显示面板的亮度调节方法及电子设备与流程

文档序号:33046181发布日期:2023-01-24 22:31阅读:704来源:国知局
显示面板的亮度调节方法及电子设备与流程

1.本公开涉及显示技术领域,尤其涉及一种显示面板的亮度调节方法、电子设备及计算机可读存储介质。


背景技术:

2.在显示技术领域,oled(organic light-emitting diode,有机电致发光二极管)显示装置具有自发光、视角宽、响应快等特点,受到广泛应用。为了使oled显示装置的显示效果符合人眼视觉感受,需要对oled显示装置进行伽马校正(gamma tuning)。


技术实现要素:

3.本公开实施例的目的在于提供一种显示面板的亮度调节方法、电子设备及计算机可读存储介质,用于减小主显示区和透明显示区在显示相同灰阶时的亮度差异。
4.为达到上述目的,本公开实施例提供了如下技术方案:
5.一方面,提供一种显示面板的亮度调节方法。所述显示面板具有显示区,所述显示区包括主显示区和透明显示区,所述透明显示区的光线透过率大于所述主显示区的光线透过率。所述亮度调节方法包括:对所述主显示区进行伽马校正,得到第一伽马校正参数,所述第一伽马校正参数用于驱动所述主显示区的像素进行显示;根据所述第一伽马校正参数,得到第二伽马校正参数,所述第二伽马校正参数用于驱动所述透明显示区的像素进行显示。其中,所述第一伽马校正参数和所述第二伽马校正参数使得所述主显示区和所述透明显示区在显示相同灰阶时的亮度差异在预设范围之内。
6.本公开的一些实施例所提供的显示面板的亮度调节方法,通过使透明显示区的第二伽马校正参数根据主显示区的第一伽马校正参数得到,可以使主显示区和透明显示区根据不同的伽马校正参数进行显示,减小主显示区和透明显示区在显示相同灰阶时的亮度差异,并避免在显示面板的背板制作工艺中增加掩膜版制作难度和成本,节省显示面板的背板中像素驱动电路的走线空间,有利于显示面板的像素密度的提升。另外,上述亮度调节方法仅使用一台伽马调试设备,因此可以简化伽马校正流程,缩短伽马校正时间,提高生产效率并避免增加显示面板生产厂家的成本。
7.在一些实施例中,所述显示面板具有多个参考显示亮度等级,所述主显示区对应多组所述第一伽马校正参数,所述透明显示区对应多组第二伽马校正参数,每个所述参考显示亮度等级对应一组所述第一伽马校正参数和一组所述第二伽马校正参数。所述根据所述第一伽马校正参数,得到第二伽马校正参数,包括:分别获取第一亮度值曲线和第二亮度值曲线,所述第一亮度值曲线表示所述参考显示亮度等级与所述主显示区的亮度值的对应关系,所述第二亮度值曲线表示所述参考显示亮度等级与所述透明显示区的亮度值的对应关系;根据所述第一亮度值曲线和所述第二亮度值曲线,得到显示亮度等级补偿曲线,所述显示亮度等级补偿曲线表示所述参考显示亮度等级与所述透明显示区的补偿显示亮度等级的对应关系,相对应的参考显示亮度等级和补偿显示亮度等级所对应的亮度值相同;针
对每个所述参考显示亮度等级,根据所述显示亮度等级补偿曲线,得到所述参考显示亮度等级所对应的补偿显示亮度等级,从多组所述第一伽马校正参数中找出与所述补偿显示亮度等级的值相同的参考显示亮度等级所对应的一组伽马校正参数,作为所述透明显示区的所述参考显示亮度等级对应的一组第二伽马校正参数。
8.在一些实施例中,所述显示面板在每个所述参考显示亮度等级下能够显示多个灰阶。所述分别获取第一亮度值曲线和第二亮度值曲线,包括:在每个所述参考显示亮度等级下,分别测试所述主显示区在目标灰阶下的亮度值,和所述透明显示区在所述目标灰阶下的亮度值;所述目标灰阶为所述多个灰阶中的一个灰阶;根据每个所述参考显示亮度等级及其对应的所述主显示区的亮度值,得到所述第一亮度值曲线;根据每个所述参考显示亮度等级及其对应的所述透明显示区的亮度值,得到所述第二亮度值曲线。
9.在一些实施例中,所述根据所述第一亮度值曲线和所述第二亮度值曲线,得到显示亮度等级补偿曲线,包括:根据所述第一亮度值曲线和所述第二亮度值曲线,得到所述主显示区和所述透明显示区的亮度值存在差异的多个参考显示亮度等级,作为多个目标参考显示亮度等级;针对每个所述目标参考显示亮度等级,得到所述透明显示区达到与所述主显示区相同的亮度所对应的参考显示亮度等级,作为所述透明显示区的补偿显示亮度等级;根据每个所述目标参考显示亮度等级及其对应的所述补偿显示亮度等级,得到所述显示亮度等级补偿曲线。
10.在一些实施例中,所述显示面板具有多个参考显示亮度等级,所述显示面板在每个所述参考显示亮度等级下能够显示多个灰阶。所述根据所述第一伽马校正参数,得到第二伽马校正参数,包括:获取第一调节因子和第二调节因子,所述第一调节因子表征同一亮度下所述主显示区与所述透明显示区所对应的参考显示亮度等级之间的差异,所述第二调节因子表征同一亮度下所述主显示区与所述透明显示区所对应的灰阶之间的差异;根据所述第一伽马校正参数,及所述第一调节因子和第二调节因子,计算得到所述第二伽马校正参数。
11.在一些实施例中,所述主显示区对应多组所述第一伽马校正参数,所述透明显示区对应多组第二伽马校正参数,每个所述参考显示亮度等级对应一组所述第一伽马校正参数和一组所述第二伽马校正参数。所述多个灰阶中的一些灰阶为参考灰阶,每组所述第一伽马校正参数包括所述主显示区的多个所述参考灰阶对应的多个伽马校正参数,每组所述第二伽马校正参数包括所述透明显示区的多个所述参考灰阶对应的多个伽马校正参数。
12.所获取的第一调节因子和第二调节因子包括多组第一调节因子和第二调节因子,每个所述参考显示亮度等级对应一组第一调节因子和第二调节因子。
13.所述根据所述第一伽马校正参数,及所述第一调节因子和第二调节因子,拟合计算得到所述第二伽马校正参数,包括:在每个所述参考显示亮度等级下,根据每个所述参考灰阶对应的第一伽马校正参数,及所述参考显示亮度等级对应的第一调节因子和第二调节因子,计算得到所述参考灰阶对应的第二伽马校正参数。
14.在一些实施例中,所述获取第一调节因子和第二调节因子,包括:提供多个测试用显示面板,所述测试用显示面板与待进行亮度调节的显示面板的规格相同;对每个所述测试用显示面板的主显示区进行伽马校正,得到第一测试伽马校正参数;对每个所述测试用显示面板的透明显示区进行伽马校正,得到第二测试伽马校正参数;根据所述多个测试用
显示面板所对应的多个所述第一测试伽马校正参数和多个所述第二测试伽马校正参数,拟合得到所述第一调节因子和所述第二调节因子。
15.在一些实施例中,所述拟合采用一次线性拟合。所述一次线性拟合采用如下公式:y=a(x+b)。其中,x为所述第一伽马校正参数,a为所述第一调节因子,b为第二调节因子,y为所述第二伽马校正参数。
16.在一些实施例中,所述显示面板包括靠近驱动电路的第一端,和远离所述驱动电路的第二端。在所述对所述主显示区进行伽马校正,得到第一伽马校正参数之前,所述亮度调节方法还包括:获取所述显示面板中数据信号由所述第一端传输至所述第二端的压降数据;根据所述压降数据,对所述显示面板的灰阶电压进行补偿。所述对所述主显示区进行伽马校正,得到第一伽马校正参数,包括:基于补偿后的灰阶电压,对所述主显示区进行伽马校正,得到所述第一伽马校正参数。
17.在一些实施例中,所述根据所述第一伽马校正参数,得到第二伽马校正参数,包括:将所述第一伽马校正参数作为用于驱动所述透明显示区的像素进行显示的第二伽马校正参数。
