一种船舶立面作业多功能爬行机器人的制作方法

文档序号:9800582阅读:535来源:国知局
一种船舶立面作业多功能爬行机器人的制作方法
【技术领域】
[0001]本发明涉及专用爬行机器人领域,特别是指一种船舶立面作业多功能爬行机器人。
【背景技术】
[0002]爬行机器人是集机构驱动技术、传感控制技术于一体,能够在立面移动的一类机器人。目前,爬行机器人的设计需要具有针对性,根据行业特点选择适合的吸附与移动方式,进而完成机械与电气设计,才能达到预期目的,节约设计成本。虽然目前已有大量爬行机器人的相关研究,但针对船舶工业的生产需要,研制具有喷漆、焊接、清洁和切割等多功能的爬行机器人并应用于实际生产的仍然较少;同时,由于海洋船舶的构造和工作环境的特殊性,在爬行机器人的定位方面也缺乏相应的研究和应用。

【发明内容】

[0003]有鉴于此,本发明的目的在于提出一种集多功能于一体,且能够实现精确定位的船舶立面作业多功能爬行机器人。
[0004]基于上述目的本发明提供的一种船舶立面作业多功能爬行机器人,包括爬行机器人和定位单元;
[0005]所述爬行机器人包括:车体、履带式传动机构、多功能操作平台、机械臂、永磁体、伺服驱动系统;所述履带式传动机构设置在所述车体底端,用于带动所述爬行机器人运动;所述永磁体设置在所述车体下部,用于通过磁力使所述爬行机器人吸附于船舶表面;所述多功能操作平台固定于所述车体顶端,其上搭载有多种作业工具;所述机械臂可转动的设置于所述多功能操作平台表面,其上设置有通用夹具,用于夹取所述多种作业工具;所述伺服驱动系统用于控制驱动所述履带式传动机构和机械臂的动作;
[0006]所述定位单元包括:激光测距仪、反光板、重力倾角传感器;所述激光测距仪通过一丝杠水平设置于海洋船舶立面工作区域的一端;所述反光板和重力倾角传感器均设置在所述车体前端;所述激光测距仪能够由所述丝杠一端开始沿其运动进行移动扫描,配合所述反光板确定所述爬行机器人距所述丝杠一端的纵向距离和横向距离,同时结合所述重力倾角传感器的倾角测量值对所述爬行机器人进行精准定位。
[0007]可选的,多种作业工具包括:喷枪、焊枪、清洁喷头、切割刀。
[0008]优选的,所述永磁体可拆卸的安装于所述车体。
[0009]优选的,所述机械臂通过一万向转动机构设置在所述多功能操作平台表面。
[0010]优选的,所述定位单元还包括设置在所述车体前端且靠近所述反光板的光敏传感器,用于对所述激光测距仪反射光点位置进行检测以准确获得所述纵向距离。
[0011]优选的,所述丝杠由步进电机驱动,根据步进电机步长计算所述横向距离。
[0012]本发明还提供了一种应用如上任意一项所述的爬行机器人定位方法,其特征在于,包括以下步骤:
[0013]以丝杠的一端为原点,所述丝杠所在的水平线为横轴,建立直角坐标系xoy ;
[0014]激光测距仪由原点开始沿所述丝杠移动扫描,直至接收到爬行机器人的车体前端的反光板返回的反射激光后停止;
[0015]获取所述激光测距仪输出距离信息作为所述爬行机器人的纵坐标y,获取所述激光测距仪由开始移动扫描直至停止所经过的距离作为所述爬行机器人的横坐标X ;
[0016]获取所述爬行机器人的车体前端设置的重力倾角传感器的倾角测量值,用于表示所述爬行机器人的朝向角Θ ;
[0017]综合所述爬行机器人的横坐标、纵坐标、朝向角,生成其位置信息(X,y, θ )τ。
[0018]优选的,所述爬行机器人停止移动扫描时,进一步包括步骤:
[0019]所述爬行机器人的车体前端的光敏传感器检验所述激光测距仪发出的激光是否准确照射在所述反光板上;当照射位置存在偏差时,所述激光测距仪进行位置微调。
[0020]优选的,获取所述激光测距仪由开始移动扫描直至停止所经过的距离的步骤具体包括:
[0021]根据驱动所述丝杠的步进电机步长计算生成所述激光测距仪的移动距离以作为所述爬行机器人的横坐标X。
[0022]优选的,进一步包括步骤:
[0023]基于所述直角坐标系xoy坐标生成预设路径;
[0024]实时获取所述爬行机器人的位置信息;
[0025]根据所述位置信息控制所述爬行机器人沿所述预设路径运动。
[0026]从上面所述可以看出,本发明提供的海洋船舶立面作业多功能爬行机器人系统,爬行机器人利用磁性材料对船舶表面进行磁性吸附,同时利用履带式结构与船舶表面实现柔性接触,使用伺服电机驱动系统确保设备的稳定移动与转向;爬行机器人搭载可自由旋转的操作平台,通过多功能夹具夹持多种工作设备,实现360度自由转向。在行进过程中,爬行机器人通过定位单元中的激光测距仪和重力感应器自动进行定位和纠偏,可实现直行、转弯等路径的自动规划。
