本发明涉及一种含ito粒子层得到保护且近红外光的反射率较高的红外线屏蔽层叠体及使用它的红外线屏蔽材料。另外,本申请说明书中,所谓ito是指铟锡氧化物(indiumtinoxide)。
本申请主张基于2014年12月22日于日本申请的专利申请2014-258618号的优先权,并将其内容援用于此。
背景技术:
至今为止,作为红外线屏蔽层叠体主要有下列三种。作为第一种,公开有如下红外线屏蔽层叠体(例如,参考专利文献1):其依次具有透明电介质层、红外线反射层及透明电介质层,透明电介质层主要包括氧化锌,红外线反射层主要包括银。在玻璃表面上形成有由这种层叠体构成的热射线反射膜(红外线屏蔽层叠体)的玻璃层叠体因其膜面的放射率较低而被称为low-e玻璃(lowemissivityglass,低辐射玻璃)。
作为第二种,公开有如下红外线屏蔽层叠体(例如,参考专利文献2):其在玻璃基板的表面上依次具有包括ito等的基底薄膜、主要包括ag的金属薄膜及包括sno2等的保护薄膜,这些薄膜通过溅射法而形成。具有玻璃基板及形成在玻璃基板的表面上的上述红外线屏蔽层叠体的热射线屏蔽玻璃具有可见光的透射性及近红外光的反射性优异的ag薄膜,并且具有耐久性较高的优点。
作为第三种,公开有如下红外线屏蔽层叠体(例如,参考专利文献3):其具有形成于玻璃基板的至少一侧面且具有将银作为主成分而含有的层的热射线反射膜及形成在该热射线反射膜的表面上的隔热保护膜。隔热保护膜包括以氧化硅为主成分的母体及分散于该母体中的红外线吸收剂。红外线吸收剂由ito、ato、lab6等无机化合物的微粒构成。该无机化合物微粒为平均一次粒径100nm以下的纳米粒子。该红外线屏蔽层叠体具有耐磨性和耐湿性,并且被赋予隔热性。
另一方面,关于ito粒子彼此不接触而靠近的ito粒子膜,对近红外线区域及红外线区域的光入射到该ito粒子膜时产生的现象进行了发表(例如,非专利文献1)。通过该光而激发的表面等离子体激元的电场因在粒子间的距离内产生的近场效果而得到增强。放射出由等离子体激元共振的光,并引起反射。通过该发表,提出通过控制纳米粒子的空间排列和近场的光现象,从而将具有高反射性能的热射线的屏蔽技术推向新一研究开发的方式。
然而,专利文献1所示的红外线屏蔽层叠体带有颜色,且透光率较低。因此,存在不适应如汽车的前挡风玻璃等那样透射率有限的用途的不良情况。
专利文献2所示的红外线屏蔽层叠体反射近红外光。因此,与专利文献3所示的红外线屏蔽层叠体相比隔热特性优异。但是,专利文献2的红外线屏蔽层叠体为低阻抗的连续膜,因此导致还屏蔽电波。因此,存在吸收并反射etc(electronictollcollectionsystem,不停车收费系统)或移动电话的电波而阻碍通信的不良情况。并且,虽然能够通过利用蚀刻来对红外线屏蔽层叠体进行图案形成来克服该不良情况,但制造工序繁琐,导致花费成本。
专利文献3所示的红外线屏蔽层叠体在可见光的透射率、电波透射性、制造工序的简便性方面优于专利文献1及2的红外线屏蔽层叠体。但是,由于纳米粒子吸收红外线,因此存在总体隔热特性不及专利文献1及2的红外线屏蔽层叠体而需要进一步改进的问题。
并且,关于非专利文献1所示的ito粒子膜,经空间排列的纳米粒子容易从膜剥离,在供实际使用方面尚存在课题。
专利文献1:日本特开2004-217432号公报(权利要求1、权利要求9、说明书第[0002]段)
专利文献2:日本特开平7-315874号公报(权利要求2、说明书第[0005]、[0014]、[0017]、[0023]~[0031]段)
专利文献3:日本特开2012-219007号公报(权利要求1、权利要求2、说明书第[0001]、[0033]段)
非专利文献1:松井裕章ら「in2o3:snナノ粒子の局在表面プラズモン共鳴とその近赤外応用」第75回応用物理学会秋季学術講演会講演予稿集(2014秋北海道大学)(松井裕章等“in2o3:sn纳米粒子的局部表面等离子体激元共振及其近红外应用”第75届应用物理学会秋季学术演讲会演讲予稿集(2014秋北海道大学))
技术实现要素:
本发明的目的在于提供一种含ito粒子层得到保护且近红外光的反射率较高的红外线屏蔽层叠体及使用它的红外线屏蔽材料。
以下附加图1、2中记载的符号之后示出本发明的一方式的要件。
(1)一种红外线屏蔽层叠体15,其具有:含ito粒子层12;及外涂层13,包覆所述含ito粒子层12的上表面(第1面),在所述含ito粒子层12内,核壳粒子10、10以彼此接触的状态存在,所述核壳粒子10具有作为核的ito粒子10a和作为壳而包覆所述核的绝缘物质10b。
(2)所述(1)中记载的红外线屏蔽层叠体15,其中,所述核壳粒子10、10彼此接触的状态下的所述ito粒子10a、10a之间的距离a的平均值为0.5~10nm。