18.在一些实施例中,所述对所述主显示区进行伽马校正,得到第一伽马校正参数,包括:选取所述主显示区中的目标区域,对所述目标区域进行伽马校正,得到伽马校正参数,将所得到的伽马校正参数作为所述第一伽马校正参数。其中,所述目标区域位于所述显示面板的中心与所述透明显示区之间。
19.另一方向,提供一种显示面板的亮度调节方法,所述显示面板包括靠近驱动电路的第一端,和远离所述驱动电路的第二端。所述亮度调节方法包括:获取所述显示面板中数据信号由所述第一端传输至所述第二端的压降数据;根据所述压降数据,对所述显示面板的灰阶电压进行补偿;基于补偿后的灰阶电压,对所述显示面板进行伽马校正,得到伽马校正参数。
20.在一些实施例中,所述显示面板具有显示区,所述显示区包括主显示区和透明显示区,所述透明显示区的光线透过率大于所述主显示区的光线透过率。所述基于补偿后的灰阶电压,对所述显示面板进行伽马校正,得到伽马校正参数,包括:基于补偿后的灰阶电压,对所述主显示区进行伽马校正,得到第一伽马校正参数,所述第一伽马校正参数用于驱动所述主显示区的像素进行显示;将所述第一伽马校正参数作为用于驱动所述透明显示区的像素进行显示的第二伽马校正参数;或者,基于补偿后的灰阶电压,对所述透明显示区进行伽马校正,得到用于驱动所述透明显示区的像素进行显示的第二伽马校正参数。其中,所述第一伽马校正参数和所述第二伽马校正参数使得所述主显示区和所述透明显示区在显示相同灰阶时的亮度差异在预设范围之内。
21.又一方面,提供一种电子设备,所述电子设备包括处理器和存储器。所述存储器存储有所述处理器可执行的指令。所述处理器被配置为执行所述指令时,使得所述电子设备实现如上述一些示例中任一项所述的亮度调节方法。
22.又一方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有可在处理器上运行的计算机指令,所述计算机指令被所述处理器执行时实现如上述一些示例中任一项所述的亮度调节方法。
23.本公开的一些实施例所提供的电子设备和计算机可读存储介质,具有与上述一些
实施例中提供的显示面板的亮度调节方法相同的有益效果,此处不再赘述。
附图说明
24.为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸等的限制。
25.图1为根据相关技术的一种伽马曲线的示意图;
26.图2a为根据本公开一些实施例中的一种显示装置的结构图;
27.图2b为图2a中提供的显示装置的沿mm向的剖视图;
28.图3为根据本公开一些实施例中的一种显示面板的结构图;
29.图4为根据本公开一些实施例中的一种子像素的结构图;
30.图5a为根据“内置法”的一种位于主显示区的第一子像素的结构图;
31.图5b为根据“内置法”的一种位于透明显示区的第二子像素的结构图;
32.图6为根据“外置法”的一种不同显示亮度下灰阶和驱动电压的曲线图;
33.图7a为根据“外置法”的一种显示面板的点位分布图;
34.图7b为图7a中各点位的驱动电流的仿真结果图;
35.图7c为第三点位的一种驱动电流与驱动电压的曲线图;
36.图7d为第三点位的另一种驱动电流与驱动电压的曲线图;
37.图8a为根据第二种实现方式的两台伽马调试设备的位置图;
38.图8b为根据第二种实现方式的显示面板的不同区域的亮度差异图;
39.图9为根据本公开一些实施例中的一种亮度调节方法流程图;
40.图10为根据本公开一些实施例中的一种主显示区和透明显示区的亮度值曲线图;
41.图11为图10中的亮度值曲线图中不同点位的对应关系图;
42.图12为根据本公开一些实施例中的一种显示亮度等级补偿曲线图;
43.图13为根据本公开一些实施例中的一种主显示区和透明显示区的亮度值差异曲线图;
44.图14a为根据本公开一些实施例中的一种显示面板的显示效果图;
45.图14b为根据本公开一些实施例中的另一种显示面板的显示效果图;
46.图14c为根据本公开一些实施例中的又一种显示面板的显示效果图;
47.图14d为根据本公开一些实施例中的又一种显示面板的显示效果图;
48.图14e为根据本公开一些实施例中的又一种显示面板的显示效果图;
49.图15为根据本公开一些实施例中的另一种显示面板的结构图;
50.图16a为根据对比例中的一种不同灰阶下不同区域的亮度值曲线图;
51.图16b为根据对比例中的一种不同灰阶下不同区域的亮度值相对差异曲线图;
52.图16c为根据对比例中的一种不同灰阶下不同区域的色坐标值曲线图;
53.图16d为根据对比例中的一种不同灰阶下不同区域的色坐标值相对差异曲线图;
54.图16e为根据对比例中的另一种不同灰阶下不同区域的色坐标值曲线图;
55.图16f为根据对比例中的另一种不同灰阶下不同区域的色坐标值相对差异曲线
图;
56.图17a为根据本公开一些实施例中的一种不同灰阶下不同区域的亮度值曲线图;
57.图17b为根据本公开一些实施例中的一种不同灰阶下不同区域的亮度值相对差异曲线图;
58.图17c为根据本公开一些实施例中的一种不同灰阶下不同区域的色坐标值曲线图;
59.图17d为根据本公开一些实施例中的一种不同灰阶下不同区域的色坐标值相对差异曲线图;
60.图17e为根据本公开一些实施例中的另一种不同灰阶下不同区域的色坐标值曲线图;
61.图17f为根据本公开一些实施例中的另一种不同灰阶下不同区域的色坐标值相对差异曲线图;
62.图18为根据本公开一些实施例中的一种电子设备的结构图。
具体实施方式
63.下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
64.除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
65.以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
[0066]“a和/或b”,包括以下三种组合:仅a,仅b,及a和b的组合。
[0067]
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
[0068]
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
[0069]
由于人眼对较黑暗环境下的亮度的敏感程度,要比对较光亮环境下的亮度的敏感程度高许多,因此人眼感觉与亮度之间的关系并不是线性关系,而是呈现一定的规律。如图
1所示,图1示出了一种伽马曲线,其中横坐标代表显示面板中的像素的像素灰阶值(以下简称灰阶),纵坐标代表像素对应输出的灰阶亮度值。为了使oled显示装置的显示效果符合人眼视觉感受,需要使所输入的灰阶与对应输出的灰阶亮度值之间的关系设定为,灰阶亮度值正比于灰阶的γ次方,这种灰阶亮度值与灰阶之间的关系称为显示装置的伽马曲线。示例性的,将γ的值设定为2.2
±
0.2,以使所显示的画面与人眼实际所看到的画面接近。
[0070]
在oled显示装置出厂前,需要对oled显示装置进行亮度调节,该亮度调节过程也可以称为伽玛校正(gamma tuning),伽玛校正的目的是将灰阶亮度值与灰阶的比值γ次方调整为目标值,例如2.2
