一种五自由度持续载荷模拟器过载模拟控制方法与流程

文档序号:22550334发布日期:2020-10-17 02:25阅读:131来源:国知局
一种五自由度持续载荷模拟器过载模拟控制方法与流程

本发明涉及飞行模拟器领域,具体涉及一种五自由度持续载荷模拟器过载模拟控制方法。



背景技术:

随着计算机与模拟技术的发展,飞行模拟训练受到越来越多的重视,成为提高飞行员飞行技能、确保训练安全、缩短训练周期、节约训练成本的有效途径。飞行模拟训练装置即模拟飞机执行飞行任务时的飞行状态、飞行环境和飞行条件,给飞行员提供相似的操纵负荷、视觉、听觉、运动感觉的装置,其中运动感觉由训练装置的运动平台提供。

随着高性能战斗机的发展,飞行员将承受持续的高g值加速度,如第三代战斗机最大g值可以达到9g,作用时间45s,增长率达到10g/s。持续性的高加速度会诱发飞行员出现g值引起的意识丧失、持续载荷等问题,严重影响飞行员对战斗机的操控,对飞行员的安全也造成威胁。

高性能战斗机模拟训练所需的持续性高g值加速度载荷通常利用转臂快速旋转产生的离心加速度实现,可在地面以较低的代价和更安全的方式对飞行员进行训练,提高战斗机飞行员在持续高过载环境下的战斗技能。

具有五个自由度的持续载荷模拟器(简称模拟器),从安装基座到座舱依次是主轴、垂直运动框、滚转轴、俯仰轴、偏航轴,通过转臂绕主轴的快速旋转运动实现持续性的高g值加速度,通过垂直运动框实现垂直方向的加速度,通过滚转轴、俯仰轴、偏航轴的协调运动,调整加速度矢量相对于座舱的方向,实现离心机座舱中飞行员持续性过载的精确模拟。

四自由度持续载荷模拟器即可实现过载的精确模拟,五自由度持续载荷模拟器相对于四自由度持续载荷模拟器增加了垂直运动框,从而增加了垂直自由度的控制,目前尚缺乏充分利用垂直自由度的过载模拟控制方法。



技术实现要素:

本发明目的在于提供一种五自由度持续载荷模拟器过载模拟控制方法,充分发挥垂直自由度的作用,在线加速度与实际飞行一致的基础之上,减少不必要的角运动,提高战斗机飞行动作模拟的逼真度,本发明设计巧妙,适合推广;

本发明所采用的技术方案是:一种五自由度持续载荷模拟器过载模拟控制方法,包括以下步骤,

步骤1:获取五自由度模拟器座舱上的飞行操作系统中的操作指令,进入仿真模型,执行步骤2;

步骤2:通过仿真模型中飞机的实际飞行,获取若干个自由度运动参数、大臂绕主轴转动的角速度和角加速度进而根据实际飞行的偏航角运动,得到偏航轴的转动角度,执行步骤3;

步骤3:根据步骤2中的偏航轴的转动角度,得到实际飞行相对俯仰框坐标系的加速度分量以及滚转轴的转动角度q2,执行步骤4;

步骤4:判断垂直运动框的运动状态,获取纯过载时俯仰轴的转动角度,进执行步骤5;

步骤5:将主轴的转动角速度和转动角加速度及滚转轴的转动角度q2、俯仰轴的转动角度q3、偏航轴的转动角度q4、垂直运动框的加速度发送给持续载荷模拟器,若持续荷载模拟器显示训练结果,若显示训练完成,执行步骤6,若显示训练未完成,执行步骤1;

步骤6:结束。

优选的,所述操作系统中的操作指令包括有操纵杆、油门杆、方向舵脚蹬和按键开关的指令。

优选的,所述步骤2中,所述自由度运动参数包括前后过载gxa、左右过载gya、头足过载gza、滚转角速度pa、俯仰角速度qa和偏航角速度ra。

优选的,所述步骤2中,通过获取的自由度运动参数计算座舱线加速度,所述座舱线加速度的矢量为

进而得到,

式中,r为座舱中心距主轴的距离,即转动半径,通过计算大臂末端的线加速度矢量得到转动角加速度

1gc为相对转臂的加速度矢量,gr为沿转臂方向的加速度分量,gt为沿转动方向的加速度分量,gv为沿垂直方向的加速度分量,r为座舱中心距主轴的距离,g为重力加速度。

