显示系统的制作方法

文档序号:11333385阅读:290来源:国知局
显示系统的制造方法与工艺

背景

显示系统可用于使得期望图像对用户(观看者)可见。可穿戴显示系统可被具体化在可穿戴头部装置中,该可穿戴显示系统被布置成在距人类眼睛的短距离内显示图像。这样的可穿戴头部装置有时被称为头戴式显示器,并且提供有框架,该框架具有适配在用户的(佩戴者的)鼻梁上的中央部分以及适配在用户的耳朵上的左右支撑延伸部。光学组件被布置在该框架中,以便在用户眼睛的几厘米之内显示图像。该图像可以是显示器(诸如微显示器)上的计算机生成的图像。该光学组件被布置成将在显示器上生成的期望图像的光传输到用户的眼睛以使得该图像对用户可见。在其上生成图像的显示器可形成光引擎的一部分,以使得该图像本身生成可由该光学组件引导以提供对用户可见的图像的准直光束。

不同种类的光学组件已被用来将图像从显示器传达到人类眼睛。这些光学组件可包括例如透镜、反光镜、光学波导、全息图和衍射光栅。在一些显示系统中,光学组件是使用以下光学器件来构造的:该光学器件允许用户看见图像但在“现实世界”不透视该光学器件。其他类型的显示系统通过其光学器件提供视图,以使得向用户显示的生成的图像重叠在现实世界视图上。这有时被称为增强现实。

基于波导的显示系统通常经由波导(光导)中的tir(全内反射)机制将光从光引擎传输到眼睛。这样的系统可并入衍射光栅,该衍射光栅引起高效的光束展宽,以使得输出由光引擎提供的光束的经展宽的版本。这意味着当看着波导的输出而非直接看着光引擎时,图像在更宽的区域上可见:假设眼睛在某区域内,使得该眼睛可接收来自基本全部(即所有或大多数)经展宽的光束的光,则整个图像将对用户可见。这样的区域被称为眼框(eyebox)。

在一种类型的头戴式显示器中,框架支持两个光引擎,这两个光引擎各自用相应的引导机制生成相应类型的图像,其中每一引导机制引导图像以将其投影在相对于相关联的眼睛适当的位置处,使得佩戴者的眼睛联合运作以接收单个非失真的图像。

概述

提供本概述以便以简化的形式介绍将在以下详细描述中进一步描述的一些概念。本概述并不旨在标识出所要求保护的主题的关键特征或必要特征,也不旨在用于限定所要求保护的主题的范围。所要求保护的主题也不限于解决

背景技术:
部分中指出的任何或所有缺点的实现。

一种可穿戴图像显示系统包括头部部件、第一和第二光引擎以及第一和第二光学组件。所述第一和第二光引擎被配置成分别生成第一和第二光束集合。每一光束被基本准直,以使得所述第一和第二集合分别形成第一和第二虚拟图像。所述光引擎被安装在所述头部部件上。每一光学组件被定位成将图像分别投影到佩戴者的第一和第二眼睛上,并包括入射耦合光栅和出射光栅。所述第一和第二光束集合被分别定向到所述第一和第二光学组件的入射耦合结构。所述第一和第二光学组件的出射结构被布置成将所述第一和第二光束集合分别引导到所述第一和第二眼睛上。所述光学组件被定位在所述光引擎和所述眼睛之间。所述光引擎两者都被安装到所述头部部件的中央部分。

附图简述

图1示出可穿戴显示系统;

图2a示出显示系统的一部分的俯视图;

图2b示出显示系统的一部分的俯视图;

图3a和3b示出光学组件的透视图和正视图;

图4a示出其表面上形成有表面起伏光栅的光学组件的示意俯视图;

图4b示出图4a的光学组件的示意图,该光学组件被示为与入射光交互并且是从侧面观看的;

图5a是直的二元表面起伏光栅的示意性说明,该直二元表面起伏光栅被示为与入射光交互并且是从侧面观看的;

图5b是斜二元表面起伏光栅的示意图,该斜二元表面起伏光栅被示为与入射光交互并且是从侧面观看的;

图5c是突出的三角表面起伏光栅的示意性说明,该突出的三角表面起伏光栅被示为与入射光交互并且是从侧面观看的;

图6示出光学组件的入射耦合区域的一部分的关闭视图;

图7a示出了显示系统的一部分的透视图;

图7b示出显示器的各个体像素的俯视图;

图7c和7d示出与光学组件交互的光束的俯视图和正视图;

图7e示出执行光束展宽的光学组件的正视图;

图7f示出执行光束展宽的光学组件的俯视图;

图7g是弯曲的光学组件的俯视图;

图8a和8b是光学组件的一部分的俯视图和正视图;

图9a示出在波导的折叠区内的光束反射的透视图;

图9b解说光束展宽机制;

图10示出显示系统的侧视图;

图11示出重影图像可如何被创建在某些显示系统中;

图12解说了可用于消除重影图像的机制。

详细描述

通常,基于波导的显示系统包括图像源(例如,投影仪)、(诸)波导和压印在各波导表面上的各光学元件(例如,衍射光栅或全息图)。这些光学元件被用于例如将图像源所发射的光耦合入和耦合出波导,和/或用于调制其在波导内的空间分布。

图1是头戴式显示器的透视图。头戴式显示器包括头部部件,该头部部件包括框架(2),该框架(2)具有旨在适配在佩戴者的鼻梁上的中央部分(4)以及旨在适配在用户的耳朵上的左右支撑延伸部(6、8)。虽然支撑延伸部被示为基本笔直,它们可以以弯曲的部分终止,以按传统眼镜的方式更舒适地适配在耳朵上。

框架2支撑标记为10l和10r的左和右光学组件,左和右光学组件为例如由玻璃或聚合物形成的波导。为了便于本文中的参考,光学组件10(其为波导)将被认为是左或右组件,因为这些组件除了是彼此的镜像外本质上相同。因此,涉及左手组件的所有描述也涉及右手组件。稍后将参考图3更详细地描述光学组件。中央部分(4)容纳两个光引擎,这两个光引擎在图1中未被示出,但在图2a中示出了其中的一个光引擎。

图2a示出图1的框架的顶部部分的一部分的俯视图。由此,图2a示出包括微显示器15和成像光学器件17的光引擎13,成像光学器件17包括准直透镜20。光引擎还包括能够生成微显示器的图像的处理器。微显示器可以是任何类型的图像源,诸如硅上液晶(lcos)显示器、透射液晶显示器(lcd)、led的矩阵阵列(有机或无机)或任何其他合适的显示器。该显示器由图2a中不可见的电路系统驱动,该电路系统激活显示器的各个体像素以生成图像。从每一像素充分准直的光落在光引擎13的出射光瞳22上。在出射光瞳22处,经准直的光束被耦合到每一光学组件10l、10r中在每一组件上提供的相应入射耦合区12l、12r中。这些入射耦合区在图1中被清楚地示出,但在图2a中不是容易可见的。入射耦合光随后被引导通过涉及衍射和tir的机制(该机制在相应的中间(折叠)区14l、14r中的光学组件的横向),并且还向下到相应的出射区16l、16r中,光在该出射区16l、16r朝向用户的眼睛离开组件10。图1中示出了区14l、14r、16l和16r。以下详细描述这些技术。图2a示出接收来自出射区(16l或16r)的经衍射的光的用户的眼睛(右或左)。到用户的眼睛的输出光束ob与入射光束ir平行。例如参考在图2a中被标记为ib的光束以及在图2a中被标记为ob的两个平行输出光束。光学组件10位于光引擎13和眼睛之间,即显示系统配置具有所谓的透射类型。

光学组件10是基本上透明的,以使得用户可不仅查看来自光引擎13的图像,还可透过该光学组件10查看现实世界视图。

光学组件10具有折射率n,该折射率n使得全内反射发生,从而引导来自入射耦合区12的光束沿着中间展宽区14,并向下朝向出射区16。

图2b示出显示系统1的俯视图。分开的左和右显示器(15l,15r)被容纳在中央部分(4)中,每一显示器具有其自己的成像光学器件(17l,17r)。这些构成刚才描述的种类的分开的光引擎13l、13r。由左成像光学器件(17l,相应的右成像光学组件17r)根据左显示器(15l)上的左图像(相应的右显示器15r上的右图像)创建的光束被耦合到左光学组件(10l,相应的右光学组件10r)中。左图像(相应的右图像)的光束被引导通过左组件(10l,相应的右组件10r)并到用户的左眼(相应的右眼)上。以下更详细地描述了引导机制(注意,涉及显示器/准直光学器件15/17的描述同等地适用于左显示器/光学器件15l/17l和右显示器15r/17r).左和右图像可按使得由佩戴者感知立体图像(即创建深度效应)的方式彼此不同。左显示器(15l)及相关联的准直光学器件(17l)(相应的右显示器15r及相关联的准直光学器件17r)构成一组左成像组件(相应的右成像组件)。