±
0.2,以提高显示装置的显示效果。
[0071]
通常,oled显示装置的显示面板具有一显示亮度等级(也可以称为显示亮度值,display brightness value,简称dbv)调节范围,显示装置的显示亮度等级能够在该亮度调节范围内变化。理想情况下,该显示亮度等级调节范围内的每一个显示亮度等级所对应的伽马曲线的伽马值均符合目标值,例如2.2
±
0.2,这样,在每个显示亮度等级下,显示装置所呈现的显示效果均符合人眼视觉感受。
[0072]
在显示装置的实际使用过程中,用户手动调节显示装置的显示亮度等级(例如,通过拖动手机等显示装置的显示面板上的亮度滑条,来调节显示装置的显示面板的显示亮度等级),或者显示装置响应于周围环境亮度的变化自动调整自身显示亮度等级,实际上相当于在切换不同显示亮度等级对应的伽马曲线。
[0073]
其中,预设的dbv(无单位)和显示面板的实际亮度值(luminance value,简称lv,单位为nit)之间一般具有一一对应关系。例如,以最大实际亮度值为500nit、dbv的值采用12bits(也即具有2
12
=4096个dbv值)为例,其中,dbv值为4096时则对应最大亮度值500nit。
[0074]
本公开的一些实施例提供了一种显示装置1000。如图2a和图2b所示,该显示装置1000包括显示面板100,该显示面板100具有显示区a,该显示区a用于显示图像。
[0075]
可选地,显示区a包括主显示区a1和透明显示区a2,显示面板100的位于透明显示区a2的部分的光线透过率大于位于主显示区a1的部分的光线透过率。
[0076]
示例性的,透明显示区a2的形状可以为矩形、圆形等。
[0077]
示例性的,显示面板100还可以包括边框区b,边框区b可以位于显示区a的至少一侧。也即,边框区b可以位于显示区a的一侧、两侧或三侧。当然,如图2a所示,边框区b还可以围绕显示区a。
[0078]
在一些示例中,如图2a和图2b所示,显示装置1000还可以包括:设置在显示面板100的非出光侧、且位于透明显示区a2的光学器件200。
[0079]
上述光学器件200的类型包括多种,可以根据实际需要选择设置。示例性的,光学器件200包括摄像头、红外接收器或红外发射器等。
[0080]
显示面板100具有出光侧和非出光侧。其中,出光侧指的是,显示面板100的用于显示图像的一侧。非出光侧指的是,显示面板100的与出光侧相对的一侧。
[0081]
由于显示面板100的位于透明显示区a2的部分的光线透过率大于位于主显示区a1的部分的光线透过率,因此,位于显示面板100的出光侧的光线可以透过透明显示区a2进入到光学器件200中,或,光学器件200发出的光线可以透过透明显示区a2入射到显示面板100的出光侧,实现光学器件200的正常使用。
[0082]
通过将上述光学器件200设置在显示面板100的非出光侧,并将光学器件200设置
在透明显示区a2,可以提高显示装置1000的屏占比。
[0083]
此处,上述显示装置1000的类型包括多种,可以根据实际需要选择设置。示例性的,上述显示装置1000可以为oled(organic light emitting diode,有机发光二极管)显示装置、qled(quantum dot light emitting diodes,量子点发光二极管)显示装置、mini led(mini light emitting diode,微型发光二极管)显示装置或micro led(micro light emitting diode,微型发光二极管)显示装置等。
[0084]
下面以上述显示装置1000为oled显示装置、且光学器件200为摄像头为例,进行示意性说明。
[0085]
在一些实施例中,如图3所示,显示面板100可以包括:多个子像素p。其中,各子像素p包括像素驱动电路d,及与像素驱动电路d电连接的发光器件l。
[0086]
基于上述显示装置1000为oled显示装置,发光器件l则可以为oled。
[0087]
上述像素驱动电路d的结构包括多种,可以根据实际需要选择设置。示例性的,像素驱动电路d的结构可以包括“6t1c”、“7t1c”、“6t2c”或“7t2c”等结构。此处,“t”表示为晶体管,位于“t”前面的数字表示为晶体管的数量,“c”表示为存储电容器,位于“c”前面的数字表示为存储电容器的数量。
[0088]
需要说明的是,像素驱动电路d包括驱动晶体管和至少一个发光控制晶体管。
[0089]
如图4所示,以上述像素驱动电路d的结构为7t1c结构为例。像素驱动电路d包括驱动晶体管t3、发光控制晶体管t5和t6。驱动晶体管t3可以根据输入至像素驱动电路d的数据信号(该数据信号来自数据信号端data)向对应的发光器件l提供驱动信号(也即驱动电流),发光控制晶体管t5和t6可以在使能信号端em所传输的使能信号的控制下,控制驱动晶体管和发光器件l之间的导通与关断。也就是说,数据信号的电压值的大小可以控制提供给发光器件l的驱动电流的大小;使能信号可以控制驱动电流是否传输至发光器件l及传输至发光器件l的驱动电流的时长,也即,使能信号可以控制发光器件l是否发光,及控制发光器件l的发光时长。
[0090]
示例性的,使能信号为脉宽调制信号。在一个发光阶段内,通过调节脉宽调制信号的占空比,可以控制驱动电流传输至发光器件l的时长,进而调节显示面板100的显示亮度。例如,脉宽调制信号的占空比越高,对应发光器件l在一个发光阶段内的发光时长越长,显示面板100的显示亮度会越高。反之,显示面板100的显示亮度会越低。
[0091]
示例性的,在一个发光阶段内,通过调节数据信号的电压值,可以控制驱动电流的大小,进而调节显示面板100的显示亮度。例如,数据信号的电压值越高,驱动电流则越小,对应发光器件l在一个发光阶段内的发光亮度越低,显示面板100的显示亮度会越低。反之,显示面板100的显示亮度会越高。
[0092]
此处,是以图4所示的像素驱动电路d所包括的多个晶体管为p型晶体管为例。在像素驱动电路d所包括的多个晶体管为n型晶体管的情况下,数据信号的电压值越高,驱动电流则越大,对应发光器件l在一个发光阶段内的发光亮度越高,显示面板100的显示亮度会越高。反之,显示面板100的显示亮度会越低。
[0093]
由以上可知,子像素p的显示亮度及显示面板100的显示亮度至少由数据信号和使能信号共同控制。
[0094]
需要说明的是,像素驱动电路d中的走线会对穿过像素驱动电路d的光线进行遮
挡,减小显示面板100的显示区a的透光率。
[0095]
在一些示例中,如图3所示,上述多个子像素p可以包括:多个第一子像素p1和多个第二子像素p2。
[0096]
示例性的,如图3所示,上述多个第一子像素p1位于主显示区a1。也即,上述多个第一子像素p1的像素驱动电路d及发光器件l均位于主显示区a1。
[0097]
对于透明显示区a2中的第二子像素p2的结构的设计方法包括多种,通过对第二子像素p2的结构进行特殊设计,可以提高透明显示区a2对外界光线的透过率。
[0098]
第一种:将透明显示区a2中的第二子像素p2的尺寸或密度减小,将其像素驱动电路d依然置于对应的发光器件l的下方。该方法简称为“内置法”。
[0099]
下面举例对“内置法”的一种结构进行说明。