优选的,所述步骤2中,获取实际飞行的偏航角速度ra,得到模拟器偏航轴的转动角度q4

进行高通滤波和积分后的得到q4。

优选的,所述步骤3中,实际飞行相对俯仰框坐标系的线加速度分量包括有3gxa、3gya,和3gza,计算公式为

滚转轴的转动角度q2为

采用高通滤波器对信号进行滤波,得到的高频部分,对得到的高频部分进行二次积分,得到滚转轴的转动角度高频部分q2h

式中,采用低通滤波器对q20信号进行滤波,得到滚转轴角度的低频部分q2l,进而,q2=q2h+q2l

优选的,所述步骤4中,通过计算垂直自由度的线加速度为

采用高通滤波器,获得信号的高频部分积分获得垂直自由度的速度,二次积分获得垂直自由度的位移,通过限幅使垂直运动框在行程范围内。

优选的,所述步骤4中,通过相对俯仰框坐标系的线加速度,得到纯过载模拟时俯仰轴的转动角度

式中,

与现有技术相比,本发明的有益效果为:

1.充分发挥垂直自由度的作用,在线加速度与实际飞行一致的基础之上,减少不必要的角运动,提高战斗机飞行动作模拟的逼真度。

附图说明

图1为一种五自由度持续载荷模拟器过载模拟控制方法的示意图;

具体实施方式

下面结合本发明的附图1,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施。

在本发明的描述中,需要理解的是,术语“逆时针”、“顺时针”“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

图1为本发明一种五自由度持续载荷模拟器过载模拟控制方法的结构图;

一种五自由度持续载荷模拟器过载模拟控制方法,步骤一、获得五自由度持续载荷模拟器座舱中操纵杆、油门杆、方向舵脚蹬、按键开关等飞行操纵系统的操作指令;

步骤二、通过飞行仿真,获取当前飞机(实际飞行)的6个自由度运动参数,即3个线加速度物理量:gxa、gya、gza,依次为前后、左右、头足方向过载(单位为g,重力加速度);3个角速度物理量:pa、qa、ra,依次为滚转、俯仰、偏航方向角速度;

步骤三、计算大臂绕主轴转动的角速度和角加速度

3.1已知实际飞行的3个线加速度gxa、gya、gza,可计算得到座舱线加速度矢量的大小为:在实际飞行中存在失重(|ga|值小于1g,1g即1个重力加速度)现象,而在地面上由于重力的作用,模拟器产生的g值必定大于1g,因此需要对|ga|值进行处理,通常采用基础g水平的方式修正gz数据,修正之后的加速度矢量大小为:|ga'|;

3.2通过如下公式的常微分方程求解,可获得主轴的转动角速度和转动角加速度

式中r为座舱中心距主轴的距离,即转动半径。

当过载值较大时,可忽略的影响,采用下式对转动角速度进行简化计算:

3.3计算大臂末端的线加速度矢量:

式中,1gc为相对转臂的加速度矢量,gr为沿转臂方向的加速度分量(以转臂末端指向主轴为正),gt为沿转动方向的加速度分量(以转动方向为正),gv为沿垂直方向的加速度分量(以垂直向上为正),r为座舱中心距主轴的距离,g为重力加速度。

步骤四、根据实际飞行的偏航角运动,求解偏航轴的转动角度

4.1根据实际飞行的偏航角速度物理量ra,求解模拟器偏航轴的转动角速度为:

其中由步骤三获得,q2和q3由步骤八获得。

4.2将偏航轴的的转动角速度进行高通滤波,之后进行积分,获得偏航轴的转动角度q4。

步骤五、根据偏航轴的转动角度,求解实际飞行相对俯仰框坐标系的3个线加速度分量(3gxa,3gya,3gza)。

步骤六、获得滚转轴的转动角度q2;

6.1根据如下公式,计算滚转轴的转动角加速度:

6.2采用高通滤波器对信号进行滤波,得到的高频部分;

6.3对6.2计算得到的高频部分进行二次积分,得到滚转轴的转动角度高频部分q2h

6.4根据纯过载模拟求得滚转轴的转动角度:

式中,

6.5采用低通滤波器对q20信号进行滤波,得到滚转轴角度的低频部分q2l

6.6由如下公式计算滚转轴的转动角度:

q2=q2h+q2l

步骤七、计算垂直运动框的运动状态;

7.1根据如下公式,计算垂直自由度的线加速度:

7.2采用高通滤波器,获得信号的高频部分

7.3积分获得垂直自由度的速度,二次积分获得垂直自由度的位移,通过限幅使垂直运动框在行程范围内。

步骤八、根据相对俯仰框坐标系的线加速度物理量,计算纯过载模拟时俯仰轴的转动角度:

式中,

步骤九、将主轴的转动角速度和转动角加速度及滚转轴的转动角度q2、俯仰轴的转动角度q3、偏航轴的转动角度q4、垂直运动框的加速度发送给持续载荷模拟器运动平台。

步骤十、判断是否停止,如果“是”则停止流程,如果“否”,则进入步骤一。

本发明的工作原理为:充分发挥垂直自由度的作用,在线加速度与实际飞行一致的基础之上,减少不必要的角运动,提高战斗机飞行动作模拟的逼真度,本发明设计巧妙,适合推广。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1