流或电压,并反馈给臭氧发生模块30,从而实现所需臭氧浓度的输出。

如图5所示,一个可行的实施例中提供一种多功能水路1,包括一个流动冷水的第一水路100和一个流动热水的第二水路200。其中,第一水路100中设有臭氧发生模块30、流量传感器10a和温度传感器20。臭氧发生模块30用来产生臭氧并将臭氧溶解在水中,流量传感器10a用来检测管路流量,温度传感器20用来检测冷水管路上的水温。臭氧发生模块30用来产生臭氧并将臭氧溶解在水中。流量传感器10a用来检测第一水路100中水的流量,温度传感器20头用来检测第一水路100的水温。当流量传感器10a检测到第一水路100有流量信号的时,臭氧发生模块30启动产生臭氧。第二水路200中设有一个流量传感器10b,用于检测第二水路200中的流量。

在此实施例中,可以根据经验数据设定用户的用水温度(例如,用户常用的水温在20摄氏度-40摄氏度)。如此,可以通过第一水路100的水温、第一水路100的流量、第二水路200的流量和设定的水龙头出水水温计算出热水的水温(第二水路200的水温)。根据第一水路100的流量和温度、第二水路200的流量和温度,再结合混水(水龙头出水)的目标臭氧浓度,控制器40计算出需要施加在臭氧发生模块30的发生电极上的电流或电压,并反馈给臭氧发生模块30,从而实现所需臭氧浓度的输出。

在其他的实施例中,在第一水路100和第二水路200的上游或者下游存在干路的场景中(第一水路100和第二水路200为干路分流后的两个支路,或者,第一水路100和第二水路200汇合形成干路),还可以在干路上进行流量或温度的测量,控制器40根据该测量数据结合第一水路100和第二水路200的测量数据,可以更精确地调控混水的臭氧浓度,保证用户获得臭氧浓度恒定的臭氧水。

在本申请实施例中,多功能水路1可以集成于用水设备或热水设备中,还可以安装于输水水路中,例如,多功能水路1可以集成于混水龙头中或者热水器中,还可以设置于水龙头和热水器之间的输水水路中。

在一个具体的实施例中,为提升多功能水路1的场景适应能力,所述多功能水路1包括壳体,位于所述壳体上的第一输入接口、第二输入接口、第一输出接口、第二输出接口。该多功能水路1形成具有四个接口的水路模块,在所需臭氧水的场合可以直接安装该水路模块,满足用户的臭氧水需求。

在该实施例中,所述第一水路100包括位于所述壳体中的连接第一输入接口和第一输出接口的第一管道。所述第二水路200包括位于所述壳体中的连接第二输入接口和第二输出接口的第二管道。至少一个流量传感器10、至少一个温度传感器20、以及臭氧发生模块30设置于所述壳体。通过设有壳体可以避免流量传感器10、温度传感器20以及臭氧发生模块30暴露于空气中。至少一个流量传感器10、至少一个温度传感器20、以及臭氧发生模块30共用同一壳体,都可以固定于壳体的内部,也可以固定于壳体的壁上,本申请并不作唯一的限制。

在本实施例中,所述第一水路100用于连接混水阀50的冷水接口。所述第二水路200用于连接混水阀50的热水接口。该混水阀50可以包括水龙头或者花洒。该多功能水路1应用时并不破坏用户的水路结构即可实现臭氧功能,例如,将该多功能水路1连接于水龙头和热水器之间时,可以将该多功能水路1连接于冷水阀、热水阀、与水龙头之间,原有水路并不需要进行变更,具有较佳的场景适应能力。

基于同一构思,本发明还提供了一种混水阀50,如下面的实施例所述。由于该混水阀50解决问题的原理,以及能够取得的技术效果与多功能水路1相似,因此该混水阀50的实施可以参见上述多功能水路1的实施,重复之处不再赘述。

本申请实施例中还提供一种混水阀50,包括出水端、与所述出水端相连接的混水结构、冷水接口、热水接口。所述冷水接口和所述混水结构之间通过第一水路100连通;所述热水接口和所述混水结构之间通过第二水路200连通。

其中,所述混水阀50还包括:流量传感器10;温度传感器20;臭氧发生模块30。所述流量传感器10设置于所述第一水路100和所述第二水路200中的至少一个水路上。所述温度传感器20设置于所述第一水路100和所述第二水路200中的至少一个水路上。所述臭氧发生模块30设置于所述第一水路100和所述第二水路200中的至少一个水路上。

在本实施例中,所述第一水路100和所述第二水路200至少一个水路上设有至少一个流量传感器10、至少一个温度传感器20、以及臭氧发生模块30;所述臭氧发生模块30用于向所在水路内的水中混入臭氧。

其中,混水结构可以为三通结构,也可以为具有阀芯的阀体结构,该混水阀50可以调节冷热水的混水比例,也可以仅将冷热水混合,本申请并不作特别的限制。

在本实施例中,多功能水路1集成于混水阀50的内部水路中,在其他实施例中,多功能水路1还可以设置于混水阀50的外部水路中,此处不再赘述。

本文引用的任何数字值都包括从下限值到上限值之间以一个单位递增的下值和上值的所有值,在任何下值和任何更高值之间存在至少两个单位的间隔即可。举例来说,如果阐述了一个部件的数量或过程变量(例如温度、压力、时间等)的值是从1到90,优选从20到80,更优选从30到70,则目的是为了说明该说明书中也明确地列举了诸如15到85、22到68、43到51、30到32等值。对于小于1的值,适当地认为一个单位是0.0001、0.001、0.01、0.1。这些仅仅是想要明确表达的示例,可以认为在最低值和最高值之间列举的数值的所有可能组合都是以类似方式在该说明书明确地阐述了的。

除非另有说明,所有范围都包括端点以及端点之间的所有数字。与范围一起使用的“大约”或“近似”适合于该范围的两个端点。因而,“大约20到30”旨在覆盖“大约20到大约30”,至少包括指明的端点。

披露的所有文章和参考资料,包括专利申请和出版物,出于各种目的通过援引结合于此。描述组合的术语“基本由…构成”应该包括所确定的元件、成分、部件或步骤以及实质上没有影响该组合的基本新颖特征的其他元件、成分、部件或步骤。使用术语“包含”或“包括”来描述这里的元件、成分、部件或步骤的组合也想到了基本由这些元件、成分、部件或步骤构成的实施方式。这里通过使用术语“可以”,旨在说明“可以”包括的所描述的任何属性都是可选的。

多个元件、成分、部件或步骤能够由单个集成元件、成分、部件或步骤来提供。另选地,单个集成元件、成分、部件或步骤可以被分成分离的多个元件、成分、部件或步骤。用来描述元件、成分、部件或步骤的公开“一”或“一个”并不说为了排除其他的元件、成分、部件或步骤。

应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照所附权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并不是为了放弃该主体内容,也不应该认为发明人没有将该主题考虑为所公开的发明主题的一部分。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1