[0100]
示例性的,如图5a和图5b所示,图5a示出了主显示区a1中多个第一子像素p1的排布设计,其中,多个第一子像素p1包括多个红色子像素(图中的标号“r”)、多个绿色子像素(图中的标号“g”)、多个蓝色子像素(图中的标号“b”)。图5b示出了透明显示区a2中多个第二子像素p2的排布设计,多个第二子像素p2包括多个红色子像素(图中的标号“r”)、多个绿色子像素(图中的标号“g”)、多个蓝色子像素(图中的标号“b”)。透明显示区a2中的像素密度(例如可以为199像素/英寸)小于主显示区a1中的像素密度(例如可以为398像素/英寸),因此,在透明显示区a2中的更多区域可以使光线透过,从而提高了透明显示区a2对外界光线的透过率,提升了光学器件200所接收的外界光线的量。
[0101]
但是,因为同一显示面板中存在两种不同的子像素排布设计,因此,在对显示面板100进行一次伽马校正后,透明显示区a2的显示亮度及色度均不能达到主显示区a1的效果,从而使主显示区a1和透明显示区a2之间存在显示差异,影响显示面板100的整体显示效果。
[0102]
第二种:将透明显示区a2中的第二子像素p2的尺寸或密度设计的与第一子像素p1的尺寸或密度一致,但将第二子像素p2的像素驱动电路d设置于透明显示区a2以外。该方法简称为“外置法”。
[0103]
下面举例对一种“外置法”进行说明。
[0104]
示例性的,如图3所示,上述多个第二子像素p2中,各第二子像素p2的发光器件l位于透明显示区a2,各第二子像素p2的像素驱动电路d位于透明显示区a2以外的区域。
[0105]
通过将第一子像素p1设置在主显示区a1,将各第二子像素p2的发光器件l设置在透明显示区a2,可以利用各第一子像素p1和第二子像素p2的发光器件l使得显示面板100及显示装置1000实现全屏显示。通过将各第二子像素p2的像素驱动电路d设置在主显示区a1或边框区b,在外界光线穿过显示面板100位于透明显示区a2的部分入射至光学器件200的过程中,可以避免第二子像素p2的像素驱动电路d对外界光线形成遮挡,进而可以提高外界光线的透过率,提升光学器件200所接收的外界光线的量。
[0106]
需要说明的是,如图3所示,在将各第二子像素p2的像素驱动电路d设置在主显示区a1或边框区b后,需要额外设置连接走线c(其材料例如为氧化铟锡,以避免影响外界光线的透过率),以便于连接像素驱动电路d及相应的发光器件l,进而可以通过连接走线c向发光器件l传输驱动电流。
[0107]
例如,如图6所示,图6为不同显示灰阶和驱动电压(也即数据信号的电压值)的关系曲线图。其中,在相同的驱动电压改变量δv下,显示亮度为2nit(也即低亮度)时所改变
的灰阶个数大于显示亮度为400nit(也即高亮度)时改变的灰阶个数。在相同的灰阶变化量δg下,显示亮度为2nit(也即低亮度)时所改变的驱动电压小于显示亮度为400nit(也即高亮度)时改变的驱动电压。也就是说,在显示亮度位于低亮度区间内的情况下,显示亮度对灰阶的变化不太敏感。
[0108]
然而,各第二子像素p2中,由于连接走线c的存在,且连接走线c具有电阻,会使得第二子像素p2的像素驱动电路d和相应的发光器件l之间的电阻增加。这样在第二子像素p2的像素驱动电路d给相应的发光器件l提供驱动电流的情况下,单位驱动电压变化量下所改变的驱动电流的量较小。这样在显示亮度位于低亮度区间内的情况下,会导致透明显示区a2的显示亮度对灰阶的变化更为不敏感,进而导致透明显示区a2在低亮度下显示发暗的现象更加明显。
[0109]
或者,在“外置法”的另一种显示面板的结构中,本公开的发明人对显示面板中的不同区域选取了五个点位,并对上述点位对应的像素驱动电路进行了驱动电流的仿真。如图7a所示,透明显示区a2的形状为圆形,第一点位d1、第二点位d2、第四点位d4位于透明显示区a2的边缘,第三点位d3位于透明显示区a2的几何中心,第五点位d5位于靠近主显示区a1的一侧的中点的位置。如图7b所示,图7b为上述各点位对应的像素驱动电路的驱动电流ids的仿真结果,由图可知,位于透明显示区a2的几何中心的第三点位d3的驱动电流ids与其余点位的驱动电流ids的差别较大,这将导致透明显示区a2与主显示区a1的显示亮度存在差异。上述第三点位d3的驱动电流ids较大的原因是:第三点位d3的像素驱动电路d的走线使用氧化铟锡,电阻较大,因此,在图4所示的像素驱动电路结构中,数据信号data传输至第三点位d3后的压降较大,该显示面板驱动晶体管t3为p型晶体管,由于c点的压降更多,在发光阶段的源漏极电压差更大,所以驱动晶体管t3的驱动电流ids在第三点位d3更大。
[0110]
并且,发明人还发现,如图7c和图7d所示,图7c为第三点位d3在0灰阶的情况下,驱动电流ids与驱动电压u的曲线图,图7d为第三点位d3在255灰阶的情况下,驱动电流ids与驱动电压u的曲线图,由上述两个图可知,在上述两个灰阶下,第三点位d3的驱动电流ids均随着驱动电压u的变化而变化。
[0111]
为了减小透明显示区a2与主显示区a1的显示亮度的差异,在第一种实现方式中,显示面板的像素驱动电路d中设置有两条vinit1走线,透明显示区a2的第二子像素p2的像素驱动电路d中的vinit1信号的电压,与主显示区a1的第一子像素p1的像素驱动电路d中的vinit1信号的电压不同,如图4所示,这样可以在不同的vinit1信号传输至n1节点后,使n1节点具有不同的电压,相应的,可以部分抵消数据信号data传输至透明显示区a2后的压降,从而可以减小主显示区a1和透明显示区a2之间的亮度差异。
[0112]
进一步的,通过合理设置第一子像素p1的像素驱动电路d中的vinit1信号电压和第二子像素p2的像素驱动电路d中的vinit1信号电压,可以使主显示区a1和透明显示区a2之间的亮度差异降到最低。例如,主显示区a1的vinit1信号电压为-2.4v,透明显示区a2的vinit1信号电压为-1.6v或更高。
[0113]
但是,在设置两个不同的vinit1信号电压的情况下,需要在显示面板中增加额外的第二条vinit1走线,从而在显示面板的背板制作工艺中增加掩膜版制作难度和成本,并且,新增加的走线也会影响原显示面板的背板中像素驱动电路的走线空间,将限制设置有光学器件200的显示面板的像素密度的提升。例如,经过仿真验证,在设置有两条vinit1走
线的情况下,显示面板的像素密度难以超过450像素/英寸。
[0114]
在第二种实现方式中,如图8a所示,使用两台伽马调试设备(也即图8a中所示的伽马调试设备1和伽马调试设备2)对显示面板的主显示区和透明显示区分别进行伽马校正,这种伽马校正方式可以称为“双伽马调试”。但这种方式需要额外增加一台伽马调试设备,将会增加显示面板厂家的成本。并且,在这种方式中,其中一台伽马调试设备的伽马校正的位置位于显示面板的正中心,因为显示面板后期进行的显示不良补偿的特性的影响,如图8b所示,透明显示区a2的下方的区域的亮度与主显示区a1的中心区域的亮度存在10%的差异,这将导致对透明显示区a2进行伽马校正的伽马调试设备得到的伽马校正数据误差较大,即使后期再做显示不良补偿和压降补偿,补偿后的亮度差异还是明显存在的。
[0115]