(3)所述(1)或(2)中记载的红外线屏蔽层叠体15,其还具备:基底涂层14,包覆所述含ito粒子层12的下表面(第2面),所述含ito粒子层12被所述外涂层13与所述基底涂层14夹持。
(4)所述(1)或(3)中记载的红外线屏蔽层叠体15,其中,所述外涂层13为包含二氧化硅、丙烯酸类树脂、环氧类树脂或聚乙烯醇缩醛树脂的层。
(5)所述(3)中记载的红外线屏蔽层叠体15,其中,所述基底涂层14为包含二氧化硅、氨基甲酸酯树脂、丙烯酸类树脂、环氧类树脂或聚乙烯醇缩醛树脂的层。
(6)所述(1)中记载的红外线屏蔽层叠体15,其中,所述绝缘物质10b为二氧化硅、氧化铝或有机保护剂。
(7)一种红外线屏蔽材料20,其具有:所述(1)~(6)中任一个所述的红外线屏蔽层叠体15;及透明的基材16,在所述红外线屏蔽层叠体15的与所述外涂层13相反的面和所述透明的基材16接触的状态下,所述红外线屏蔽层叠体15设置于所述透明的基材16上。
(8)一种红外线屏蔽材料30,其具有:所述(1)~(6)中任一个所述的红外线屏蔽层叠体15;及两个透明的基材16、17,所述红外线屏蔽层叠体15被所述两个透明的基材16、17夹持。
(9)所述(7)或(8)中记载的红外线屏蔽材料20、30,其中,所述透明的基材16、17为玻璃基板或塑料片材。
本发明的方式(1)的红外线屏蔽层叠体中,如图1的(b)所示,在含ito粒子层12中,核壳粒子10、10彼此接触。换言之,ito粒子10a、10a彼此以在其之间隔着绝缘物质10b、10b的状态存在。因此,ito粒子10a、10a彼此以粒子间距离a靠近排列。粒子间距离a的值为由绝缘物质10b构成的壳的厚度的两倍。在壳的厚度恒定时,ito粒子10a、10a以保持恒定的粒子间距离a的状态排列。通过绝缘物质10b、10b,防止导电性粒子即ito粒子10a、10a彼此的接触,含ito粒子层12本身不会成为导电层,并显示出电波透射性。若对该红外线屏蔽层叠体15照射近红外线及红外线区域的光,则光会透射外涂层13而入射到含ito粒子层12。在含ito粒子层12内,通过该光激发的表面等离子体激元的电场因在粒子间距离内产生的近场效果而得到增强,从而放射出由等离子体激元共振的光并引起反射。含ito粒子层12被外涂层13所包覆而得到保护,因此使得红外线屏蔽层叠体15在实际使用中具有强度。并且,由于具有外涂层13,因此能够防止核壳粒子10从含ito粒子层12剥离。
本发明的方式(2)中,如图1的(b)所示,核壳粒子10、10彼此接触的状态下的ito粒子之间的距离a即相邻ito粒子10a、10a的粒子表面间的距离a的平均值为0.5~10nm。由此,在粒子间距离内上述粒子的表面等离子体激元的电场容易得到增强。其结果,进一步容易放射且反射出由等离子体激元共振的光。若粒子间距离a小于0.5nm,则物理上无法分离,且难以获得增强效果。另一方面,若粒子间距离a超过10nm,则局部存在于粒子表面的光的渗出彼此不重合,而不易获得增强效果。由此难以获得充分的反射率。
本发明的方式(3)中,如图1的(a)所示,红外线屏蔽层叠体15的含ito粒子层12被外涂层13与基底涂层14夹持。因此,能够进一步提高红外线屏蔽层叠体15的强度。
本发明的方式(4)中,作为外涂层13使用包含二氧化硅、丙烯酸类树脂、环氧类树脂或聚乙烯醇缩醛树脂的层。由此,外涂层13透明且具有优异的强度,并成为保护含ito粒子层12的保护层。
本发明的方式(5)中,作为基底涂层14使用包含二氧化硅、氨基甲酸酯树脂(聚氨基甲酸酯树脂)、丙烯酸类树脂、环氧类树脂或聚乙烯醇缩醛树脂的层。由此,基底涂层14透明且具有优异的强度,并成为保护含ito粒子层12的保护层。
本发明的方式(6)中,作为绝缘物质10b使用二氧化硅、氧化铝或有机保护材料。由此,能够用绝缘物质10b来包覆每个ito粒子10a的表面。由此,能够给ito粒子10a赋予绝缘性,并且能够在ito粒子10a、10a之间保持粒子间距离a。即,ito粒子10a、10a能够以保持恒定的粒子间距离a的状态存在(排列)。
本发明的方式(7)的红外线屏蔽材料20中,如图1的(a)所示,在透明的基材16的上表面上形成有红外线屏蔽层叠体15。因此,能够供红外线屏蔽材料20用于屏蔽红外线的广泛的用途。
本发明的方式(8)的红外线屏蔽材料30中,如图2所示,红外线屏蔽层叠体15被两个透明的基材16、17夹持。因此,红外线屏蔽材料30即使在高湿度的环境下也不会失去红外线的屏蔽效果。
本发明的方式(9)的红外线屏蔽材料20、30中,作为透明的基材16、17使用玻璃基板或塑料片材。因此,能够稳定地支承红外线屏蔽层叠体15。