佩戴者的耳朵在图2b中未被示出,然而,如将显而易见的,左和右延伸(6l,6r)的部分(90l,90r)分别适配在佩戴者的左耳和右耳上,并分别由佩戴者的左耳和右耳支持,以使得光学组件(10l,10r)以传统的眼镜镜片的方式分别被支持在用户的左眼和右眼的前向,并且中央部分(4)适配在佩戴者的鼻梁上。

其他头部部件也在本主题的范围之内。例如,显示光学器件可同样使用头带、头盔或其他适配系统被附连到用户的头部。适配系统的目的在于支持显示器,并向显示器和其他头部承受系统(诸如,跟踪系统和相机)提供稳定性。适配系统还将被设计成在人体测量范围和头部形态学方面满足用户群体,并提供对显示系统的舒适支撑。光引擎17l、17r可被安装到任何这样的头部部件的中央部分,以使得当该头部部件被佩戴且不在用户的太阳穴处时,光引擎17l、17r相对于用户位于中心处。

已知类型的头戴式显示系统趋于将成像组件定位在框架的侧面,以使得这些成像组件位于用户的太阳穴附近。这被认为提升设备的可穿戴性,因为一般地这看来是最少干扰位置。

然而,发明人已认识到,对于立体成像系统而言,立体图像对的未对准可与左和右光学成像组件的相对位置方面的甚至轻微的改变一起发生。这样的改变可由以下引起:在整个正常使用时作为机械或热效应的结果的框架的瞬时挠曲、经历耗损和磨损的长期挠曲、或引起未对准的其他原因。甚至轻微的改变也可引起左和由图像之间的某一水平的双目视差,人类视觉系统(hvs)对双目视差高度敏感到即使相对短期的遭受很小水平的双眼差异也可使得佩戴者感觉十分不舒服的程度。hvs对左和右图像之间的垂直视差特别敏感,并且即使各图像的对应于与一个像素一样小的量的未对准也可能是可感知的,这取决于显示分辨率。

发明人已认识到,在其中左和右成像组件被彼此远离地定位在框架的各侧上的系统中,维持左和右组件之间该水平的角对准将是不切实际的。在理论上可实现这个的一种方式是使得框架在左和右组件之间的部分足够刚性。然而,在实践中,维持双眼对等的必要公差可被保持是不太可能的,而且在任何情况下,在该系统中包括任何这样的结构将显著地增加制造成本。

发明人已认识到,如果左和右成像组件将被定位到该显示系统的左和右边,维持该左和右组件之间该水平的角对准将是不切实际的。在理论上可实现这个的一种方式是使得框架在左和右组件之间的部分足够刚性。然而,在实践中,维持双眼对等的必要公差可被保持是不太可能的,并且在任何情况下,在该系统中包括任何这样的结构将显著地增加制造成本。

在本文中公开的显示系统中,左和右显示器被彼此毗邻地容纳在框架(6)的中央部分(4)中。中央部分(4)形成壳体,该壳体容纳显示器(15l,15r)两者以及其相应的关联准直光学器件(17l,17r)。

以这种方式来并置左和右成像组件(15l/17l,15r/17r)两者确保任何热扰动同等地并以相同的方式影响第一和第二图像两者(这是可接受的,因为双目视差仅在它们被彼此不同地扰动的情况下才发生)。由此,并置左和右组件(15l/17l,15r/17r)实质上消除了任何双目视差(否则,双目视差将由于热波动而发生),并且该位置的中心性确保各自能够按照对相应光学组件(10l,10r)所预期的那样协作。

并置这些成像组件还意味着机械扰动更不可能引入视差,例如与将成像组件(15l/17l,15r/17r)定位在框架的侧面相比,当这些组件被定位在中央时,框架(6)的扭曲或弯曲更不可能引入视差。

虽然图2b中没有显式地示出,但成像组件(15l/17l,15r/17r)通过明显比框架(6)更刚性的刚性支撑结构(例如,碳纤维支撑结构)以刚性形成被支撑在中央部分(4)中。碳纤维只是一个示例,而可使用其他低质量的刚性材料,例如钛。以相同的高度刚性的结构来支撑维持左和右成像组件两者即使在存在显著的机械扰动的情况下,也维持左成像组件(15l/17l)和右成像组件(15r/17r)之间的精确的相对对准。即使在成像组件相对于框架(6)移动,并且尤其相对于光学组件(10l,10r)移动的情况下,双目对等仍被维持,因为支撑结构的刚性将成像组件(15l/17l)和(15r/17r)相对于彼此保持在基本上固定的布置中。

由于左和右成像组件(15l/17l)和(15r/17r)全部被定位成彼此靠近,刚性支撑结构在尺寸方面可能很小,即在左和右成像组件将改为被定位在框架的侧面的情况下,则需要明显更少量的刚性材料。该显著地减少了制造显示系统的成本。

图3a和3b更详细地示出光学组件。

图3a示出波导光学组件(10)的透视图。该光学组件是平的,因为其表面的前部和后部是基本上平的(前和后根据如由图3a中眼睛的位置指示的佩戴者的视角来定义)。该表面的前部和后部彼此平行。光学组件(10)基本位于一平面(xy平面)中,其中z轴(被称为“法线”)被定向为从光学组件(10)朝向观看者。入射耦合区、折叠区和出射区(12、14和16)被示出,每一区通过光学组件的表面的相应表面调制(52、46和56)来定义,表面调制(52、46和56)从佩戴者的视角来看位于波导的后面。表面调制(52、46、56)中的每一者形成相应的表面起伏光栅(srg),其特性将被简短地描述。取代srg,全息图可被用于提供与srg相同的光学功能。

如在图3b的俯视图中示出的,折叠区在横向(x)方向具有水平延伸(w2)(在本文中被称为展宽区的“宽度”),并且在垂直(y)方向具有延伸(h2)(在本文中被称为展宽区的“高度”),该折叠区以沿着其宽度(w2)的横向方向从光学组件的内边缘增加到其外边缘。出射区具有定义眼框的尺寸的水平延伸(w3)(出射区的宽度)以及y方向延伸(h3)(出射区的高度)。眼框的尺寸独立于光引擎中的成像光学器件。入射耦合srg和折叠srg(52,54)具有相对定向角a,折叠srg和出射srg(54,56)也具有相对定向角a(注意,以下描述的重叠在图9b中的srg52,54,56上的各点线表示垂直于那些srg的光栅线的方向)。

入射耦合区和折叠区(12,14)基本连续,因为它们最多相隔窄边界区(18),该窄边界区具有如沿着(即,垂直于)分割该边界区(18)的公共边界(19)测得的宽度(w)。公共边界(19)是拱形的(在本示例中基本上为半圆),入射耦合区域和折叠区域(12,14)沿着公共边界(19)具有拱形(基本上为半圆)的边缘。入射耦合区域(12)的边缘在整体上为基本上圆形的。

现在将参考图4a和4b描述构成本文中描述的头戴式显示器的操作的基础的衍射机制的原理。

本文中描述的光学组件通过反射、折射、衍射的方式与光交互。衍射在传播的波与例如障碍或狭缝之类的结构交互时发生。衍射可以被描述为波的干涉,并且在该结构在大小上与波的波长相当时最显著。可见光的光学衍射归因于光的波性质并且可被描述为光波的干涉。可见光具有在大约390到700纳米(nm)之间的波长,并且当传播的光遇到100或1000nm范围级别的类似规模的结构时可见光的衍射是最显著的。

衍射结构的一个示例是周期性(基本反复的)衍射结构。在本文中,“衍射光栅”意指具有周期性衍射结构的光学组件的任何(部分)。周期性结构可引起光的衍射,该光的衍射通常在周期性结构具有与光的波长类似大小的空间周期时最显著。周期性结构的类型包括例如对光学组件的表面的表面调制、折射率调制、全息图等。当传播的光遇到周期性结构时,衍射使得光被拆分成处于不同方向的多个光束。这些方向取决于所述光的波长,这样衍射光栅引起多色(例如白色)光的色散,由此,多色光被分成在不同的方向上行进的不同颜色的光束。