基于此,本公开的一些实施例提供了一种显示面板的亮度调节方法,如图9所示,该亮度调节方法应用于上述显示面板100。该亮度调节方法包括s100a~s200a。
[0116]
s100a、对主显示区a1进行伽马校正,得到第一伽马校正参数,第一伽马校正参数用于驱动主显示区a1的像素进行显示。
[0117]
示例性的,一个像素可以包括多个子像素。例如,一个像素可以包括红色子像素、绿色子像素和蓝色子像素。
[0118]
上述伽马校正参数表示一个显示亮度等级下一个灰阶对应的灰阶电压,灰阶电压表示一个子像素的像素驱动电路所对应的驱动电压(或称数据信号电压)。
[0119]
例如,上述伽马校正参数包括显示亮度等级信息和灰阶信息。
[0120]
示例性的,在一个显示亮度等级下,主显示区a1的一个像素需要显示255灰阶的情况下,该像素的像素驱动电路的驱动电压根据第一伽马校正参数得到。
[0121]
s200a、根据第一伽马校正参数,得到第二伽马校正参数,第二伽马校正参数用于驱动透明显示区a2的像素进行显示。其中,第一伽马校正参数和第二伽马校正参数使得上述主显示区a1和上述透明显示区a2在显示相同灰阶时的亮度差异在预设范围之内。
[0122]
示例性的,在一个显示亮度等级下,透明显示区a2的一个像素需要显示255灰阶的情况下,该像素的像素驱动电路的驱动电压根据第二伽马校正参数得到。
[0123]
上述预设范围是允许的最大亮度差异以内的一个范围。
[0124]
示例性的,上述预设范围可以根据实际需求进行设定。例如上述预设范围可以根据客户需求设定。
[0125]
通过上述方法,在对主显示区a1进行一次伽马校正后,即可根据主显示区a1的第一伽马校正参数得到透明显示区a2的第二伽马校正参数,从而可以分别用于驱动主显示区a1和透明显示区a2,并减小主显示区a1和透明显示区a2在显示相同灰阶时的亮度差异。与上述第一种实现方式相比,可以避免额外设置第二条vinit1走线,因此,可以避免在显示面板100的背板制作工艺中增加掩膜版制作难度和成本,节省显示面板100的背板中像素驱动电路的走线空间,有利于显示面板100的像素密度的提升。相比于第二种实现方式,可以无需增加第二台伽马调试设备,因此可以简化伽马校正流程,缩短伽马校正时间,提高生产效率并避免增加显示面板生产厂家的成本。
[0126]
由此,本公开的一些实施例所提供的显示面板的亮度调节方法,通过对主显示区a1进行一次伽马校正得到第一伽马校正参数,并根据第一伽马校正参数得到透明显示区a2的第二伽马校正参数,从而可以使主显示区a1和透明显示区a2根据不同的伽马校正参数进
行显示,减小主显示区a1和透明显示区a2在显示相同灰阶时的亮度差异,并避免在显示面板100的背板制作工艺中增加掩膜版制作难度和成本,节省显示面板100的背板中像素驱动电路的走线空间,有利于显示面板100的像素密度的提升。另外,上述亮度调节方法无需增加第二台伽马调试设备,因此可以简化伽马校正流程,缩短伽马校正时间,提高生产效率并避免增加显示面板生产厂家的成本。
[0127]
在一些实施例中,主显示区a1对应多组第一伽马校正参数,透明显示区a2对应多组第二伽马校正参数,显示面板100具有多个参考显示亮度等级,每个参考显示亮度等级对应一组第一伽马校正参数和一组第二伽马校正参数。
[0128]
在一些示例中,上述多个参考显示亮度等级为显示面板100所具有的全部显示亮度等级中的一部分显示亮度等级,且多个参考显示亮度等级至少包括显示面板100所具有的全部显示亮度等级中的最大显示亮度等级和最小显示亮度等级。参考显示亮度等级中还可以包括所有显示亮度等级中的按客户要求选定的多个显示亮度等级。
[0129]
示例性的,参考显示亮度等级为显示面板100的所有显示亮度等级中的部分选定的显示亮度等级。例如,显示面板100的所有显示亮度等级的数量为4096个,参考显示亮度等级的数量为10个。
[0130]
通过设置参考显示亮度等级,在对主显示区a1进行伽马校正的过程中,对上述参考显示亮度等级进行校正后,其余显示亮度等级可以通过插值法得到,这样可以简化整个伽马校正的过程,节省伽马校正时间,提高生产效率。
[0131]
并且,显示面板100具有多个参考显示亮度等级,从而可以使显示面板100能够在多个参考显示亮度等级下进行显示,且在多个参考显示亮度等级下,主显示区a1和透明显示区a2的亮度差异也较小。
[0132]
需要说明的是,上述s200a中“根据第一伽马校正参数,得到第二伽马校正参数”可以有多种方法。
[0133]
在一些可能的实施例中,上述s200a中“根据第一伽马校正参数,得到第二伽马校正参数”包括s210a~s230a。
[0134]
s210a、如图10所示,分别获取第一亮度值曲线l1和第二亮度值曲线l2。第一亮度值曲线l1表示参考显示亮度等级(dbv)与主显示区a1的亮度值(lv)的对应关系,第二亮度值曲线l2表示参考显示亮度等级与透明显示区a2的亮度值的对应关系。
[0135]
可以理解的是,在分别获取第一亮度值曲线l1和第二亮度值曲线l2的过程中,主显示区a1和透明显示区a2均通过第一伽马校正参数驱动。
[0136]
由图10可知,在同一显示亮度等级(dbv)下,主显示区a1和透明显示区a2具有不同的亮度值(lv),即主显示区a1和透明显示区a2的显示亮度具有差异。
[0137]
在一些示例中,显示面板100在每个参考显示亮度等级下能够显示多个灰阶。
[0138]
示例性的,上述多个灰阶为256个灰阶,这样可以使显示面板100在每个参考显示亮度等级下显示多种灰阶图像。
[0139]
在一些示例中,上述s210a中“分别获取第一亮度值曲线l1和第二亮度值曲线l
2”包括s211a~s213a。
[0140]
s211a、在每个参考显示亮度等级下,分别测试主显示区a1在目标灰阶下的亮度值,和透明显示区a2在目标灰阶下的亮度值。上述目标灰阶为多个灰阶中的一个灰阶。
[0141]
示例性的,在上述多个灰阶为256个灰阶的情况下,上述目标灰阶可以为10灰阶、100灰阶或240灰阶等。
[0142]
通过上述方法,可以简化获取主显示区a1在目标灰阶下的亮度值l2的过程。
[0143]
在一些示例中,上述目标灰阶为多个灰阶中的最大灰阶。
[0144]
例如,在上述多个灰阶为256个灰阶的情况下,上述目标灰阶为255灰阶。
[0145]
可以理解的是,255灰阶的亮度较高,这样可以方便检测目标灰阶下的亮度值。
[0146]
s212a、根据每个参考显示亮度等级及其对应的主显示区a1的亮度值,得到第一亮度值曲线l1。
[0147]
示例性的,介于相邻两个参考显示亮度等级之间的显示亮度等级,及其对应的主显示区a1的亮度值可以通过插值法得到。
[0148]
s213a、根据每个参考显示亮度等级及其对应的透明显示区a2的亮度值,得到第二亮度值曲线l2。
[0149]
示例性的,介于相邻两个参考显示亮度等级之间的显示亮度等级,及其对应的透明显示区a2的亮度值可以通过插值法得到。
[0150]
s220a、根据第一亮度值曲线l1和第二亮度值曲线l2,如图12所示,得到显示亮度等级补偿曲线l3,显示亮度等级补偿曲线l3表示参考显示亮度等级与透明显示区a2的补偿显示亮度等级的对应关系,相对应的参考显示亮度等级和补偿显示亮度等级所对应的亮度值(lv)相同。
[0151]