附图说明
图1的(a)为在基材上形成有本实施方式的红外线屏蔽层叠体的红外线屏蔽材料的剖视图,图1的(b)为含ito粒子层的放大剖视图。
图2为本实施方式的红外线屏蔽层叠体被两个基材夹持的红外线屏蔽材料的剖视图。
具体实施方式
接着,根据图1、2对本发明的实施方式进行说明。
本实施方式的红外线屏蔽层叠体15依次具有基底涂层14、含ito粒子层12及外涂层13。
含ito粒子层12的两个主面之中,光所入射的主面为上表面(第1面),与上表面对置的主面为下表面(第2面)。另外,上表面及下表面的术语并不对使用红外线屏蔽层叠体15时的红外线屏蔽层叠体15的上下位置进行限定。
外涂层13以与含ito粒子层12的上表面接触的方式设置,并包覆含ito粒子层12的上表面。基底涂层14以与含ito粒子层12的下表面接触的方式设置,并包覆含ito粒子层12的下表面。换言之,在基底涂层14上设置有含ito粒子层12,在含ito粒子层12上设置有外涂层13。
照射于红外线屏蔽层叠体15的光入射到外涂层13的上表面(第1面),并在外涂层13内透射。然后,光入射到含ito粒子层12的上表面。将光入射的外涂层13的上表面称为红外线屏蔽层叠体15的上表面(第1面),将基底涂层14的下表面(第2面)称为红外线屏蔽层叠体15的下表面(第2面)。另外,在不具有基底涂层14的情况下,将含ito粒子层12的下表面称为红外线屏蔽层叠体15的下表面。
含ito粒子层12包含核壳粒子10,核壳粒子10以核壳粒子彼此10、10接触的状态存在。核壳粒子10具有作为核的ito粒子10a和作为壳而包覆核的绝缘物质10b。本实施方式中,核壳粒子10仅包括ito粒子10a和绝缘物质10b。
含ito粒子层12可以进一步包含构成后述外涂层13的成分。这种情况下,构成外涂层13的成分存在于核壳粒子10、10之间的间隙。详细而言,在直接接触外涂层13的含ito粒子层12的上表面的表面部包含构成外涂层13的成分。当利用后述方法在含ito粒子层12的上表面上形成外涂层13时,构成外涂层13的成分浸透到含ito粒子层12的上表面的表面部的核壳粒子10、10之间的间隙中。由此,在含ito粒子层12的上表面的表面部,构成外涂层13的成分存在于核壳粒子10、10之间的间隙。由此,含ito粒子层12与外涂层13之间的粘着性得到提高。并且,还能够防止核壳粒子10从含ito粒子层12剥离。
〔ito粒子〕
在需要让红外线屏蔽层叠体15透射可见光的情况下,ito粒子10a的平均一次粒径为5~100nm,优选为20nm以下。在红外线屏蔽层叠体15如墙和屋顶那样无需透明的情况下,ito粒子10a的平均一次粒径为5~200nm,优选为50nm以下。
关于ito粒子的sn掺杂量,sn/(sn+in)的摩尔比为0.01~0.25,尤其优选为0.04~0.15。
ito粒子10a的形状没有特别限制。但是,为了获得等离子体激元的共振效果,优选粒径较小且各向异性较小的立方体或球状的粒子。
ito粒子10a通常用以下方法制成。使包含in和少量的sn的水溶性盐的水溶液与碱反应以使in与sn的氢氧化物共沉淀。在大气中加热烧成该共沉淀物使其成为氧化物。作为经过加热烧成的原料,也能够使用in与sn的氢氧化物和/或氧化物的混合物,而非共沉淀物。本实施方式中,作为利用这种现有方法制造的ito粒子或导电性纳米粒子,也能够直接利用市售的ito粒子。
〔核壳粒子的形成〕
接着,如图1的(b)的放大图所示,对具有作为核的ito粒子10a和作为壳而包覆该核的绝缘物质10b的核壳粒子10进行说明。
作为核的ito粒子10a被作为壳的绝缘物质10b所包覆,绝缘物质10b为二氧化硅、氧化铝或有机保护材料。
核壳粒子10通过以下方法而制成。
首先,将大致与溶剂的量(质量)同等量(质量)的ito粒子添加到溶剂中。通过珠磨机将ito粒子分散开,由此获得ito粒子的分散液。通过以与上述溶剂相同的溶剂来稀释该分散液,将ito的固体物浓度设为0.01~5质量%。
在绝缘物质为二氧化硅、氧化铝的无机物质的情况下,作为溶剂可使用水和/或醇。作为醇可举出甲醇、乙醇、丙醇、异丙醇、丁醇、己醇、环己醇等,且能够使用这些中的一种或两种以上。并且,也能够使用水和醇的混合溶剂。
在绝缘物质为有机保护材料的情况下,通过以下方法获得被有机保护材料包覆的ito粒子。作为原料使用铟、锡的脂肪酸盐,并用热注法(hot-injectionmethod)来制成ito粒子。或者,在将通过所述共沉淀法等制成的ito粒子分散到溶剂中时,添加分散剂来使ito粒子分散。通过以上步骤,能够获得被有机保护材料包覆的ito粒子。
