本发明涉及一种半导体元件,且特别是涉及一种光学元件。
背景技术:
随着网际网络的快速发展,网际网络上各种多媒体应用所衍生出的频宽需求也随之日益增加,因此,以往被应用于长距离通讯的光纤通讯技术已逐渐被应用于短距离通讯。换言之,光纤通讯的应用面已被应用于使用端,以满足使用者的需求。在光通讯的领域中,光收发器(optical transceiver)的发展与制造扮演着十分关键的角色。一般的光收发器都采用激光二极管作为其光源,而所使用的激光二极管可区分为许多类型,如应用于短距离、低速传输的Fabry-Perot激光二极管或应用于长距离、高速传输的分布回馈型激光二极管(DFB laser diode)等。
在一般的光收发器中,由于光收发芯片的材质与激光二极管的材质不同,因此,激光二极管的制作工艺无法整合于光收发芯片的制作工艺中,激光二极管通常需要另行制作之后再与光收发芯片接合。在激光二极管与光收发芯片接合的过程中,若激光二极管与波导之间的对准出现误差,则会影响到激光二极管与波导之间的光耦合效率,进而影响到光收发器的效能与信赖性。
技术实现要素:
本发明的目的在于提供一种光耦合效率良好的光学元件。
为达上述目的,本发明的一种光学元件,其适于耦接于光纤。光学元件包括基板、光感测器及边射型激光。基板包括容纳凹槽、多个开口、波导、光耦合器及多个接垫。波导与光耦合器分布于容纳凹槽外。开口分布于容纳凹槽的底面且接垫位于开口底部。光耦合器与波导的一端耦接并且具有入光面。光感测器配置于基板上,且光感测器耦接至波导以接收来自于光纤的光线。边射型激光嵌于容纳凹槽中,边射型激光包括一发光层以及多个位于开口中并且与接垫电性连接的凸块。发光层与光耦合器的水平高度落差与该光耦合器的厚度比介于0至0.5之间,以使发光层所发出的光线经由入光面进入光耦合器并且通过波导而传输至光纤。
基于上述,由于边射型激光嵌于基板的容纳凹槽中,边射型激光与光耦合器的相对位置可通过容纳凹槽来精准地控制(即被动式对位),因此边射型激光中发光层与光耦合器的水平高度落差(即ΔH)可被控制在可容忍的范围内,进而改善边射型激光与光耦合器之间的光耦合效率。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附的附图作详细说明如下。
附图说明
图1为本发明的一实施例的光学元件的示意图;
图2为光耦合器与边射型激光的剖面示意图;
图3为光耦合器与发光层的上视示意图;
图4A与图4B为光耦合器、波导以及边射型激光的俯视示意图。
符号说明
100:光学元件
110:基板
111:容纳凹槽
111a:底面
112:开口
113、113A~113E:波导
114、116:光耦合器
114a、116a:入光面
115:接垫
117:多工器/解多工器
118:转阻放大器
119:调变器
120:光感测器
130:边射型激光
131:第一型掺杂半导体层
132:发光层
133:第二型掺杂半导体层
134:凸块
BOX:氧化层
d:间距
E:电极
E1、E3、E5:输入端
E2、E4、E6:输出端
F:光纤
H:深度
h、b、T:厚度
H1:第一水平高度
H2:第二水平高度
ΔH:水平高度落差
M:监控元件
SUB:基板
S:侧表面
θ:夹角
具体实施方式
图1是依照本发明的一实施例的光学元件的示意图,而图2是光耦合器与边射型激光的剖面示意图。请同时参照图1与图2,本实施例的光学元件100适于耦接于光纤F,且本实施例的光学元件100包括基板110以及局部嵌入于基板110中的边射型激光130(详示于图2中)。基板110包括容纳凹槽111、多个开口112、波导113、光耦合器114及多个接垫115。波导113与光耦合器114分布于容纳凹槽111之外。开口112分布于容纳凹槽111的底面111a,且接垫115位于开口112的底部。换言之,开口112可将接垫115暴露。光耦合器114与波导113的一端耦接,且光耦合器114具有入光面114a。边射型激光130嵌于基板110的容纳凹槽111中,且边射型激光130包括一发光层132以及多个位于开口112中并且与接垫115电性连接的凸块134。边射型激光130中的发光层132与光耦合器114的水平高度落差ΔH小于或等于1.5微米,以使发光层132所发出的光线能够经由光耦合器114的入光面114a进入光耦合器114之中并且通过波导113传输至光纤F。。
请参照图2,波导113与光耦合器114例如是形成于基板110的氧化层BOX上,氧化物层BOX的厚度为b,而厚度为h的光耦合器114邻近于边射型激光130配置,且光耦合器114与厚度较薄的波导113的一端耦接。为了确保光耦合器114与边射型激光130之间的光耦合效率(例如将耦合损失抑制至低于3dB,或者光耦合效率高于60%),光耦合器114的厚度h应大于发光层132的厚度。在一些实施例中,光耦合器114的厚度h例如介于1微米至5微米之间,而波导113的厚度h例如介于0.2微米至0.5微米之间。此处,二分之一厚度的发光层132所在的位置为第一水平高度H1,二分之一厚度的光耦合器114所在的位置为第二水平高度H2,而前述的第一水平高度H1与第二水平高度H2之间的落差则为水平高度落差ΔH。值得注意的是,前述的发光层132的第一水平高度H1例如是高于或是低于光耦合器114的第二水平高度H2,而不论发光层132的第一水平高度H1例如是高于或是低于光耦合器114的第二水平高度H2,水平高度落差ΔH都为正值。