当周期性结构在光学组件的表面上时,其被称为表面光栅。当周期性结构归因于表面本身的调制时,其被称为表面起伏光栅(srg)。srg的一个示例是在光学组件的表面中的被均匀直槽间隔区域分隔开的均匀直槽。槽间隔区域在此被称为“线”、“光栅线”和“填充区域”。srg的衍射的性质取决于入射在光栅上的光的波长和srg的各种光学特性(例如线间隔、槽深度和槽倾斜角)这两者。srg可通过合适的精密加工过程来制造,该过程可涉及对基底的蚀刻和/或基底上的沉积以将期望的周期性微结构制造在该基底上以形成光学组件,该光学组件可随后被用作生产底片,诸如用于制造进一步光学组件的模具。

srg是衍射光学元件(doe)的示例。当有doe存在于一表面上时(例如,当doe是srg时),该表面被那个doe跨越的部分被称为doe区域。

图4a和4b分别从顶部和侧面示出具有外表面(s)的基本上透明的光学组件(10)的一部分。表面s的至少一部分展示构成为微结构的srg(44)(例如,52、54、56)的表面调制。这样的部分被称为“光栅区域”。调制包括光栅线,这些光栅线是基本上平行和细长的(基本上比它们的宽更长),并且在该示例中还基本上是直的(但是一般来说它们不需要是直的)。

图4b示出光学组件(10),并且具体而言是与传入照明光束i交互的srg(44),该传入照明光束向内入射到srg(44)上。入射光(i)在该示例中是白色光,并且因而具有多种颜色分量。光(i)与srg(44)交互,srg(44)将该光拆分成向内定向到光学组件(10)中的几个光束。光(i)的一些也可作为反射光束(r0)被从表面(s)反射回来。零阶模式向内光束(t0)和任何反射(r0)是根据衍射的一般原理以及其它非零阶(±n-阶)模式(其可被解释为波干涉)被创建的。图4b示出第一阶向内光束(t1,t-1);将理解可以依据光学组件(10)的配置创建或不创建更高阶的光束。由于衍射的性质取决于波长,因此,对于更高阶的模式而言,入射光(i)的不同颜色分量(即波长分量)当存在时以相对于彼此而言不同的传播角度被分成不同颜色的光束,如图4b所示。

图5a-5c是不同的示例性srg44a-44c(在此统称为44)的特写示意性截面图,srg44a-44c由(在这些图中是从侧面观看的)光学组件10的表面s的调制形成的。光束用箭头标注,其厚度指示大致相对的强度(越高强度的光束以越厚的箭头示出)。

图5a示出直二元srg(44a)的示例。直二元srg(44a)由在表面(s)中通过突出槽间隔区域(9a)分隔开的一系列槽(7a)形成,该突出槽间隔区域(9a)在此也被称为“填充区域”、“光栅线”或简称为“线”。srg(44a)具有d的空间周期(称为“光栅周期”),其是调制形状在其上重复的距离,并且由此为毗邻线/槽之间的距离。槽(7a)具有深度(h),且具有基本直的壁和基本平的基底。在图5a中填充区域具有高度(h)和在填充区域的高度(h)上基本均匀的标记为“w”的宽度(其中w是周期的某一分数f:w=f*d)。

图5b示出斜二元srg(44b)的示例。斜二元srg(44b)也由表面s中通过宽度(w)的线(9b)分隔开的的槽(被标记为7b)形成,这些槽具有基本直的壁和基本平的基底。然而,与直srg(44a)相对比,所述壁相对于法线倾斜了一定量,在图5b中由角度β标注。槽(7b)当沿法线测量时具有深度(h)。取决于非零倾斜所进入的非对称性,行进离开倾斜方向的±n阶模式向内光束具有比它们的±n阶模式对应物更高的强度(例如在图5b的示例中,t1光束被定向离开倾斜的方向并且通常具有比t-1光束更大的强度,但是这取决于例如光栅周期d);通过增加倾斜达足够量,那些±n对应物可以基本被消除(即具有基本为零的强度)。t0光束的强度通常还通过斜二元srg被大大减少,这样,在图5b的示例中,第一阶光束t1通常具有至多约入射光束(i)的强度的五分之四(0.8)的强度。

二元srg(44a)和(44b)可以被看作是嵌入到表面(s)中的空间波形,该空间波形具有基本为方波的形状(具有周期d)。在srg(44b)的情况下,该形状是倾斜达β的倾斜方波形状。

图5c示出了突出的三角srg(44c)的示例,其是突出的梯形srg的特殊情况。三角srg(44c)是由表面(s)中的槽(7c)形成,所述槽是三角形状的(且因此具有可分辨的尖端)并且当沿法线测量时具有深度(h)。填充区域(9c)采用了三角形、齿状突起(齿形)的形式,具有与法线成角度β(β是srg(44c)的倾斜角)的中部。这些齿具有分隔(d)(其是srg44c的光栅周期)的各尖端,即在齿形底部处为(w)并且在齿形的尖端处变窄到基本为零的宽度。对于图5c的srg(44c),w≈d,但一般可以为w<d。srg是突出的,因为齿的尖端延伸超过槽的尖端。构建突起的三角形srg是可能的,该图案基本消除了零阶传输模式(t0)光束和模式光束,仅留下±n阶模式光束(例如仅有t1)。槽具有与中线成角度γ(壁角)的壁。

srg(44c)可以被看作是嵌入在(s)中的空间波形,所述空间波形具有基本三角的波形,其倾斜了β。

其他srg也是可能的,例如其他类型的梯形srg(其在宽度上可能不是一直变窄到零)、正弦srg等。这样的其他srg也展示高度(h)、线宽(w)、倾斜角β和壁角γ,其可按与图5a-c相似的方式定义。

在本显示系统中,d通常在约250和500nm之间,并且h在约30和400nm之间。倾斜角β通常在约0和45度之间(以使得倾斜方向通常被提高为超过表面(s)约45和90度之间的量)。

srg具有依据期望的被衍射的光束(例如t1)的强度相对于照明光束(i)的强度而被定义的衍射效率,并且可以由那些强度的比(η)来表达。如从上将显而易见的,斜二元srg(例如4b-在t1是期望的光束的情况高达η≈0.8)可以实现比非斜srg(例如44a-在t1是期望的光束的情况下仅高达约η≈0.2)更高的效率。通过突出的三角srg,有可能实现近于最佳的效率η≈1。

返回到图3a和3b,可看见入射耦合区、折叠区和出射区(12,14,16)是衍射光栅,这些衍射光栅的周期性结构由对该光学组件的表面的调制(52,54,56)引起,调制(52,54,56)分别形成入射srg、折叠srg和出射srg并分别覆盖入射耦合区12、折叠区14和出射区16。

图6示出具有更大的清晰度的入射srg(52),该入射srg(52)包括示出光束如何与其交互的经展宽的版本。图6示出了光学组件(10)的俯视图。光引擎(13)提供经准直的光的光束,这些光束之一被示出(对应于显示像素)。该光束落在入射srg(52)上并由此在组件(10)中引起该光束的全内反射。中间光栅(14)将光束的各版本向下引导到出射光栅(16),出射光栅(16)引起将该图像衍射到用户的眼睛上。光栅(12)的操作在经扩大的部分中被更详细地示出,该经扩大的部分示出从左边进入并被表示为(i)的入射光束的光线,并且这些光线被衍射以便在光学组件(10)中经历tir。图6中的光栅具有图5b中示出的类型,但也可具有图5c中示出的类型或者某种其他倾斜的光栅形状。

现将参考图7a-9b描述作为某些实施例的基础的光学原理。

显示系统的准直光学器件被布置成将显示系统的显示器上的图像基本上准直成多个输入光束。每一光束通过准直来自相应图像点的光来形成,那个光束以唯一向内方向被定向到入射耦合区,该唯一向内方向取决于改点在图像中的位置。多个输入光束由此形成该图像的虚拟版本。中间区和入射区具有显著大于该光束的直径的宽度。入射区被布置成将每一光束耦合到中间区中,在该中间区中,该光束以沿着该中间区的宽度的方向被引导到该中间区的多个拆分区域中。中间区被布置成在拆分区域拆分该光束以提供那个光束的多个基本上平行的版本。那些多个版本被耦合到出射区中,在出射区中,多个版本被引导到出射区的多个出射区域上。这些出射区域位于沿着出射区的宽度的方向中。出射区被布置成基本上平行地并以匹配基本上入射耦合那个光束的唯一向内方向的向外方向来向外衍射那个光束的多个版本。多个输入光束由此使得多个出射光束离开波导,此多个出射光束形成图像的基本上相同的虚拟版本。