所谓本实施方式的壳并不限于以层状包覆核的壳,包含如下的壳:有机保护材料的一端作为锚键结于核的整个表面,并且有机保护材料的另一端从核表面游离而由有机保护材料以放射状覆盖核表面。
(a)在用二氧化硅来包覆ito粒子的情况下,在稀释的分散液中作为二氧化硅源添加正硅酸乙酯、甲氧基硅烷低聚物或乙氧基硅烷低聚物并进行混合。在该混合液为酸性的情况下,在混合液中作为聚合催化剂添加naoh、koh或nh3的碱以使二氧化硅源聚合。用超纯水将中和的混合液清洗,并将其固液分离以将固体物进行干燥。在惰性气体气氛下以100~500℃对干燥的固体物进行为时1~60分钟的烧成。由此,形成ito粒子被二氧化硅膜所包覆的粒子。
另外,混合液的清洗用以下方法进行,以从该混合液去除杂质。首先,将分散液放到离心分离器上以去除粗大的杂质。接着,将混合液用离子交换树脂制的过滤器过滤,以去除离子性的杂质。
(b)在用氧化铝包覆ito粒子的情况下,一边搅拌稀释的分散液,一边加入稀硫酸水溶液,将ph调整为3.5~4.5,获得悬浮液。接着,在该悬浮液中逐渐加入规定量的硫酸铝水溶液,并充分混合。此外,一边继续搅拌,一边逐渐加入氢氧化钠水溶液,将悬浮液的ph调整为5~7。之后,一边将温度保持在恒定值,一边搅拌悬浮液(使其老化)以获得水合氧化铝包覆ito粒子(ito粒子被水合氧化铝所包覆的粒子)。清洗所获得的水合氧化铝包覆ito粒子,并将其固液分离进行干燥。由此,能够获得水合氧化铝包覆ito粒子。
另外,将该水合氧化铝包覆ito粒子用550℃以上的温度进行加热,从而能够使壳的水合氧化铝变成氧化铝。
(c)在添加分散剂并将ito粒子分散到溶剂中,从而用有机保护材料包覆ito粒子的情况下,实施以下方法。在将通过共沉淀法等制成的ito粒子分散到溶剂中时,添加分散剂以分散ito粒子。由此,形成被有机保护材料所包覆的ito粒子。这种情况下,作为绝缘物质的有机保护剂为附着于ito粒子的表面上的分散剂。作为分散剂,优选具有酸性的吸附基团的有机化合物,例如可举出在末端具有羧基的丙烯酸聚合物等。作为能够获得的商用分散剂,优选日本thelubrizolcorporation制的solsperse36000、solsperse41000或solsperse43000等。
(d)在利用热注法制成被有机保护材料所包覆的ito粒子的情况下,作为原料使用铟和锡的脂肪酸盐,并将这些原料溶解到有机溶剂中。接着,将有机溶剂挥发掉,在200℃~500℃下将铟和锡的脂肪酸盐的混合物热分解。由此,形成被有机保护材料包覆的ito粒子。这种情况下,作为绝缘物质的有机保护剂为由铟和锡的脂肪酸盐中的脂肪酸经过热分解而获得的有机化合物或不经热分解而残留下来的脂肪酸。改变脂肪酸的碳链,从而能够调整由绝缘物质构成的壳的厚度。因此,能够调整粒子间隔(粒子间距离)a,且优选脂肪酸的碳数为4~30。作为脂肪酸例如可举出癸酸、硬脂酸等。
〔由绝缘物质构成的壳的厚度〕
在所述(a)~(c)的情况下,由包覆ito粒子10a的绝缘物质10b构成的壳的厚度根据用绝缘物质包覆ito粒子时的ito粒子和绝缘物质的各配比量而调整。具体而言,相对于ito粒子的量100质量份将绝缘物质的量设为0.3~800质量份,从而壳的厚度的平均值被调整为0.25~5nm。壳的厚度的平均值优选为1~3nm,进一步优选为1.5~2.5nm。该壳的厚度的两倍值相当于ito粒子10a、10a之间的粒子间距离a(参考图1的(b)的放大图)。
〔基底涂层的形成〕
基底涂层14为包含二氧化硅、氨基甲酸酯树脂(聚氨基甲酸酯树脂)、丙烯酸类树脂、环氧类树脂或聚乙烯醇缩醛树脂的层,用以下方法制成。
在如透明的玻璃基板、塑料片材的基材16的上表面上涂布选自二氧化硅(sio2)的单体溶液、二氧化硅的低聚物溶液、二氧化硅溶胶-凝胶液、二氧化硅分散液、氨基甲酸酯树脂的溶液、丙烯酸类树脂的溶液、环氧类树脂的溶液及聚乙烯醇缩醛树脂的溶液中的一种溶液以形成涂膜。之后将涂膜进行干燥,从而形成基底涂层14。进行涂布时,能够使用狭缝涂布机、旋转涂布机、敷抹机、刮棒涂布器等一般的涂布装置。在大气气氛下以20~80℃进行干燥。形成基底涂层14的具体方法和后述外涂层13的形成方法相同。
为了保护含ito粒子层,基底涂层14的厚度在0.1~100μm的范围内,优选为1~20μm,进一步优选为5~10μm。
另外,作为成为基材16的塑料片材的例子,还包含塑料薄膜。
用于形成基底涂层的二氧化硅溶胶-凝胶液用以下方法制成。
在水和醇的混合溶剂中作为二氧化硅源添加正硅酸乙酯、甲氧基硅烷低聚物或乙氧基硅烷低聚物并进行混合。在该混合液中添加硝酸、柠檬酸等酸,使其反应0.5~6小时,以制备二氧化硅溶胶-凝胶液。