【附图说明】
[0027]为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0028]图1为本发明实施例的爬行机器人结构示意图;
[0029]图2为本发明实施例的定位单元结构和工作示意图;
[0030]图3为本发明爬行机器人定位方法的一个行走控制实施例。
【具体实施方式】
[0031]为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
[0032]本发明实施例提供了一种船舶立面作业多功能爬行机器人,包括:爬行机器人和定位单元。
[0033]参考图1,为本发明实施例的爬行机器人结构示意图。
[0034]爬行机器人,是海洋船舶立面作业的执行装置,其具体包括:车体1、履带式传动机构2、多功能操作平台3、机械臂4、永磁体5、伺服驱动系统。车体I构成爬行机器人的主体部分,用于实现数据通讯和控制的功能模块均设置在车体I内部。履带式传动机构2设置在车体I底端,与船舶表面柔性接触,在伺服电机驱动下能够带动爬行机器人运动;具体的,履带式传动机构2包括两个履带,沿车体I底端的长度方向平行设置,两个履带同向转动时,爬行机器人能够直线运动,实现前进或后退,两个履带反向转动时,爬行机器人能够直线运动旋转,实现转向。永磁体5设置在车体I下部,通过磁力使爬行机器人克服自身重力吸附于船舶表面(一般是立面)。多功能操作平台3固定于车体I顶端,其主要用途是安装机械臂4并搭载常用的作业工具,一般的,作业工具包括有喷枪、焊枪、清洁喷头、切割刀。机械臂4可转动的设置在多功能操作平台3上,其间的连接一般通过转动连接机构,如机械臂4底端通过转轴安装在多功能操作平台3上,能够实现360度自由旋转。具体的,机械臂4优选的为多关节结构,用于实现多角度、方位的动作,在其前端设置有通用夹具,该通用夹具与多功能操作平台3上搭载的作业工具相匹配,能够实现对不同作业工具的夹取固定。伺服驱动系统则能够根据控制信号控制驱动履带式传动机构2和机械臂4的动作,完成爬行机器人的行走,以及机械臂4的工具夹取固定并进行相应的作业。
[0035]参考图2,为本发明实施例的定位单元结构和工作示意图。
[0036]定位单元,用于对爬行机器人在工作区域内进行精准定位,以辅助完成爬行机器人的自动作业。定位单元具体包括:激光测距仪6、反光板7、重力倾角传感器8。激光测距仪6通过一丝杠9水平设置于海洋船舶立面工作区域的一端。一般情况下,海洋船舶立面上预定的需要进行作业的区域可以视为一矩形区域,丝杠9优选沿矩形工作区域的一长边设置。参考图2,在本实施例中,丝杠9沿矩形工作区域下端长边设置。丝杠9在伺服电机驱动下能够使得激光测距仪6沿其运动,并进行移动扫描,一般的,激光测距仪6进行移动扫描时,从丝杠9的一端开始。反光板7、重力倾角传感器8均设置在爬行机器人的车体I前端。当激光测距仪6发出的激光照射到车体I前端安装的反光板7时,伺服电机停止驱动,此时车体I前端与激光测距仪6位于同一纵线上,此时可以确定爬行机器人距丝杠9 一端的纵向距离。激光测距仪6从开始移动扫描到停止后移动过的距离,即爬行机器人距丝杠9 一端的横向距离,优选的根据驱动丝杠9的步进电机步长计算。重力倾角传感器8对于爬行机器人的倾角测量值,反映了爬行机器人的朝向,可据此得到爬行机器人的朝向角。以丝杠9所在的水平线为横轴,其一端(本实施例中为左端)为原点可建立一直角坐标系,综合上述的爬行机器人距丝杠9 一端的纵向距离、横向距离、以及朝向角,能够实现对爬行机器人的精准定位。
[0037]在优选实施例中,永磁体5可拆卸的安装于车体I。根据不同工作情况,如多功能操作平台3上搭载不同数量、规格的作业工具时,通过拆卸调整使用不同的永磁体5,以保证爬行机器人吸附的牢固程度;同时,也能够方便的对永磁体5进行维护工作。
[0038]在优选实施例中,机械臂4通过一万向转动机构设置在多功能操作平台3表面。万向转动机构可以为万向球或陀螺仪。
[0039]本发明实施例还提供了一种应用如上述实施例所述的船舶立面作业多功能爬行机器人的爬行机器人定位方法,该方法包括以下步骤:
[0040]步
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1