示例性的,如图11所示,显示亮度等级补偿曲线中的每个参考显示亮度等级与透明显示区的补偿显示亮度等级的对应关系的获取过程可以为:根据第一亮度值曲线l1上的a点的显示亮度等级(例如dbv=1400)得到a点的亮度值(例如lv=190nit),将第二亮度值曲线l2上的b点的显示亮度等级(例如dbv=1400)补偿至c点的显示亮度等级(例如dbv=1500),使c点的亮度值与a点的亮度值(例如lv=190nit)相等。c点对应的显示亮度等级(dbv)即为透明显示区a2的一个补偿显示亮度等级。重复上述操作,从而得到透明显示区a2的所有的补偿显示亮度等级,从而得到如图12所示的显示亮度等级补偿曲线l3。由图12可知,与第二亮度值曲线l2相比,在相同的显示亮度等级(dbv)下,显示亮度等级补偿曲线l3对应的亮度值大于未补偿前的第二亮度值曲线l2对应的亮度值。
[0152]
示例性的,在得到如图12所示的显示亮度等级补偿曲线l3的过程中,可以仅对在同一显示亮度等级下,透明显示区a2中与主显示区a1存在亮度值差异的点对应的显示亮度等级进行补偿,这样可以简化显示亮度等级补偿曲线l3的获取过程,节省时间。
[0153]
s230a、针对每个参考显示亮度等级,根据显示亮度等级补偿曲线l3,得到参考显示亮度等级所对应的补偿显示亮度等级,从多组第一伽马校正参数中找出与补偿显示亮度等级的值相同的参考显示亮度等级所对应的一组伽马校正参数,作为透明显示区a2的参考显示亮度等级对应的一组第二伽马校正参数。
[0154]
示例性的,因为显示亮度等级补偿曲线l3中每个参考显示亮度等级对应的亮度值,与该参考显示亮度下主显示区a1对应的亮度值相同,因此,在该参考显示亮度下透明显示区a2的亮度值与主显示区a1对应的亮度值相同,可以减小透明显示区a2与主显示区a1之间的亮度差异。
[0155]
本公开的发明人对补偿前后的亮度差异进行了测试,如图13所示,其中实线l4为
未补偿的情况下主显示区a1和透明显示区a2在不同显示亮度等级下的亮度值差异,点画线l5为透明显示区a2在不同显示亮度等级下相对于原亮度值的亮度值的补偿值,虚线l6为对透明显示区a2的亮度值进行补偿后的主显示区a1和透明显示区a2在不同显示亮度等级下的亮度值差异,由图可知,在对透明显示区a2的亮度值进行补偿后,主显示区a1和透明显示区a2在不同显示亮度等级下的亮度值差异均接近0,也即主显示区a1和透明显示区a2在不同显示亮度等级下的亮度值几乎无差异。
[0156]
在另一些可能的实施例中,上述s200a中“根据第一伽马校正参数,得到第二伽马校正参数”包括s210b~s220b。
[0157]
s210b、获取第一调节因子和第二调节因子,显示面板100的第一调节因子表征同一亮度下显示面板的主显示区a1与显示面板的透明显示区a2所对应的参考显示亮度等级之间的差异,显示面板的第二调节因子表征同一亮度下显示面板的主显示区a1与显示面板的透明显示区a2所对应的灰阶之间的差异。
[0158]
在一些示例中,s210b中,“获取第一调节因子和第二调节因子”包括s211b~s213b。
[0159]
s211b、提供多个测试用显示面板,测试用显示面板与待进行亮度调节的显示面板的规格相同。
[0160]
示例性的,规格相同的显示面板在使用相同的伽马校正参数进行显示的过程中,可以具有较小的显示亮度差异。
[0161]
通过上述设置,可以减小因为显示面板的规格差异对第一调节因子和第二调节因子的影响,使最终获取的第一调节因子和第二调节因子更加精确。
[0162]
s212b、对每个测试用显示面板的主显示区a1进行伽马校正,得到第一测试伽马校正参数,对每个测试用显示面板的透明显示区a2进行伽马校正,得到第二测试伽马校正参数。
[0163]
也即,第一测试伽马校正参数和第二测试伽马校正参数通过上述“双伽马调试”得到。相应的,在主显示区a1使用第一测试伽马校正参数进行显示,及透明显示区a2使用第一测试伽马校正参数进行显示的情况下,主显示区a1和透明显示区a2之间具有较小的显示亮度差异。
[0164]
s213b、根据多个测试用显示面板所对应的多个第一测试伽马校正参数和多个第二测试伽马校正参数,拟合得到第一调节因子和第二调节因子。
[0165]
在科学技术的许多领域中,常会遇到以下问题:在各种物理问题和统计问题中,对有关量进行多次观测或实验得到了一些数据组,它们是零散的,不仅不便于处理,而且通常不能确切和充分地体现出其固有的规律。为了得到数据之间的固有规律或者用当前数据来预测期望得到的数据,就要用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之间的函数关系。在数值分析中,曲线拟合就是用解析表达式逼近离散数据,即离散数据的公式化。
[0166]
示例性的,拟合得到第一调节因子和第二调节因子的方法可以包括最小二乘法或其他统计计算方法得到。
[0167]
最小二乘法是一种在误差估计、不确定度、系统辨识及预测、预报等数据处理诸多学科领域得到广泛应用的数学工具。
[0168]
通过上述方法,即可得到使主显示区a1和透明显示区a2之间具有较小的显示亮度差异的情况下对应的第一调节因子和第二调节因子。
[0169]
在一些实施例中,上述拟合采用一次线性拟合。一次线性拟合采用如下公式:
[0170]
y=a(x+b);
[0171]
其中,x为第一伽马校正参数,a为第一调节因子,b为第二调节因子,y为第二伽马校正参数。
[0172]
通过使用一次线性拟合,相比于多次线性或非线性拟合,可以简化拟合过程中的计算量,减少拟合得到一调节因子和第二调节因子的时间。通过上述公式,即可由第一伽马校正参数计算得到第二伽马校正参数。
[0173]
示例性的,上述得到拟合得到第一调节因子和第二调节因子的过程可以为:选取一个亮度等级下第一测试伽马校正参数中的多个(例如24个)灰阶的向量值作为上述公式的x值,并从同一亮度等级下的第二测试伽马校正参数中找到对应的多个(例如24个)灰阶的向量值作为上述公式的y值,根据上述多个x值和y值通过一次线性拟合的方法得到对应的第一调节因子a和第二调节因子b。重复上述操作,即可得到每个参考亮度等级下的多组第一调节因子a和第二调节因子b。
[0174]
s220b、根据显示面板的第一伽马校正参数,及显示面板的第一调节因子和第二调节因子,计算得到显示面板的第二伽马校正参数。
[0175]
示例性的,通过第一调节因子a,可以由显示面板主显示区a1的参考显示亮度等级计算得到显示面板透明显示区a2所对应的参考显示亮度等级,进而可以使透明显示区a2和主显示区a1显示同一亮度。通过第二调节因子b,可以由显示面板主显示区a1的灰阶计算得到显示面板透明显示区a2所对应的灰阶,进而可以使透明显示区a2和主显示区a1显示同一亮度。
[0176]
例如,在某一亮度下,主显示区a1所对应的参考显示亮度等级为20、灰阶为50,通过第一调节因子和第二调节因子以及上述公式,可以计算得到在该亮度下,透明显示区a2对应的参考显示亮度等级为22、灰阶为55。
[0177]
在一些实施例中,多个灰阶中的一些灰阶为参考灰阶,每组第一伽马校正参数包括主显示区a1的多个参考灰阶对应的多个伽马校正参数,每组第二伽马校正参数包括透明显示区a2的多个参考灰阶对应的多个伽马校正参数。
[0178]