用于形成基底涂层的氨基甲酸酯树脂、丙烯酸类树脂、环氧类树脂或聚乙烯醇缩醛树脂的溶液包含各树脂和可溶解各树脂的溶剂。作为溶剂,优选为醇。该溶液中的树脂浓度根据所要求的溶液的粘度而不同,但优选为10~50质量%。
〔含ito粒子层的形成〕
如上所述,核壳粒子10具有ito粒子10a及包覆ito粒子10a的绝缘物质10b,绝缘物质10b为二氧化硅、氧化铝或有机保护材料。将该核壳粒子10添加到水和醇的溶剂中。通过超声波均化器等,将核壳粒子10分散到溶剂中。由此,获得核壳粒子10的分散液。将该分散液涂布到基底涂层14的上表面上以形成涂膜。接着,将涂膜进行干燥。由此,形成含ito粒子层12。
作为涂布方法优选旋涂法。在大气气氛下以20~80℃进行干燥。
虽未图示,但含ito粒子层也可以直接形成在如透明的玻璃基板、塑料片材的基材的上表面上,而非基底涂层的上表面。
为了获得所希望的近红外光的反射率,含ito粒子层12的厚度在50~1000nm的范围内,优选为50~500nm,进一步优选为100~200nm。
〔外涂层和红外线屏蔽层叠体的形成〕
外涂层13为包含二氧化硅、丙烯酸类树脂、环氧类树脂或聚乙烯醇缩醛树脂的层。在含ito粒子层12的上表面上形成外涂层13以获得红外线屏蔽层叠体15。
为了保护含ito粒子层12,外涂层13的厚度在0.1~100μm的范围内,优选为1~20μm,进一步优选为5~10μm。
包括二氧化硅的外涂层通过以下方法而制成。
将正硅酸乙酯、甲氧基硅烷低聚物、乙氧基硅烷低聚物或二氧化硅溶胶-凝胶液涂布到含ito粒子层的上表面上以形成涂膜。将涂膜进行干燥,接着以80℃以上且小于基材的耐热温度的温度将涂膜进行固化,以形成外涂层。
二氧化硅溶胶-凝胶液以与用于形成前述基底涂层的二氧化硅溶胶-凝胶液相同的方法制成。二氧化硅溶胶-凝胶液用乙醇稀释成二氧化硅浓度成为1~10质量%之后使用。
包括丙烯酸类树脂的外涂层通过以下方法而制成。
混合丙烯酸类树脂与利用热和光引发反应的聚合引发剂,接着用醇或酮等溶剂将混合物稀释成适当的浓度。将混合溶液涂布到含ito粒子层的上表面上以形成涂膜。将涂膜进行干燥,接着通过紫外线或加热来将涂膜进行固化,以形成外涂层。
聚合引发剂的量对丙烯酸类树脂的量的比例优选为0.1~10质量%。丙烯酸类树脂的浓度(树脂在包含树脂和溶剂的混合溶液中的量)以固体物计优选为10~70质量%。
包括环氧类树脂的外涂层通过以下方法而制成。
以规定的比例混合环氧类树脂的主剂和固化剂,接着用醇或酮等溶剂将混合物稀释成适当的浓度。将混合溶液涂布到含ito粒子层的上表面上以形成涂膜。将涂膜进行干燥,接着通过加热将涂膜进行固化,以形成外涂层。
环氧类树脂的浓度(树脂在包含树脂和溶剂的混合溶液中的量)以固体物计优选为10~70质量%。
包括聚乙烯醇缩醛树脂的外涂层通过以下方法而制成。
用醇、酮、芳香族有机溶剂等溶剂将聚乙烯醇缩醛树脂溶解为适当的浓度。将所获得的溶液涂布到含ito粒子层的上表面上以形成涂膜。将涂膜进行干燥,接着通过加热将涂膜进行固化,以形成外涂层。
另外,在将聚乙烯醇缩醛树脂溶解到溶剂中时,可以添加增塑剂。
进行涂布时能够使用狭缝涂布机、旋转涂布机、敷抹机、刮棒涂布器等一般的涂布装置。在大气气氛下以20~80℃进行干燥。
〔绝缘物质、基底涂层及外涂层的材质〕
上述绝缘物质、基底涂层及外涂层的各材质可以相同也可以不同。
〔红外线屏蔽材料〕
如图1的(a)所示,红外线屏蔽材料的第1实施方式具有本实施方式的红外线屏蔽层叠体15及透明的基材16。在红外线屏蔽层叠体15的与外涂层13相反的面和透明的基材16接触的状态下,红外线屏蔽层叠体15设置于透明的基材16上。换言之,在红外线屏蔽层叠体15的下表面与透明的基材16接触的状态下,红外线屏蔽层叠体15设置于透明的基材16上。
如图2所示,红外线屏蔽材料的第2实施方式具有本实施方式的红外线屏蔽层叠体15及两个透明的基材16、17。红外线屏蔽层叠体15被两个透明的基材16、17夹持。
透明的基材16、17为玻璃基板或塑料片材。塑料片材的材质没有特别限定,使用具有透光性的材料。作为塑料片材的例子也包含塑料薄膜。玻璃基板的厚度为1~10mm,优选为2~7mm。塑料片材的厚度为50~500μm,优选为100~300μm。
实施例
接着,与比较例一同对本发明的实施例进行详细说明。
<实施例1>
混合50ml氯化铟(incl3)水溶液(含in金属18g)和3.6g二氯化锡(sncl2·2h2o),以制成金属盐水溶液。在500ml水中同时滴入该金属盐水溶液和氨(nh3)水溶液,将所获得的混合水溶液的ph调整为7,并使其以30℃的液温进行30分钟的反应。通过离子交换水反复倾斜清洗所生成的沉淀物。在上清液的电阻率达到50000ω·cm以上时滤去了沉淀物(in/sn共沉淀氢氧化物)。由此获得了干燥粉末状态下具有棕红色的共沉淀铟锡氢氧化物。在110℃下将固液分离后的铟锡氢氧化物干燥一个晚上,接着在大气中以550℃烧成了3小时。将烧成物中的凝聚体粉碎捣乱,获得约25g具有金黄色且平均粒径15nm的ito粉末。