图7a示出显示器(15)、成像光学器件(17)和入射耦合srg(52)的透视图。显示器(15)的用于显示图像的区域上的不同几何点在本文中被称为像点,这些像点可以是活跃的(当前正在发射光)或不活跃的(当前不在发射光)。在实践中,各个体像素可被近似为像点。

成像光学器件(17)可通常被近似为一主平面(薄透镜近似),或者在一些情况下,更准确地被近似为一对主平面(厚透镜近似),其位置依据其构成透镜的性质和布置来确定。在这些近似中,由成像光学器件(17)引起的任何折射被近似为在主平面处发生。为了避免不必要的复杂化,各实施例的原理将结合成像光学器件(17)的薄透镜近似来描述,并由此结合图7a中被标记为31的单个主平面来描述,但将显而易见的是不适配该近似的更复杂的成像光学器件仍可被利用来实现所期望的效果。

成像光学器件(17)具有光轴(30)和正焦点,并且相对于光学组件(10)被定位成使得光轴(30)在入射srg(52)的几何中心处或附近与入射srg(52)相交,且正焦点基本位于显示器上的像点x0处(即,位于与显示器的正面相同的平面中)。示出了显示器上的另一任意像点x,并且现在将结合x描述作为各实施例的基础的原理,而不失一般性。在以下,术语“对于每一x”或类似物被用作用于意指“对于每一像点(包括x)”或类似物的方便速记,如在上下文中将显而易见的。

当活跃时,像点—包括被标记为x和x0的像点—充当个体照明点源,光从这些个体照明电源按基本各向同性的方式传播通过在显示器15前向的半个空间。图像中被感知为较亮的区域中的像点相对于该图像中被感知为较暗的区域而言发射较强的光。被感知为黑色的区域中的像点不发射光或仅发射非常小强度的光(不活跃的像点)。特定像点所发射的光的强度可随图像改变(例如当视频被显示在显示器(15)上时)而改变。

每一活跃像点提供对成像光学器件(17)的准直区域(a)的基本一致的照明,该准直区域(a)基本是圆形的并具有直径(d),该直径(d)取决于诸如构成透镜的直径之类的因素(通常,d具有量级1-10mm)。这在图7a中针对像点x来解说,图7a示出来自x的圆锥体32(x)内的任何传播光如何入射在准直区域a上。成像光学器件准直入射在准直区域a上的任何光32(x)以形成为直径d的经准直的光束34(x)(输入光束),该光束被定向为朝向光学组件(10)的入射耦合光栅(52)。光束34(x)由此入射在入射耦合光栅(52)上。屏蔽组件(未示出)可被布置成防止从x发射的在圆锥体32(x)外部的任何未经准直的光到达光学组件(10)。

对应于像点x的光束34(x)以向内传播方向被朝向入射srg(52)定向,其可通过传播向量来描述(在本文中,粗体字体被用来表示三维向量,这样的向量上的帽子指示表示单位向量)。向内传播方向取决于x在图像中的位置,并且此外对x是唯一的。那个唯一的传播方向可根据方位角φin(x)(其是在x轴以及在xy平面中的投影之间的角度)和极坐标角θin(x)(其是在z轴以及z轴和两者都位于其中的平面(注意,一般来说该平面不是xz平面)内测得的之间的角度)来参数化的。符号φin(x)、θin(x)被采用来表示对x的前述依赖性;如所指示的,φin(x)、θin(x)对那个x是唯一的。注意,在本文中,这样的单位向量和参数化这样的向量的这样的极坐标/方位角对在本文中有时被称为“方向”(因为后者表示其完整的参数化),并且出于相同的理由,有时方位角被独立称为xy方向。还应注意,“向内”在本文中被用于指示朝向波导的传播(当传播朝向观看者所感知到的波导的背面时,为正z分量,而当传播朝向波导的正面时,为负z分量)。

成像光学器件具有主点p,该主点p是光轴(30与主平面(31)相交处的点,并且通常位于准直区域(a)的中心处或附近。向内方向和光轴30具有角距β(x),该角距等于被x和x0从p起包住的角度。如果光轴与z轴平行(其不一定是这种情况),则β(x)=θin(x)。

如将显而易见的,以上适用于每一活跃的像点,并且成像光学器件由此被布置成基本将当前在显示器(15)上的图像准直成多个输入光束,每一输入光束对应于依据相应活跃像点(在实践中为活跃像素)的位置确定的唯一方向,并且以该唯一方向传播。即,成像光学器件(17)高效地将每一活跃点源(x)转换成处于唯一向内方向的经准直的光束。如将领会的,这可被等效地表述为在无穷远处形成对应于当前在显示器(17)上的现实图像的虚拟图像的所有活跃像点的各输入光束。该性质的虚拟图像在本文中有时被称为图像(或类似物)的虚拟版本。

对应于像点x0(未示出)的输入光束将与光轴(30)平行地朝向入射耦合srg(52)的几何中心或在该几何中心附近传播。

如所提到的,在实践中,显示器15的各个体像素可被近似为单个像点。这在图7b中解说,图7b是示出显示器(15)的主平面(31)和两个毗邻像素(xa,xb)的示意俯视图,这两个毗邻像素(xa,xb)的中心从主点p起包住角度δβ。如将显而易见的,出于解说的目的,像素(xa,xb)的范围已被极大地扩大。

光束被高度准直,从而具有不大于由个体像素从p起包住的角度(~δβ)的角范围,例如通常具有不多于约1/2毫弧度的角范围。如在以下的示图中将变得显而易见的,这增加了佩戴者感知到的最终图像的图像质量。

图7c和7d分别示出了光学组件的一部分的示意俯视图(xz)和正视图(yz)。如这些附图中所指示的,入射耦合光栅(52)引起光束34(x)的衍射,由此引起一阶(±1)模式光束在光学组件(10)内以大致朝向折叠srg(54)的新方向(即,其具有正x分量)传播。新方向可由方位角φ(x)(其中|φ(x)|≤|φin(x)|)和极坐标角θ(x)(其中|θ(x)|>|θin(x)|)来参数化,方位角φ(x)和极坐标角θ(x)也依据像点x的位置来确定并且对像点x是唯一的。光栅(52)被配置成使得一阶模式是唯一的重要衍射模式,且该新光束的强度由此基本匹配输入光束的强度。如上所述,倾斜光栅可被用于实现该期望效果(被定向为离开入射srg(52)的光束将例如对应于光束t1,如图4b或4c所示)。通过这种方式,光束34(x)以该新方向被耦合到光学组件(10)的入射耦合区(12)。

光学组件具有折射率n,并且被配置成使得极坐标角θ(x)满足由下式给出的全内发射准则:

(1):对于每个x,sinθ(x)>1/n。

如将显而易见的是,来自成像光学器件(17)的每一光束输入由此通过全内反射(tir)以大致水平的(+x)方向(与x轴偏离φ(x)<φin(x))传播通过光学组件(10)。通过这种方式,光束34(x)被从入射区(12)耦合到折叠区(14),在折叠区(14)中,光束34(x)沿着折叠区(14)的宽度传播。

图7e从与佩戴者的视角相似的视角示出完整的光学组件(10)的正面(xy)视图。如以下更详细解释的,光学组件(10)内的衍射光束拆分和全内反射的组合导致每一输入光束34(x)的多个版本沿着出射区(16)的长度和宽度两者从出射srg向外衍射,成为处于基本匹配对应输入光束34(x)的相应向内方向的相应向外方向(即,远离光学组件10)的输出光束38(x)。