需要说明的是,在进行伽马校正时并不是对全部灰阶均进行伽马校正,而是从全部灰阶中选取一些灰阶进行伽马校正,所选取的这些灰阶即参考灰阶,其他灰阶的灰阶电压是根据参考灰阶的灰阶电压通过插值计算得到的。这样可以简化伽马校正的过程,提高生产效率。
[0179]
在一些示例中,所获取的第一调节因子和第二调节因子包括多组第一调节因子和第二调节因子,每个参考显示亮度等级对应一组第一调节因子和第二调节因子。
[0180]
示例性的,每一组第一调节因子和第二调节因子相互对应。
[0181]
通过使每个参考显示亮度等级对应一组第一调节因子和第二调节因子,可以使每个参考显示亮度等级下得到的第二伽马校正参数更精确,从而使透明显示区a2的亮度调节更加准确。
[0182]
在一些示例中,s220b中,“根据第一伽马校正参数,及第一调节因子和第二调节因
子,拟合得到第二伽马校正参数”包括:在每个参考显示亮度等级下,根据每个参考灰阶对应的第一伽马校正参数,及参考显示亮度等级对应的第一调节因子和第二调节因子,计算得到参考灰阶对应的第二伽马校正参数。
[0183]
通过上述方法即可得到与第一伽马校正参数中每个参考显示亮度等级下所有参考灰阶对应的第二伽马校正参数。
[0184]
本公开的发明人对使用上述s210b~s220b方法对显示面板进行亮度调节之后的显示效果进行了测试,如图14a~图14e所示,图14a示意出在255灰阶下显示面板的显示效果,图14b示意出灰阶在水平方向渐变的情况下的显示面板的显示效果,图14c示意出灰阶在水平方向反向渐变的情况下的显示面板的显示效果,图14d示意出灰阶在垂直方向渐变的情况下的显示面板的显示效果,图14e示意出灰阶在垂直方向反向渐变的情况下的显示面板的显示效果。由上述附图可知,使用上述s210b~s220b方法对显示面板进行亮度调节之后,显示面板的主显示区和透明显示区之间的亮度几乎无差异。
[0185]
并且,以一次伽马校正包括10个参考显示亮度等级、每个参考显示亮度等级包括24个参考灰阶为例,使用“双伽马调试法”对显示面板进行调试需要大约30分钟。而使用上述s210b~s220b方法对显示面板进行亮度调节的过程中,仅对主显示区进行了一次伽马校正,相比于使用“双伽马调试法”,使用上述s210b~s220b方法对显示面板进行亮度调节可以节省一半的调试时间,可极大提升显示面板生产产能。
[0186]
在一些实施例中,如图3所示,显示面板100包括靠近驱动电路e的第一端100a,和远离驱动电路e的第二端100b。
[0187]
示例性的,驱动电路e用于为像素驱动电路d提供多种控制信号。驱动电路e可以包括栅极驱动电路、源极驱动电路等。相应的,距离驱动电路e越远的像素驱动电路d,驱动电路e提供的控制信号所要传输的距离越远,控制信号的衰减越大。
[0188]
在一些实施例中,在s100a中的“对主显示区a1进行伽马校正,得到第一伽马校正参数”之前,本公开的亮度调节方法还包括s10~s20:
[0189]
s10、获取显示面板100中数据信号由第一端100a传输至第二端100b的压降数据。
[0190]
s20、根据压降数据,对显示面板100的灰阶电压进行补偿。
[0191]
例如,数据信号由第一端100a传输至第二端100b的压降为0.5v,对显示面板100的灰阶电压补偿的电压也为0.5v。
[0192]
通过上述步骤,可以减小因为像素驱动电路d与驱动电路e之间的距离较大导致驱动电路e传输的控制信号的衰减,从而减小显示面板100中与驱动电路e不同距离的像素的亮度差异,使显示面板100中不同位置的像素的亮度趋于一致。因此,在对主显示区a1进行伽马校正的过程中,可以避免伽马校正的位置对伽马校正结果的影响。
[0193]
本公开发明人对灰阶电压补偿前后的显示面板100的主显示区a1的亮度均一性进行了测试,测试结果见下表1。
[0194]
表1
[0195][0196]
上述亮度均一性值的计算方法为:最小亮度/最大亮度*100%。亮度均一性值越小,表示显示面板各区域的亮度差异越大;亮度均一性值越大,表示显示面板各区域的亮度差异越小。
[0197]
由上表1可知,显示面板α在进行灰阶电压补偿前的亮度均一性为81%,显示面板α在进行灰阶电压补偿后的亮度均一性为95%;显示面板β在进行灰阶电压补偿前的亮度均一性为80%,显示面板β在进行灰阶电压补偿后的亮度均一性为92%。因此,显示面板在进行灰阶电压补偿后,可以提高显示面板的亮度均一性。
[0198]
在一些示例中,s100a中,上述“对主显示区a1进行伽马校正,得到第一伽马校正参数”包括:基于补偿后的灰阶电压,对主显示区a1进行伽马校正,得到第一伽马校正参数。
[0199]
在对显示面板进行灰阶电压补偿后,对主显示区a1进行伽马校正,可以避免第一伽马校正参数驱动主显示区a1进行显示的过程中使不同位置的像素出现亮度差异。
[0200]
在又一些可能的实施例中,上述s200a中“根据第一伽马校正参数,得到第二伽马校正参数”包括s210c。
[0201]
s210c、将第一伽马校正参数作为用于驱动透明显示区a2的像素进行显示的第二伽马校正参数。
[0202]
可以理解的,因为在得到第一伽马校正参数前,对显示面板100的灰阶电压进行过补偿,因此,显示面板100具有较高的亮度均一性,在将第一伽马校正参数作为用于驱动透明显示区a2的像素进行显示的第二伽马校正参数的情况下,可以减小主显示区a1和透明显示区a2在不同显示亮度等级下的亮度值差异。
[0203]
在一些示例中,s100a中,上述“对主显示区a1进行伽马校正,得到第一伽马校正参数”还包括:如图15所示,选取主显示区a1中的目标区域q,对目标区域q进行伽马校正,得到伽马校正参数,将所得到的伽马校正参数作为第一伽马校正参数。其中,目标区域q位于显示面板100的中心o与透明显示区a2之间。
[0204]
通过上述设置,可以使伽马校正过程中伽马调试设备的测量亮度更接近透明显示区a2的显示亮度,并且根据后文提到的显示不良调试(本领域习惯称为demura)的算法原理,上述设置可以使显示面板100在根据第一伽马校正参数进行显示的过程中,减小主显示
区a1和透明显示区a2之间的亮度差异。并且,上述目标区域q的位置,还可以使得到的伽马校正参数基本不受透明显示区a2的大小的影响。
[0205]
进一步的,显示面板100的形状为矩形,透明显示区a2位于显示面板靠近上述矩形短边的一端,上述矩形的长边的长度为h,在这种情况下,如图15所示,可以将上述目标区域q的中心位置o由显示面板100的中心向靠近透明显示区a2的方向移动h/4的距离,这样可以进一步使伽马调试设备的测量亮度更接近透明显示区a2的显示亮度,从而在伽马校正完成后,进一步减小主显示区a1和透明显示区a2之间的亮度差异。
[0206]
本公开的一些实施例还提供了另外一种亮度调节方法,该亮度调节方法包括s100b~s300b。
[0207]
s100b、获取显示面板100中数据信号由第一端100a传输至第二端100b的压降数据。
[0208]
s200b、根据压降数据,对显示面板100的灰阶电压进行补偿。
[0209]
s300b、基于补偿后的灰阶电压,对显示面板100进行伽马校正,得到伽马校正参数。
[0210]