作为分散剂,以水:乙醇=1:3的混合比(质量比)混合水和乙醇而准备混合溶剂。在30g该混合溶剂中添加30g上述所获得的ito粒子并进行了混合。通过利用珠磨机对该混合液进行5小时的分散,均匀分散ito粒子以获得分散液。接着,用上述水和乙醇的混合溶剂将该分散液稀释至ito粒子的固体物的浓度成为1质量%。
在500.0g已稀释的分散液中作为用于形成成为壳的二氧化硅的二氧化硅源添加了6.0g正硅酸乙酯(teos)。接着,在添加有正硅酸乙酯(teos)的混合液中作为碱源(中和剂)添加了1.5g浓度为19m的naoh水溶液。由此将teos水解而聚合。此外,用超纯水清洗该中和的分散液,接着用冷冻干燥机将分散液进行干燥。之后,在氮气气氛下以200℃将干燥物烧成60分钟,从而获得ito粒子被二氧化硅所包覆的核壳粒子。
在此,用以下方法进行了上述分散液的清洗,以从该分散液去除了杂质。首先,将分散液放到离心分离器上以去除粗大的杂质。接着,将分散液用离子交换树脂制的过滤器过滤,去除了分散液中所含的离子性的杂质。
通过超声波均化器将所获得的4.5g核壳粒子分散到10.5g乙醇中,获得了核壳粒子的分散液。使用旋转涂布机以3000rpm的转速耗时60秒将该分散液涂布到长50mm、宽50mm、厚度1.1mm的透明的钠钙玻璃基板上。接着,在20℃下将涂膜干燥1分钟,形成了厚度0.5μm的含ito粒子层。
接下来,准备了含有10质量%的sio2的二氧化硅溶胶-凝胶组合物。使用旋转涂布机以1000rpm的转速耗时60秒在含ito粒子层上涂布了二氧化硅溶胶-凝胶组合物。接着,在200℃下进行30分钟的热处理,形成了厚度1μm的包括二氧化硅的外涂层。
另外,上述二氧化硅溶胶-凝胶组合物用以下方法制成。将浓度60质量%的1.5g硝酸溶解到120g纯净水中而制成了硝酸水溶液。在500cm3的玻璃制的四口烧瓶中加入140g四乙氧基硅烷和176g乙醇。一边搅拌混合物一边将所述硝酸水溶液一次性加入到其中。接着,在50℃下使混合物反应3小时,从而制备出二氧化硅溶胶-凝胶组合物。
通过以上步骤,将包括含ito粒子层及外涂层的红外线屏蔽层叠体形成在作为基材的玻璃基板上,从而获得了红外线屏蔽材料。
<实施例2>
在制成核壳粒子的工序中,除了将所添加的teos的量设为25.0g,将naoh水溶液的量设为3.0g之外,以与实施例1相同的方法获得了红外线屏蔽材料。
<实施例3>
在制成核壳粒子的工序中,除了将所添加的teos的量设为5.5g,将naoh水溶液的量设为1.3g之外,以与实施例1相同的方法获得了红外线屏蔽材料。
<实施例4>
在制成核壳粒子的工序中,除了将所添加的teos的量设为45.0g,将naoh水溶液的量设为1.7g之外,以与实施例1相同的方法获得了红外线屏蔽材料。
<实施例5>
在制成核壳粒子的工序中,将所添加的teos的量设为15.0g,将naoh水溶液的量设成了2.2g。
并且,通过以下方法形成了外涂层。作为丙烯酸树脂准备了beamset577(arakawachemicalindustries,ltd.制),作为引发剂准备了irgacure907。混合丙烯酸树脂和引发剂并使引发剂的量相对于丙烯酸树脂的量为1质量%。用乙醇稀释丙烯酸树脂和引发剂的混合物并使固体物的浓度为30质量%,从而制成了溶液。使用旋转涂布机以1000rpm的转速耗时60秒在含ito粒子层上涂布了该溶液。接着,对涂膜照射紫外线以将其固化,从而形成了包括丙烯酸树脂的外涂层。
除了上述步骤之外,以与实施例1相同的方法获得了红外线屏蔽材料。
<实施例6>
用乙醇分别稀释了环氧树脂(mitsubishigaschemicalcompany,inc.制maxive)的主剂和固化剂并使其各自的固体物的浓度为30质量%。取等量的主剂的溶液和固化剂的溶液之后进行了混合。使用旋转涂布机以1000rpm的转速耗时60秒在含ito粒子层上涂布了混合溶液。以90℃将涂膜加热10分钟以将其固化,从而形成了包括环氧树脂的外涂层。
除了上述步骤之外,以与实施例5相同的方法获得了红外线屏蔽材料。
<实施例7>
以乙醇:甲苯:丁醇=57:38:5的混合比(质量比)混合乙醇、甲苯及丁醇而制成了混合溶剂。用混合溶剂稀释聚乙烯缩丁醛树脂(sekisuichemicalco.,ltd.制s-lecb)并使固体物的浓度为5质量%,从而制成了溶液。使用旋转涂布机以1000rpm的转速耗时60秒在含ito粒子层上涂布了该溶液。接着,以90℃将涂膜加热5分钟使其干燥固化,从而形成了包括聚乙烯醇缩醛树脂的外涂层。