在图7e中,在光学组件(10)外部的光束被使用阴影来表示,并且点线被用来表示光学组件10内的光束。透视被用来指示z方向中的传播,其中图7e中的光束的变宽(或者变窄)表示正(或者负)z方向中的传播;即朝向(或者远离)佩戴者。由此,发散的点线表示光学组件(10)内的光束朝向光学组件(10)的前壁传播;最宽的部分表示那些光束撞到了光学组件10的前壁,那些光束被从光学组件10的前壁全内反射回去朝向后壁(各个srg被形成在该后壁上),该全内反射由从最宽的点到最窄的点(在这些最窄的点处,光束入射在后壁上)收缩的虚线表示。各光束入射在折叠srg和出射srg上的区域被标记为s和e,并且出于将变得显而易见的理由,被分别称为拆分区域和出射区域。

如所解说的,输入光束34(x)被入射srg(52)通过前述衍射耦合到波导中,并且通过tir以方向φ(x),±θ(x)(每当该光束被反射时,极坐标角的符号而非幅值改变)沿着入射区(12)的宽度传播。如将显而易见的,这导致光束34(x)最终在最左边的拆分区域(s)撞击折叠srg。

当光束34(x)入射在拆分区域(s)处时,那个入射光束34(x)通过衍射的方式被高效地拆分成两个光束,以除了零阶反射模式光束(镜面反射光束)外,还创建那个光束的新版本42(x)(具体为-1反射模式光束),归因于具有特定配置(其将在适当的时候被描述)的折叠srg(54),该新版本以特定并且大致向下(-y)的方向φ'(x),±θ'(x)被定向为朝向出射区(16),而零阶反射模式光束继续以相同的方向φ(x),±θ(x)沿着该光束34(x)的宽度传播,就好像光束34(x)将处在没有折叠srg的地方(但是以降低的强度传播)一样。由此,光束34(x)基本沿着折叠区(14)的整个宽度高效地继续传播,在各拆分区域(s)撞击折叠srg,并在每一拆分区域(s)创建该光束的另一新版本(处于相同的基本向下的方向φ'(x),±θ'(x))。如图7e所示,这导致光束34(x)的多个版本被耦合到出射区(16),这多个版本在水平上分隔开以共同跨越出射区(16)的基本整个宽度。

还如图7e所示,该光束的在拆分区域(s)处创建的新版本42(x)本身在其向下传播期间撞击折叠srg。这将导致零阶模式被创建,该零阶模式一般以方向φ'(x),±θ'(x)向下继续传播,并且其可被看作该光束的继续传播,但可导致非零阶模式光束40(x)(进一步的新版本)通过衍射的方式被创建。然而,通过这样的双重衍射在同一srg处创建的任何这样的光束40(x)将以与耦合在光学组件(10)中的原始光束34(x)基本相同的方向φ(x),±θ(x)沿着折叠区(14)的宽度传播(参见以下)。由此,尽管有被折叠srg多次衍射的可能性,但光束34(x)(对应于像点x)的各版本在光学组件(10)内的传播被高效地限制于两个xy方向:大致水平的方向(φ(x),±θ(x))和特定且大致向下的方向(φ'(x),±θ'(x)),这将在以下被简短地讨论。

折叠区(14)内的传播由此高度规则,其中对应于特定像点x的所有光束版本基本按所解说的方式被约束于格状结构。

出射区(16)位于折叠区(14)下方,并且由此该光束的各向下传播版本42(x)被耦合到出射区(16)中,在出射区16中,这些向下传播版本被引导到输出srg的各出射区域(e)上。出射srg(56)被配置成使得当光束的某版本撞击输出srg时,那个光束被衍射以创建以向外的方向从该出射srg(56)向外定向的一阶模式光束,该向外的方向基本匹配其中对应于像点x的原始光束34(x)被输入的唯一向内方向。由于存在该光束的多个版本向下传播,此多个版本基本跨越出射区(16)的宽度,因此生成了跨出射区(16)的宽度的多个输出光束(如图7e所示)以提供高效的水平光束展宽。

此外,出射srg(56)被配置成使得除了向外衍射的光束38(x)在各出射区域(e)处从入射光束中被创建外,零阶衍射模式光束继续按与该入射光束相同的特定方向向下传播。该零阶衍射模式光束进而在较低的出射区(16)以图7e所示的方式撞击出射srg,从而导致继续的零阶光束和向外的一阶光束两者。由此,还生成了基本跨出射区(16)的整个宽度的多个输出光束38(x)以提供高效的垂直光束展宽。

输出光束38(x)以基本匹配原始光束34(x)被输入的唯一输入方向的向外方向被向外地定向。在该上下文中,基本匹配意味着该向外方向按使得佩戴者的眼睛能够将输出光束38(x)的任何组合聚焦到视网膜上的单个点由此重构像点x(参见以下)的方式与输入方向相关。

对于平光学组件(即,其前和后表面在其整体上基本平行于xy平面),输出光束基本彼此平行(至少在被两个毗邻显示像素包住的角度δβ内),并且按与相应的输入光束34(x)被定向到入射耦合srg(52)的唯一向内方向平行的输出传播方向向外传播。即,以向内方向将对应于像点x的光束34(x)定向到入射耦合srg(52)导致相应的输出光束38(x)被向外且并行地从出射区(16)衍射,由于各srg的配置,每一输出光束处于向外传播方向

如将参考图7f描述的,这使得观看者的眼睛在看着出射区(16)时能够重构图像。图7f示出光学组件10的俯视图(xz)。输入光束34(x)被入射耦合到光学组件(10),从而导致多个平行的输出光束38(x)按以上讨论的方式在各输出区域(e)处被创建。在对应于所有像点的各输出光束(在无穷远处)形成与对应的输入光束相同的虚拟图像时,这可被等效地表达。

由于对应于像点x的光束38(x)全部基本平行,被眼睛(37)接收的光束38(x)中的一者或多者的任何光被聚焦为好像眼睛(37)正在感知处于无穷远处的图像(即,遥远的图像)。眼睛(37)由此将这样的接收光聚焦在单个视网膜点上,就好像该光是直接从成像光学器件(17)处接收到的一样,由此在视网膜上重构像点x(例如,像素)。如将显而易见的,上述情况适用于每一活跃像点(例如,像素),使得眼睛(37)重构当前在显示器(15)上的整个图像。

然而,与直接从光学器件(17)接收图像(从该光学器件(17),仅为直径d的相应单个光束34(x)被为每一x发射)形成对照,输出光束38(x)在显著更宽的区域(即,基本为出射区(16)的区域)上被发射,该显著更宽的区域比输入光束的区域(~d2)显著更大。眼睛全部接收的光束38(x)的哪些(部分)被聚焦在相同的视网膜点上(例如,在图7f中,眼睛(37)是否将水平地(±x)移动)并不重要,因为显然该图像仍将被感知。由此,不需要针对例如在远处的具有不同瞳距的观看者对显示系统进行适配,这使得出射区(16)宽到足以预测合理范围的瞳距:尽管与其眼睛较远离的观看者相比,其眼睛较靠近在一起的观看者将一般接收来自出射区(16)的较靠近入射耦合区(12)的一侧的光,但是两者将感知到相同的图像。此外,在眼睛(37)转动时,(随着光束相对于眼睛的光轴的角度改变)该图像的不同部分被引向观看者的视野的中心,且该图像仍保持可见,由此允许观看者按需将其注意力聚焦于图像的不同部分。

对应于任何两个毗邻像素(xa,xb)的输入光束所展示出的相同相对角距δβ也由输出光束38(xa)、38(xb)的相应集合展示出—由此毗邻像素被眼睛(37)聚焦到毗邻的视网膜点。光束的所有各个版本在其传播通过光学组件(10)时保持被高度准直,从而防止聚焦在视网膜上的各像素图像的显著重叠,由此保持图像锐度。

应当注意,图7a-7g不是按比例的,并且尤其地,为了清楚起见,光束直径一般相对于诸如显示器(15)之类的实践中通常将预期的组件被减小。

现将参考图8a和8b描述入射耦合srg(52)的配置,图8a和8b示出了折叠光栅(52)的一部分的示意俯视图和正视图。注意,在图8a和8b中,为了清楚起见,光束通过箭头来表示(即,其区域没有被表示出)。

图8a示出分别位于显示器(15)的最左边和最右边的两个像点(xl,xr),来自这两个像点的光被光学器件(17)准直以便以向内方向(θin(xl),φin(xl))、(θin(xr),φin(xr))生成相应的输入光束34(xl)、34(xr)。如所示出的,这些光束被入射耦合srg(52)耦合到光学组件(10)中—所示的在入射耦合srg(52)处创建的入射耦合光栅是通过衍射入射在srg(52)上的光束的方式来创建的一阶(+1)模式光束。耦合在波导中的光束34(xl)、34(xr)以由极坐标角θ(xl)、θ(xr)定义的方向传播。