在一些实施例中,前述的光学元件100例如为能够执行光信号接收与发送的一光收发器。当光学元件100为光收发器时,光学元件100可进一步包括一光感测器120,其中光感测器120配置于基板110上,且光感测器120耦接至波导113以接收来自于光纤F的光线。换言之,光学元件100中的光感测器120为选择性的构件。值得注意的是,图1与图2中所述的基板110以及边射型激光130的搭配架构可被应用于光收发器或是其他用于接收光线的光学元件之中。
在本实施例中,基板110例如为绝缘体上硅晶(SOI)芯片,凹槽111与开口112例如是制作于基板110的硅层中,而波导113例如是制作于基板110的绝缘层上。一般而言,波导113的折射率大于光耦合器114的折射率,且光耦合器114的折射率大于基板110与外界(例如空气)的折射率。上述折射率的搭配设计可使边射型激光130发出的光通过光耦合器114逐渐耦合至波导113中,有助于光线的传输。在一可行的实施例中,波导113的折射率为n1,而光耦合器114的折射率为n2,且(n1-n2)/n1例如介于0.42至0.58之间。举例而言,前述的绝缘层例如为氧化硅层(折射率约为1.45),波导113的材质例如为硅(折射率约为3.45),而光耦合器114的材质例如为氮氧化硅(折射率约为1.56)。
如图1所示,在本实施例中,波导113可区分为多个部分(例如波导113A、波导113B、波导113C、波导113D以及波导113E等)。本实施例不限定波导113的数量与型态,本领域具有通知识者可根据实际的设计需求而作出适当的更动。
在本实施例中,光学元件100例如是通过一光耦合器116与光纤F耦接,光耦合器116与波导113A耦接,而光耦合器116具有一入光面116a以接收来自于光纤F的光线,且自于光纤F的光线具有特定的波长。波导113A具有一输入端E1以及一输出端E2,其中输入端E1与光耦合器116耦接,而输出端E2则与一多工器/解多工器(multiplexer/de-multiplexer)117耦接。光纤F所传输的光线会经由入光面116a进入光耦合器116中,进入光耦合器116中的光线会经由输入端E1而传输至波导113A中,而传输于波导113A中的光线会经由输出端E2而输出至多工器/解多工器117。
在本实施例中,来自于光纤F的光线具有特定波长且经多特定编码,而多工器/解多工器117中的解多工单元可对此具有特定波长的光线进行解码后输出至波导113B中。如图1所示,波导113B具有一输入端E3以及一输出端E4,其中输入端E3与多工器/解多工器117耦接以接收经过多工器/解多工器117解码后的光线,而输出端E4则与光感测器120耦接以将光线传输至光感测器120。在本实施例中,光感测器120例如为表面粘着型态的光敏二极管(SMD-type photodiode)或其他型态的感光元件。光感测器120在接收到来自于波导113B的光线之后,会产生与该光线的强度相对应的光电流,而此光感测器120所产生的光电流会经由一转阻放大器(Trans-Impedance Amplifier,TIA)118而转换成对应的数字信号(例如电压信号),并且输出至其他元件(例如网络卡或其他后端信号处理元件)进行信号的处理。
如图1所绘示,通过光耦合器116、波导113A、多工器/解多工器117、波导113B、光感测器120以及转阻放大器118,光学元件100可以解码并且接收光纤F所传输的光线,并将此光线所搭载的光信号转换为数字信号而输出。
如图1所绘示,在本实施例中,光学元件100包括一调变器(modulator)119以接收一数字信号,而调变器119会根据所接收的数字信号以对边射型激光130所发出的光线进行调变,且边射型激光130所发出的光线具有特定的波长。在本实施例中,边射型激光130可通过波导113C与调变器119耦接,波导113C具有一输入端E5以及一输出端E6,其中输入端E5与边射型激光130耦接,而输出端E6与调变器119耦接。
经由调变器119调变过后的光线可通过波导113D传输至多工器/解多工器117,通过多工器/解多工器117中的多工单元可将传输于波导113D中的光线经由波导113A、光耦合器116传输至光纤F。
如图1所绘示,通过边射型激光130、波导113C、调变器119、波导113D、多工器/解多工器117、波导113A以及光耦合器116,光学元件100可以将数字信号转换为经过编码的光信号,并且将此经过编码的光信号传输至光纤F。
在一些实施例中,当经过调变器119调变之后的光线通过波导113D传输至多工器/解多工器117时,多工器/解多工器117中的光路设计可允许部分光线被取样,并且经由波导113E而传输至监控元件M。此处,监控元件M用以监控经过调变器119调变之后的光信号输出品质,当监控元件M所取样的光信号出现异常时,监控元件M可传送回授信号至调变器119或光学元件100以优化调变器119对于光线的编码程序。