除了上述步骤之外,以与实施例5相同的方法获得了红外线屏蔽材料。
<实施例8>
利用在实施例1中用作分散剂的水和乙醇的混合溶剂稀释了ito分散液,直至ito粒子的固体物的浓度为1质量%。一边搅拌已稀释的500.0g分散液一边加入稀硫酸水溶液以将ph调整为4而获得了悬浮液。接着,将15.0g硫酸铝溶解到80g离子交换水中而制成了硫酸铝水溶液。在悬浮液中逐渐加入硫酸铝水溶液并搅拌混合了60分钟。此外,一边继续搅拌,一边逐渐加入氢氧化钠水溶液,以将悬浮液的ph调整为6。接着,一边将温度保持在恒定值,一边将悬浮液搅拌了24小时(使其老化)。对所获得的水合氧化铝包覆ito粒子进行了离心清洗,并进行了固液分离。接着,进行干燥而获得了水合氧化铝包覆ito粒子。该水合氧化铝包覆ito粒子为ito粒子被氧化铝所包覆的核壳粒子。
除了上述步骤之外,以与实施例1相同的方法获得了红外线屏蔽材料。
<实施例9>
对辛酸铟和辛酸锡进行称量,并使这些以摩尔比计成为铟:锡=9:1之后进行混合。将混合物溶解到甲苯中。对上述甲苯溶液进行减压干燥,接着以350℃进行了3小时加热。由此获得了ito粒子被有机保护材料所包覆的核壳粒子。
将5g核壳粒子添加到20g甲苯中,使用超声波均化器将核壳粒子分散开,获得了核壳粒子的分散液。使用旋转涂布机以1000rpm的转速耗时60秒将该分散液涂布到长50mm、宽50mm、厚度1.1mm的透明的钠钙玻璃基板上。接着,以120℃将涂膜干燥5分钟,从而形成了厚度0.5μm的含ito粒子层。
除了上述步骤之外,以与实施例1相同的方法获得了红外线屏蔽材料。
<实施例10>
作为基材使用了pet薄膜(torayindustries,inc.制rumirrort-60)。使用烘烤式敷抹机(testersangyoco,.ltd.制sa-201)在该pet薄膜上涂布热反应型水类氨基甲酸酯树脂(daiichikogyoco.,ltd.制erastronf-29)并使涂膜的厚度为100μm。另外,所谓涂膜的厚度是指涂膜含有溶剂的状态的厚度。以80℃将涂膜干燥5分钟,接着,以120℃加热3分钟将其固化。由此,形成了包括氨基甲酸酯树脂的基底涂层。
除了将在上表面上形成有该基底涂层的pet薄膜用作基材之外,以与实施例1相同的方法获得了红外线屏蔽材料。
<实施例11>
作为基材使用了厚度1.1mm的钠钙玻璃基板。以乙醇:甲苯:丁醇=57:38:5的混合比(质量比)混合乙醇、甲苯及丁醇而制成了混合溶剂。用混合溶剂稀释聚乙烯缩丁醛树脂(sekisuichemicalco.,ltd.制s-lecb)并使固体物的浓度为5质量%而制成了溶液。使用烘烤式敷抹机(testersangyoco,.ltd.制sa-201)在玻璃基板上涂布了溶液并使涂膜的厚度为100μm。另外,所谓涂膜的厚度是指涂膜含有溶剂的状态的厚度。以90℃将涂膜干燥5分钟,接着以120℃加热3分钟将其固化。由此,形成了包括聚乙烯醇缩醛树脂的基底涂层。
除了将在上表面上形成有该基底涂层的玻璃基板用作基材之外,以与实施例1相同的方法形成了含ito粒子层。
接着,与实施例7相同地,将包含聚乙烯缩丁醛树脂(sekisuichemicalco.,ltd.制s-lecb)的溶液涂布到含ito粒子层上。将涂膜进行干燥固化而形成了包括聚乙烯醇缩醛树脂的外涂层。
作为基材准备了厚度1.1mm的钠钙玻璃基板。将该玻璃基板载置到外涂层上。使用层压式的真空层压机以150℃将玻璃基板与红外线屏蔽层叠体进行压接。由此,获得了用两片钠钙玻璃基板夹持着红外线屏蔽层叠体的红外线屏蔽材料。
<实施例12>
在制成实施例11的基底涂层的工序中,代替聚乙烯缩丁醛树脂,使用了丙烯酸树脂。作为丙烯酸树脂准备了beamset577(arakawachemicalindustries,ltd.制),作为引发剂准备了irgacure907。将丙烯酸树脂与引发剂进行了混合并使引发剂的量相对于丙烯酸树脂的量为1质量%。用乙醇稀释丙烯酸树脂与引发剂的混合物并使固体物的浓度为30质量%,从而制成了溶液。使用烘烤式敷抹机(testersangyoco,.ltd.制sa-201)涂布了溶液并使涂膜的厚度为100μm。另外,所谓涂膜的厚度是指涂膜含有溶剂的状态的厚度。以90℃将涂膜干燥5分钟,接着照射紫外线以将涂膜固化。由此,形成了包括丙烯酸树脂的基底涂层。
除了上述步骤之外,以与实施例11相同的方法获得了红外线屏蔽材料。
<实施例13>