图8b示出在显示器(15)的最右上方和最右下方处的两个像点xr1和xr2。注意,在该图中,点划线表示在光学组件(10)后面(-z)的各方面。相应的光束34(xl)、34(xr)在光学组件(10)内处于具有极坐标角φ(xl)、φ(xr)的方向中。

这样的角度θ(x)、φ(x)由以下(传输)光栅等式给出:

nsinθ(x)sinφ(x)=sinθin(x)sinφin(x)(2)

其中srg(52)具有光栅周期,光束光具有波长,并且n为光学组件的折射率。

通过等式(2)、(3)中明确示出θ(xl)=θmax且θ(xr)=θmin,即耦合到组件(10)中的任何光束以在范围[θ(xr),θ(xl)]中的初始极坐标角传播;并且φ(xr2)=φmax且φ(xr1)=φmin(在该示例中≈-φmax),即耦合到该组件中的任何光束最初以在范围[φ(xr1),φ(xr2)](≈[-φ(xr2),φ(xr2)])中的方位角传播。

现将参考图9a-9b描述折叠srg(54)的配置。注意,在图9a和9b中,为了清楚起见,光束再次通过箭头来表示,而没有其区域的任何表示。在这些附图中,点线表示垂直于折叠srg光栅线的各方向,虚线表示垂直于入射耦合srg光栅线的各方向,且点划线表示垂直于出射srg光栅线的各方向。

图9a示出耦合到光学组件(10)的折叠区(14)中、已从光学组件(10)的前壁反射出并由此以朝向折叠srg(54)的方向(φ(x),-θ(x))行进的光束34(x)的透视图。点线(其垂直于折叠srg光栅线)被示为表示折叠srg的方向。

折叠srg(54)和入射耦合srg(52)具有相对定向角a(该相对定向角a是其相应光栅线之间的角度)。该光束由此与在xy平面中测得的折叠srg光栅线成角度a+φ(x)(参见图9b)。光束(34)入射在折叠srg(54)上,折叠srg(54)将光束(34)衍射到不同的组件中。零阶反射模式(镜面反射)光束被创建,该零阶反射模式光束继续以方向(φ(x),+θ(x))传播,就好像光束34(x)将由在没有折叠srg(54)的情况下的反射造成(但是以降低的强度传播)。该镜面反射光束实际上可被看作光束34(x)的延续,并且出于该原因也被标记为34(x)。还创建一阶(-1)反射模式光束42(x),其实际上可被看作光束的新版本。

如所指示的,光束的新版本42(x)以特定方向(φ′(x),θ′(x))传播,该方向由以下已知的(反射)光栅等式给出:

nsinθ′(x)sin(a+φ′(x))=nsinθ(x)sin(a+φ(x))(4)

其中折叠srg具有光栅周期d2,光束光具有波长λ,并且n为光学组件(10)的折射率。

如示出光学组件(10)的示意正视图的图9b所示,光束34(x)以方位角φ(x)被耦合到入射耦合区(12)中,并且由此与折射srg54成xy角φ(x)+a。

光束34(x)的第一新版本42a(x)(-1模式)在该光束首次被折叠srg54衍射时被创建,并且第二新版本42b(x)(-1模式)在该光束接着被折叠srg54衍射时被创建(并且以此类推),第一新版本42a(x)和第二新版本42b(x)两者都以xy方向φ′(x)传播。通过这种方式,光束34(x)被高效地拆分成多个版本,这些版本(跨折叠区14的宽度)被水平地分隔开。这些版本被引导向下朝向出射区(16),并由此(由于该水平分隔,基本跨出射区(16)的宽度)被耦合到出射区(16)中。如可看出的,多个版本由此入射在出射srg(56)的各出射区域(被标记为e)上,出射区域沿着出射区(16)的宽度定位。

这些新的向下(-y)传播的版本本身可再次遇到折叠srg(54),如所解说的。然而,从等式(4),(5)中可示出通过入射光束(例如,42a(x),-1模式)在srg处的衍射创建的任何一阶反射模式光束(例如40a(x),+1模式)将回复成原始光束的方向(例如,φ(x),±θ(x),其是40a(x)的传播方向),入射光束本身由原始光束(例如,34(x))在同一srg处的早期衍射创建。由此,折叠区(14)内的传播限于菱状格,如可从图9b的几何结构中看出的。被标记为42ab(x)的光束是在42b(x)遇到折叠srg(54)时创建的镜面反射光束和在40a(x)在基本相同的位置处遇到该折叠srg(54)时创建的-1模式光束的叠加;被标记为42ab(x)的光束是在40a(x)遇到折叠srg(54)时创建的镜面反射光束和在42b(x)在基本相同的位置遇到该折叠srg时创建的+1模式光束的叠加(并以此类推)。

出射srg和入射耦合srg(52,56)以相对定向角a′(该相对定向角a′是其相应光栅线之间的角度)定向。在出射区域中的每一者处,遇到该区域的版本被衍射,以使得除了以方向φ′(x),±θ′(x)向下传播的零阶反射模式光束外,还有以由以下给出的向外的方向φout(x),θout(x)远离光学组件(10)传播的一阶(+1)传输模式光束38(x):

sinθout(x)sin(a′+φout(x))=nsinθ′(x)sin(a′+φ′(x))(6)

输出方向θout(x),φout(x)是波导之外的输出光束(在空气中传播)的方向。对于平波导,当出射光栅在该波导的正面时,等式(6)、(7)两者都成立-在该情况下,输出光束是一阶传输模式光束(如可看见的,等式(6)、(7)对应于已知的传输光栅等式-但同样当出射光栅在波导的背面时(如在图7f中)-在该情况下,输出光栅对应于一阶反射模式光束,其在来自后出射光栅的初始反射之际,在光学组件10内以由以下给出的方向θ′out(x),φ′out(x)传播:

nsinθ′out(x)sin(a′+φ′out(x))=nsinθ′(x)sin(a′+φ′(x))(6′)

这些光束随后在光学组件的前表面处被折射,并由此以由以下snell定律给出的方向θin(x),φin(x)离开光学组件:

sinθout(x)=nsinθ′out(x)(8)

φ′out(x)=φout(x)(9)

如将显而易见的,等式(6)、(7)的条件直接由等式(6’)、(7’)、(8)和(9)产生。注意,前表面处的这样的折射尽管在图7f中不是容易可见的,但在图7f的布置中将会发生。

根据等式(2-7)可示出,当

d=d1=d3(10)

(即,当入射耦合srg52和出射srg56的周期基本匹配);

d2=d/(2cosa);(11)

并且

a′=2a;(12)

则(θout(x),φout(x))=(θin(x),φin(x))。

此外,当条件

被满足时,折叠srg54处的衍射并没有创建除上述一阶和零阶反射模式以外的模式。即,当该准则被满足时,在折叠区中并没有创建附加的不期望的光束。对于大的范围a(从约0到70度),等式(13)中的条件被满足。

换言之,当这些准则被满足时,出射srg(56)实际上充当入射耦合srg(52)的反转,从而反转入射耦合srg衍射对与其相互的光束的每一版本的效果,由此以与原始光束被输出到组件(10)相同的方向输出实际上为光束34(x)的二维展宽版本的事物(该二维展宽版本具有基本为出射srg56的区域(>>d2,并且其所提到的独立于成像光学器件17的区域)的区域),以向外衍射的光束形成与向内输入的光束基本相同的虚拟图像,但其可通过更大的区域来感知。

在图9b的示例中,a≈45°,即使得折叠srg和出射srg(54,56)被定向为分别与入射耦合srg(52)成基本45和90度,并且折叠区域的光栅周期为然而,这仅是示例,并且实际上,当a≥50°时,显示系统的总效率通常被增加。

以上考虑了平光学组件,但适当弯曲(即,具有基本沿着z轴延伸的曲率半径)的光学组件可被配置成用作有效透镜,使得各输出光束30(x)不再同样被高度准直并且不是平行的,而具有特定的相对方向和角距,使得各自追溯到公共收敛点——这在图7g中被示出,其中该公共收敛点被标记为q。此外,当每一像点被考虑时,所有不同的活跃像点的各收敛点位于基本相同的平面中(被标记为50),该平面被定位成距眼睛(37)距离l,以使得眼睛(37)可据此来聚集以将整个图像感知为好像该图像在距离l远处。这可被等效地表述为各输出光束形成与相应的输入光束基本相同的当前显示图像的虚拟版本,但在距眼睛(37)距离l处,而不是在无穷远处。弯曲的光学组件可特别适合于无法适当地聚焦遥远的图像的近视眼。