本实施例所使用的边射型激光130例如为分布回馈型激光二极管,然而,本实施例不限定边射型激光130的种类。在本实施例中,边射型激光130例如是以倒装方式嵌于容纳凹槽111中,且边射型激光130包括一基板SUB、一第一型掺杂半导体层131、前述的发光层132、一第二型掺杂半导体层133以及二电极E,其中第一型掺杂半导体层131、发光层132以及第二型掺杂半导体层133依序堆叠于基板SUB上,而电极E则分别与第一型掺杂半导体层131以及第二型掺杂半导体层133电性连接,且凸块134电性连接于电极E与接垫115之间。此外,边射型激光130为一水平式激光二极管,意即,边射型激光130的电极E都分布于基板SUB的同一侧。
如图2所示,本实施例的边射型激光130是局部嵌入于容纳凹槽111之中,容纳凹槽111的长度与宽度可略大于边射型激光130的长度与宽度,而容纳凹槽111的深度小于边射型激光130的整体厚度,且容纳凹槽111可用以大致上局限住边射型激光130的设置方位(orientation)。具体而言,边射型激光130的第二型掺杂半导体层133位于容纳凹槽111之中,边射型激光130的凸块134位于容纳凹槽111下方的开口112之中,而边射型激光130的基板SUB、第一型掺杂半导体层131以及发光层132则位于容纳凹槽111的上方。在本实施例中,第二型掺杂半导体层133的厚度T例如可略大于容纳凹槽111的深度H。
值得注意的是,由于容纳凹槽111可通过光刻蚀刻制作工艺制作于基板110中,因此容纳凹槽111的深度H与尺寸将可获得相当精准的控制。此外,由于边射型激光130是以倒装方式抵靠于容纳凹槽111的底面111a,因此边射型激光130嵌入容纳凹槽111的程度也可获得相当精准的控制,不会受到凸块134高度变化(回焊过程中)的影响。在一些实施例中,容纳凹槽111的底面111a可为任意材质,举例而言,容纳凹槽111的底面111a可为半导体层、介电层所提供的承靠表面,然而本发明不以此为限。承上述,通过基板110中容纳凹槽111以及开口112的搭配设计,本实施例的边射型激光130的嵌入程度可以获得相当精准的控制。本实施例前述的对位机制为所谓的被动式对位,有助于提升基板110与边射型激光130的组装效率与良率。在边射型激光130与光学元件100的相对位置能够获得稳定控制的前提下,边射型激光130中发光层132与光耦合器114的水平高度落差ΔH将可被控制在可容忍的范围(小于或等于1.5微米)内,进而改善边射型激光130与光耦合器114之间的光耦合效率。从图2可知,当边射型激光130中发光层132与光耦合器114的水平高度落差ΔH接近0时,发光层132的第一水平高度H1与光耦合器114的第二水平高度H2实质上齐平。
在本实施例中,边射型激光130与光耦合器114之间的间距d也会影响到边射型激光130与光耦合器114之间的光耦合效率。具体而言,边射型激光130的发光层132具有邻近于光耦合器114的侧表面S,且发光层132的侧表面S与光耦合器114的入光面114a之间会维持间距d,且此间距d例如介于1微米至5微米之间。此外,在一些实施例中,前述发光层132的侧表面S例如与入光面114a实质上平行。
图3是光耦合器与发光层的上视示意图。请参照图3,为了避免从发光层132所发出的光线被反射回发光层132而导致光耦合效率降低,本实施例可改变边射型激光中发光层132的设置方位,以使发光层132的侧表面S的法向量与入光面114a的法向量之间夹一夹角θ,且此夹角θ例如是介于5度至15度之间。
图4A与图4B是光耦合器、波导以及边射型激光的俯视示意图。请参照图4A与图4B,波导113在被光耦合器114所覆盖住的一端上具有宽度渐缩(即渐缩部113T)的设计。换言之,波导113在邻近于边射型激光130的一端具有一尖端(tip),且此尖端指向边射型激光130。如图4A所示,前述的尖端在沿着波导113的延伸方向(即长度方向)上具有对称的轮廓。如图4B所示,前述的尖端在沿着波导113的延伸方向(即长度方向)上具有非对称的轮廓。在本实施例中,渐缩部113T的长度例如大于100微米,波导113的最大宽度(即渐缩部113T以外的区域)例如是介于300纳米至600纳米之间,而光耦合器114的宽度例如介于1微米至5微米之间,且光耦合器114的长度以足以覆盖渐缩部113T为原则。
基于上述,由于边射型激光130与光耦合器114的相对位置可通过容纳凹槽111来精准地控制,即所谓的被动式对位(passive alignment),因此边射型激光130中发光层132与光耦合器114的水平高度落差ΔH可被控制在可容忍的范围内,进而改善边射型激光130与光耦合器114之间的光耦合效率。
虽然结合以上实施例公开了本发明,然而其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,可作些许的更动与润饰,故本发明的保护范围应当以附上的权利要求所界定的为准。