在制成实施例11的基底涂层的工序中,代替聚乙烯缩丁醛树脂使用了环氧树脂(mitsubishigaschemicalcompany,inc.制maxive)。用乙醇分别稀释了主剂与固化剂,并使各自的固体物的浓度为30质量%。以等量混合主剂的溶液与固化剂的溶液。使用烘烤式敷抹机(testersangyoco,.ltd.制sa-201)涂布混合溶液并使涂膜的厚度为100μm。另外,所谓涂膜的厚度是指涂膜含有溶剂的状态的厚度。以90℃将涂膜加热10分钟而进行了干燥和固化。由此,形成了包括环氧树脂的基底涂层。
除了上述步骤之外,以与实施例11相同的方法获得了红外线屏蔽材料。
<实施例14>
在制成实施例11的基底涂层的工序中,代替聚乙烯缩丁醛树脂使用了实施例1中使用的二氧化硅溶胶-凝胶组合物。该二氧化硅溶胶-凝胶组合物含有10质量%sio2。使用烘烤式敷抹机(testersangyoco,.ltd.制sa-201)涂布二氧化硅溶胶-凝胶组合物并使涂膜的厚度为100μm。另外,所谓涂膜的厚度是指涂膜含有溶剂的状态的厚度。以90℃将涂膜加热5分钟而进行了干燥固化。由此,形成了包括二氧化硅的基底涂层。
除了上述步骤之外,以与实施例11相同的方法获得了红外线屏蔽材料。
<比较例1>
在与实施例1相同的30g混合溶剂中添加与实施例1相同的ito粒子30g之后进行了混合。通过利用珠磨机对该混合液进行5小时的分散,均匀地分散ito粒子而获得了分散液。
使用旋转涂布机以3000rpm的转速耗时60秒将该分散液涂布到长50mm、宽50mm的透明的钠钙玻璃基板上。接着,以20℃将涂膜干燥5分钟,从而形成了厚度0.5μm的含ito粒子层。
接着,准备了实施例1的含有10质量%的sio2的二氧化硅溶胶组合物。使用旋转涂布机以1000rpm的转速耗时60秒在含ito粒子层上涂布了实施例1的二氧化硅溶胶组合物。接着,以200℃进行30分钟的热处理而形成了厚度1μm的外涂层。
由此,获得了在作为基材的玻璃基板上形成有红外线屏蔽层叠体的红外线屏蔽材料。该红外线屏蔽层叠体具有含ito粒子层和包括二氧化硅的外涂层。
<含ito粒子层中ito粒子之间的距离a的测定>
通过tem(transmissionelectronmicroscope,透射电子显微镜)测定了实施例1~14及比较例1的红外线屏蔽材料的含ito粒子层中的ito粒子之间的距离a。
tem观察用样本通过以下方法制成。首先,在红外线屏蔽层叠体正对的状态下用适当的黏着剂将两片红外线屏蔽材料进行了贴合。待黏着剂固化之后,使用蜡将贴合的两片红外线屏蔽材料(样本)固定到研磨用样本架。之后通过机械研磨将样本研磨成薄片。通过机械研磨作成足够薄的薄片。接着,在样本上贴合单孔筛网,进行了离子铣削直至在样本的一部分出现孔。由此制成了tem观察用样本。
通过tem观察了样本的含ito粒子层。对某一粒子和最接近该粒子的粒子进行重点观察,并测定了该两个粒子的表面之间的距离中最小的距离。在20处测定了粒子间距离。求出该测定值的平均值,并将其作为粒子间距离a。将所获得的结果示于表1。
比较例1中,由于不存在壳,因此ito粒子彼此接触。
<反射率的测定>
关于实施例1~14及比较例1的红外线屏蔽材料,使用分光光度计(hitachihigh-technologiescorporation制、产品名称u-4100型)测定了波长800~2500nm区域的近红外光的反射率。将其结果示于表1。
[表1]
<评价>
比较例1的红外线屏蔽材料的反射率较低,为22%。认为其原因在于,含ito粒子层中的ito粒子表面没有被绝缘材料包覆,ito粒子彼此接触,从而没有发生等离子体激元共振。与此相对地,实施例1~14的红外线屏蔽材料的反射率为26~65%,高于比较例1。尤其,实施例1、2、5~14的红外线屏蔽材料的粒子间距离在0.5~10nm的范围内,反射率为40~65%呈较高值。
实施例1~14的红外线屏蔽材料具有核壳粒子彼此接触而存在的含ito粒子层。因此,认为是产生近场效果而放射出由等离子体激元共振的光并引起反射,从而获得了较高的反射率。
产业上的可利用性
本实施方式的红外线屏蔽层叠体及使用它的红外线屏蔽材料对波长800~2500nm区域的近红外光具有较高的反射率。并且,ito粒子彼此的接触得到防止,且含ito粒子层本身不是导电层。因此,本实施方式的红外线屏蔽层叠体及使用它的红外线屏蔽材料显示出电波透射性。因此,本实施方式的红外线屏蔽层叠体及使用它的红外线屏蔽材料能够适用于窗户玻璃、天窗、遮阳板、pet(聚乙烯对苯二甲酸酯)瓶、包装用薄膜及眼镜等要求具有红外线屏蔽效果的产品中。
符号说明
10核壳粒子
10aito粒子
10b绝缘物质
12含ito粒子层
13外涂层
14基底涂层
15红外线屏蔽层叠体
16、17基材
20、30红外线屏蔽材料
aito粒子之间的距离。