注意,一般来说,折叠区和出射区的“宽度”不一定是其水平延伸—一般来说,折叠或出射区(14,16)的宽度是该区在光从入射耦合区12耦合到折叠区14中的大致方向上的延伸(在以上示例中,其是水平的,但更一般地其是基本垂直于入射耦合区12的光栅线的方向)。

返回图2b,左和右输入光束分别被引导通过左和右波导(10l,10r)到左和右眼上。注意,对于其中光束被耦合到光学组件中并在相对侧离开该光学组件的传输布置,波导(10l,10r)是否相对于左和右成像组件(15l/17l,15r,17r)移动无关紧要,因为这并不会改变输出光束的定向,也就是说即使这些光学组件旋转或移动,输入和输出光束之间的角关系未被改变(在该示例中,它们保持平行)。仅是左组件(15l/17l)和右组件(15r/17r)之间的相对移动引入了双目视差。由此,维持左和右图像双目对等所需的全部内容是确保左和右成像组件(15l/17l,15r/17r)的角对准被保留,这是通过将其容纳在相同的中央位置并由刚性支撑结构进一步帮助来实现的。

这在无论何时对任何类型的入射耦合光学器件和出射耦合光学器件都适用(而不管它们是光栅还是其他结构),入射耦合光学器件和出射耦合光学器件在波导的相对侧,因为这使得波导表现得像其中进入该波导的光线的角度等于离开该波导的光线的角度的潜望镜。该效果的进一步细节在申请人的2014年2月17日提交的国际专利申请pct/us2014/016658中被描述,该申请涉及以被配置成以容许波导彼此之间和/或与其他光学器件未对准力的方式将光耦合到近眼显示设备中的波导中。例如,本文中公开的一个布置提供一种近眼显示设备,该近眼显示设备包括一个或多个波导,其中每一波导包括光输入耦合和光输出耦合,所述光输入耦合被配置成在所述波导的第一侧接收光以将该光耦合到所述波导中,所述光输出耦合被配置成在所述波导的第二侧将光从所述波导发射出,所述波导的所述第二侧在所述波导的所述第一侧的对面。

在中央部分(4)的支撑结构足够刚性,以确保在系统(1)的正常使用期间,从左光学组件10l的左出射光栅16l到用户的左眼上的光束obl输出保持在至少如相对于垂直方向所测量到的其1/2毫弧度的预期对准(即,正确的立体图像被感知到的对准)内与从右光学组件10r的右出射光栅16r到用户的右眼上的光束obr输出对准。注意,在实践中,1毫弧度内的对准是可接受的。如鉴于前述内容将显而易见的,维持该水平的角对准确保左和右图像至少在垂直方向中在一个像素内的对准。一般来说,垂直视差相比于所讨论的水平视差而言更易被hvs察觉,但尽管如此,水平对准可被某些支撑结构以相同的精度感知。如将显而易见的,各种显著刚性的轻质材料可被用于形成支撑结构。

图10示出了头戴式显示器的另一特征。图10是从图1中示出的头戴式显示器的侧面来看的视图。它示出支撑延伸6和安装部分4之一。佩戴者的耳朵在图10中未被示出,但将理解支撑延伸(6)的部分(90)适配在用户的耳朵上,并从其水平延伸朝向用户的脸部的前方。显示器(4)位于平面(92)中,在这些附图中其被示为是垂直的并基本上垂直于支撑延伸(6)。然而,一般来说,显示器可被布置成处于任何定向(例如,显示面板可甚至处于水平位置),这取决于光引擎的折叠光学期间被如何实现。

图10还示出了光学组件(10),并且尤其示出了光学组件(10)未相对于支撑延伸(6)被垂直布置。相反,光学组件(10)以朝向用户的眼睛以一角度延伸。在图7中,垂直线通过点线示出,并且该角度被示为锐角θ。

图11和12中示出了这个的原因。如图11和12所示,光引擎13具有出射光圈ea。出射光圈可例如被形成在光引擎的外壳或将光引擎的内部光学器件与波导隔开的隔板中。光可仅经由出射光圈ea进入或离开光引擎13。图11示出当光学组件被布置成真正垂直时光可表现得如何。考虑来自微显示器(14)的像素(x)并入射在入射耦合光栅(12)上的被标记为(i)的入射光线。对于该入射光线(i),入射角度为使得存在被反射回去通过成像光学器件(17)并入射在显示器(14)上的反射光线(r)。由于显示器(14)在其表面处具有某种反射性,虚反射(r)被反射离开微显示器,并被成像光学组件(17)形成在光学组件的入射耦合光栅(12)上。由此,除了通过全内反射被引导通过光学组件并(作为输出光线i’)被衍射出用户的眼睛的期望光线(i)外,还存在由反射光束(r/r)形成的重像,其也通过全内反射引导,并最终(作为输出光线r’)入射在用户的眼睛上。虽然重像的光水平可能很小,但无论如何,它对用户是刺激物并破坏其对预期图像的视觉的清楚性。

图12示出该重像可如何通过使光学组件(10)在yz平面中相对于平面(92)成角度θ而被移除,其中光学组件(10)的底部被成角度为朝向用户(即,使得光学组件10的底部比光学组件10的顶部更靠近用户)。在该情况下,入射光线i类似地从入射耦合光栅(12)反射,但反射光束r’在该情况下以不撞击光学器件(17)的透镜的角度反射。角度θ足够大,使得对于来自x的所有光线都是这样(来自x的所有光线被准直以形成入射光束ib),从而使得入射光束ib的被光学组件(10)向外反射的版本rb传播为完全离开光学器件(17)。由此,不形成像素x的重像。

为了确保不形成任何像素的重像,这应当适用于显示器上的所有像素(回想,每一像素导致单个反射光束),由此角度θ取决于显示器15、光学器件17和光学组件10相对于彼此的布置。当光学组件如图12中那样被朝向用户垂直倾斜时,使角度θ大到足以使得来自最低像素行的光束被反射离开准直光学器件就够了,因为由于这些被反射的光束在yz平面具有最小入射角,因此这些被反射的光束而不是任何其他光束将进入光学器件(17)。

注意,光引擎13的以上布置只是一个示例。例如,基于所谓的扫描的替换光引擎可提供单个光束,该单个光束的定向被快速调制,且同时调制其强度和/或颜色。如将显而易见的,虚拟图像可按与将通过用准直光学器件来准直显示器上的(现实)图像的光来创建的虚拟图像等效的方式来仿真。

与防止重影有关的相关因素是来自光引擎的经准直光束遇到光导板的角度,无论光引擎的配置是什么,这都适用。假如光束的向后反射的光束版本无法重新进入光引擎,则重影将被消除。由此,无论何时光引擎和光学组件之间的角度为使得将没有从该板返回到光引擎的反射在光引擎的视野的任何角度值处离开光圈时,重影被消除。

虽然在以上各光学组件被垂直倾斜为朝向用户,但假如每一光学组件相对于光引擎倾斜一角度,该角度足够大,以致所有反射光束均离开出射光圈,则重影可通过使每一光学组件相对于其中排列有光引擎的显示器90的平面92以任何方向成角度来消除。

光学组件(10)可使用任何合适的安装机制以角度θ安装;具体地,它可被固定到框架的已经以该角度倾斜的一部分以便在该角度处为光学组件提供支撑。

注意,通过倾斜来消除重影可被用于其他类型的显示系统,例如其中来自相同显示器的光束被耦合到左和右光学波导组件中使得图像由两个眼睛从单个显示器中感知到的显示系统,或者其中单个波导被用于提供通过单个显示器仅向一个眼睛提供图像的显示系统。