由上所述,在对显示面板100的灰阶电压进行补偿后,显示面板100已经具有较高的亮度均一性,因此,对显示面板100进行伽马校正后,显示面板100的不同位置仍然具有较高的亮度均一性,从而减小显示面板100显示区a的不同位置的亮度值差异。
[0211]
在一些实施例中,s300b中,“基于补偿后的灰阶电压,对显示面板100进行伽马校正,得到伽马校正参数”包括s310b~s320b。
[0212]
s310b、基于补偿后的灰阶电压,对主显示区a1进行伽马校正,得到第一伽马校正参数,第一伽马校正参数用于驱动主显示区a1的像素进行显示。
[0213]
s320b、将第一伽马校正参数作为用于驱动透明显示区a2的像素进行显示的第二伽马校正参数。
[0214]
通过上述方法,可以通过一次伽马校正,即可得到主显示区a1和透明显示区a2的伽马校正参数,节省了伽马校正的时间。
[0215]
在另一些示例中,s320b还可以为:基于补偿后的灰阶电压,对透明显示区a2进行伽马校正,得到用于驱动透明显示区a2的像素进行显示的第二伽马校正参数。
[0216]
也即,在这种情况下,对显示面板100的主显示区a1和透明显示区a2分别进行了伽马校正。这样可以进一步提高透明显示区a2的第二伽马校正参数的准确度,并进一步减小主显示区a1和透明显示区a2之间的亮度差异。
[0217]
在一些示例中,在s300b后,上述亮度调节方法还包括:显示不良调试。
[0218]
示例性的,上述显示不良调试可以包括对混色的调试、对颜色配比异常的调试和对显示亮度的调试(例如上述的压降补偿)等。
[0219]
本公开发明人对使用上述s100b~s300b调试的显示面板的显示效果,与使用下述对比例调试的显示面板的显示效果进行了对比。
[0220]
对比例方案:s1、对显示面板的主显示区进行伽马校正。
[0221]
s2、对显示面板的透明显示区进行伽马校正。
[0222]
s3、对显示面板进行显示不良调试。
[0223]
对显示面板的显示效果进行对比的过程中,选取了三个区域进行测试,三个区域
分别为:主显示区a1中心区域(标记为nor)、主显示区a1中靠近透明显示区a2的区域(标记为nor')以及透明显示区a2(标记为fdc)。
[0224]
在使用对比例调试的显示面板中,图16a示出了不同灰阶下不同区域的绝对亮度,图16b示出了不同灰阶下fdc相对于nor的亮度差百分比以及fdc相对于nor'的亮度差百分比,图16c示出了不同灰阶下不同区域的色坐标cie-x的值以及标准值(std-cie-x),图16d示出了不同灰阶下fdc相对于nor色坐标cie-x的差值百分比、fdc相对于nor'色坐标cie-x的差值百分比,图16e示出了不同灰阶下不同区域的色坐标cie-x的值以及标准值(std-cie-y),图16f示出了不同灰阶下fdc相对于nor色坐标cie-y的差值百分比、fdc相对于nor'色坐标cie-y的差值百分比。上述各图中横坐标均为灰阶。
[0225]
在使用本公开s100b~s300b调试的显示面板中,图17a示出了不同灰阶下不同区域的绝对亮度,图17b示出了不同灰阶下fdc相对于nor的亮度差百分比以及fdc相对于nor'的亮度差百分比,图17c示出了不同灰阶下不同区域的色坐标cie-x的值以及标准值(std-cie-x),图17d示出了不同灰阶下fdc相对于nor色坐标cie-x的差值百分比、fdc相对于nor'色坐标cie-x的差值百分比,图17e示出了不同灰阶下不同区域的色坐标cie-x的值以及标准值(std-cie-y),图17f示出了不同灰阶下fdc相对于nor色坐标cie-y的差值百分比、fdc相对于nor'色坐标cie-y的差值百分比。上述各图中横坐标均为灰阶。
[0226]
由上述图中可知,使用本公开的s100b~s300b调试的显示面板的亮度差异和色坐标差异均较小,显示效果更好。
[0227]
这里描述的各种实施方式可以使用例如计算机软件、硬件或其任何组合的计算机可读存储介质来实施。
[0228]
对于硬件实施,这里描述的实施方式可以通过使用特定用途集成电路(asic)、数字信号处理器(dsp)、数字信号处理装置(dspd)、可编程逻辑装置(pld)、现场可编程门阵列(fpga)、处理器、控制器、微控制器、微处理器、被设计为执行这里描述的功能的电子单元中的至少一种来实施。在一些情况下,这样的实施方式可以在处理器单元中实施。
[0229]
对于软件实施,诸如过程或功能的实施方式可以与允许执行至少一种功能或操作的单独的软件模块来实施。软件代码可以有任何适当的编程语言编写的软件应用程序(或程序)来实施,软件代码可以存储在存储器中并且由处理器单元执行。
[0230]
如图18所示,本公开的一些实施例还提供了一种电子设备10,包括存储器1和处理器2,其中存储器1中存储有处理器2可执行的指令,处理器2被配置为执行上述指令时,使得电子设备10实现如本公开各实施例所述亮度调节方法的一个或多个步骤。
[0231]
上述电子设备10用于对待调试的显示面板进行亮度调节,通过该电子设备,减小了显示面板的主显示区和透明显示区之间的亮度差异,提高了显示面板的显示效果。
[0232]
电子设备10例如为上述的伽马调试设备。
[0233]
例如,本公开实施例中提到的存储器1可以包括只读存储器和随机存取存储器。
[0234]
例如,本公开实施例中提到的处理器2可以是中央处理单元(central processing unit,简称cpu),还可以是其他通用处理器、数字信号处理器(dsp)、专用集成电路(asic)、现场可编程门阵列(fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
[0235]
应当理解的是,本公开实施例中的存储器1和处理器2之间可以通过通信总线3进
行交互。通信总线除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为通信总线。
[0236]
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有可在处理器2上运行的计算机指令,所述计算机指令被处理器执行时实现如上所述的亮度调节方法中的一个或多个步骤。
[0237]
需要说明的是,本公开实施例提供的计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),只读存储器(rom,read-only memory),随机存取存储器(ram,random access memory),可擦写可编程只读存储器(eprom,erasable programmable read-only memory)等各种可以存储程序代码的介质。
[0238]
本公开的一些实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如上所述的亮度调节方法中的一个或多个步骤。
[0239]
本公开实施例提供的电子设备或者计算机可读存储介质均用于执行上文所提供的亮度调节方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
[0240]
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1