虽然以上覆盖表面起伏光栅,但本主题适用于其他结构,例如其他基于衍射的波导显示器和反射(非衍射)波导显示器。

根据第一方面,一种可穿戴图像显示系统包括头部部件、第一和第二光引擎、以及第一和第二光学组件。所述第一和第二光引擎被配置成分别生成第一和第二光束集合。每一光束被基本准直成使得第一和第二集合分别形成第一和第二虚拟图像。所述光引擎被安装在所述头部部件上。每一光学组件被定位成将图像分别投影到佩戴者的第一和第二眼睛上,并且包括入射耦合结构和出射结构。所述第一和第二光束集合被分别定向到所述第一和第二光学组件的所述入射耦合结构。所述第一和第二光学组件的出射设备被布置成分别将所述第一和第二光束集合引导到所述第一和第二眼睛上。所述光学组件被定位在所述光引擎和所述眼睛之间。所述光引擎两者都被安装到所述头部部件的中央部分。

在各实施例中,所述系统可包括安装到所述中央部分的支撑结构,所述支撑结构支撑所述第一和第二光引擎,所述支撑结构比所述头部部件更刚性。

所述支撑结构可足够刚性以将所述第一和第二光束集合之间的垂直对准维持在基本上一毫弧度内。此外,所述第一和第二光束集合之间的水平对准也可被所述支撑结构维持在基本上一毫弧度内。所述支撑结构可例如由碳纤维或钛形成。

每一光学组件可包括操纵光束在波导内的空间分布的折叠结构。

所述光学组件可以是基本上透明的,由此用户可透视所述光学组件,以与投影的图像同时地查看现实世界场景。

第一和第二光束集合可分别定向自第一和第二光引擎的第一和第二出射光圈,并且所述光学组件可相对于所述光引擎成角度,以使得所述光束的任何向外反射的版本传播离开所述出射光圈。

所述第一和第二图像可彼此不同,以使得立体图像被所述佩戴者感知。

所述第一光引擎可包括其上生成第一图像的第一显示器以及被布置成根据所述第一显示器上的所述第一图像生成所述第一光束集合的准直光学器件;所述第二光引擎可包括其上生成第二图像的第二显示器以及被布置成根据所述第二显示器上的所述第二图像生成所述第二光束集合的准直光学器件。

所述结构可以是光栅,由此所述光束被衍射到所述眼睛中。

所述头部部件可包括框架、头盔或头带。

所述光学组件可例如由玻璃或聚合物形成。

根据第二方面,一种可穿戴图像显示系统包括头部部件、准直光学器件、其上分别生成第一和第二图像的第一和第二显示器、其上分别生成第一和第二图像的第一和第二显示器以及第一和第二光学组件。所述显示器被安装在所述头部部件上。每一光学组件被定位成将图像分别投影到佩戴者的第一和第二眼睛上,并且包括入射耦合结构和出射结构。所述准直光学器件被配置将每一图像基本上准直成相应的光束,并将第一和第二图像的光束分别定向到所述第一和第二光学组件的入射耦合结构。所述第一和第二光学组件的出射结构被布置成将所述第一和第二图像的衍射版本分别衍射到所述第一和第二眼睛上。所述光学组件被定位在所述准直光学器件和所述眼睛之间。所述显示器和所述准直光学器件两者都被安装到所述头部部件的中央部分。

在各实施例中,所述光学组件可以是基本上透明的,由此用户可透视所述光学组件,以与投影的图像同时地查看现实世界场景。

所述第一和第二图像可彼此不同,以使得立体图像被所述佩戴者感知。

根据第三方面,一种可穿戴图像显示系统包括框架、准直光学器件、其上分别生成第一和第二图像的第一和第二显示器、以及第一和第二光学组件。所述显示器被安装在所述框架上。每一光学组件被定位成将图像分别投影到佩戴者的第一和第二眼睛上,并且包括入射耦合光栅出射光栅。所述准直光学器件被配置将每一图像基本上准直成相应的光束,并将第一和第二图像的光束分别定向到所述第一和第二光学组件的入射耦合结构。所述第一和第二光学组件的出射光栅被布置成将所述第一和第二图像的衍射版本分别衍射到所述第一和第二眼睛上。所述光学组件被定位在所述准直光学器件和所述眼睛之间。支撑结构被安装在所述框架的中央部分,并支撑所述第一和第二显示器以及所述准直光学器件,所述支撑结构比所述框架更刚性。

所述支撑结构可足够刚性以将所述第一和第二图像的衍射版本之间的垂直对准维持在基本上一毫弧度内。所述第一和第二图像的衍射版本之间的水平对准也可被所述支撑结构维持在基本上一毫弧度内。

每一光学组件可包括操纵所述光束在所述波导内的空间分布的折叠光栅。

所述光学组件可以是基本上透明的,由此用户可透视所述光学组件,以与投影的图像同时地查看现实世界场景。

所述第一和第二图像可彼此不同,以使得立体图像被所述佩戴者感知。

根据第四方面,一种可穿戴图像系统包括头部部件、光引擎和光学组件。所述光引擎被安装在所述头部部件上,并被配置成生成光束,所述光束中的每一者被基本准直以使得所述光束形成虚拟图像。所述光学组件被定位成将图像分别投影在佩戴者的眼睛上,并且包括入射耦合结构和出射结构。所述光束被从所述光引擎的出射光圈定向到所述光学组件的入射耦合结构。所述出射结构被布置成将所述光束引导到所述眼睛上。所述光学组件被定位在所述光引擎和所述眼睛之间。所述光学组件相对于所述光引擎成角度,以使得所述光束的任何向外反射的版本传播离开所述出射光圈。

在各实施例中,所述光引擎可包括其上生成图像的显示器以及被布置成根据所述显示器上的所述图像生成所述光束的准直光学器件。

所述结构可以是光栅,由此所述光束被衍射到所述眼睛中。

所述光学组件可被成角度为朝向所述佩戴者。

所述光学组件可包括操纵所述光束在所述波导内的空间分布的折叠结构。

所述光学组件可以是基本上透明的,由此用户可透视所述光学组件,以与投影的图像同时地查看现实世界场景。

所述光学组件可包括两个这样的光引擎以及两个这样的光学组件,每一光引擎被配置成生成相应的这样的虚拟图像,并且在两个这样的光学组件中,所述虚拟图像彼此不同,以使得立体图像被所述佩戴者感知。

所述光学组件可例如由玻璃或聚合物形成。

所述光引擎可被安装到所述框架的中央部分。

所述头部部件可包括框架、头盔或头带。

根据第五方面,一种可穿戴图像显示系统包括头部部件、在其上生成图像的显示器、光学组件以及准直光学器件。所述显示器被安装在所述头部部件上并位于一平面中。所述光学组件被定位成将图像投影到佩戴者的眼睛上,并包括入射耦合结构和出射结构。所述准直光学器件被布置成将所述图像基本上准直成光束并将所述光束定向到所述光学组件的入射耦合结构。所述出射结构被布置成将所述光束引导到所述眼睛上。所述光学组件相对于所述平面成一定量的角度,以使得所述光束的任何向外反射的版本传播离开所述准直光学器件。

所述结构可以是光栅,由此所述光束被衍射到所述眼睛上。

所述光学组件可被成角度为朝向所述佩戴者。

所述光学组件可包括操纵所述光束在所述波导内的空间分布的折叠结构。

所述光学组件可以是基本上透明的,由此用户可透视所述光学组件以与投影的图像同时查看现实世界场景。

所述光学组件可例如由玻璃或聚合物形成。

根据第六方面,一种可穿戴图像显示系统包括:头部部件;分别在其上生成第一和第二图像的第一和第二显示器,第一和第二光学组件以及准直光学器件。所述显示器被安装在所述头部部件上并位于一平面中。每一光学组件被定位成将图像分别投影到佩戴者的第一和第二眼睛上,并包括入射耦合光栅和出射光栅。准直光学器件被布置成将每一图像基本上准直成相应的光束,并将第一和第二图像的光束分别定向到第一和第二光学组件的入射耦合光栅。所述第一和第二光学组件的出射光栅被布置成将所述第一和第二图像的各版本分别衍射到所述第一和第二眼睛上。所述光学组件被定位在所述准直光学器件和所述眼睛之间。每一光学组件相对于所述平面成一定量的角度,以使得所述光束的任何向外反射的版本传播离开所述准直光学器件。

所述第一和第二图像可彼此不同,以使得立体图像被所述佩戴者感知。

尽管用结构特征和/或方法动作专用的语言描述了本发明主题,但可以理解,所附权利要求书中定义的主题不必限于上述具体特征或动作。更确切而言,上述具体特征和动作是作为实现权利要求的示例形式公开的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1