本申请要求于2017年3月27日提交的美国临时专利申请no.62/476,959和2016年8月12日提交的美国临时专利申请no.62/374,247的优先权和权益,其全部内容在此引入作为参考。
本发明涉及具有正面外延迟的宽视角光学补偿膜。更具体地,本发明涉及一种具有反向波长色散的正c板,其能够提供消色差(或宽带)延迟补偿。本发明的光学膜可以用于光学器件,例如液晶显示器(lcd),有机发光二极管(oled)显示器,3d显示器,光学开关或需要受控光管理的波导。
背景技术:
在光学补偿领域中已知光的相位延迟根据波长而变化,从而引起色移。在设计光学器件时可以考虑补偿膜的这种波长依赖性(或色散)特性,从而减少色移。波长色散曲线被定义为相对于具有正或负延迟(或延迟)的补偿膜的“正常”(或“适当”)或“反转”。具有正延迟的补偿膜(正a-或c-板)可以具有正常曲线,其中相位延迟的值朝向较短波长逐渐变为正,或者相位延迟的值朝向较短波长逐渐变为正的反转曲线。具有负延迟的补偿膜(负a-或c-板)可以具有这样的正常曲线,其中相位延迟的值对于较短波长越来越负,或者相位延迟的值朝向更短波长逐渐减小的反转曲线。这些曲线的示例性形状在图1中示出。
波片通常根据它们的折射率分布如下命名:
正c板:nx=ny<nz;负c板:nx=ny>nz
正a板:nx>ny=nz;负a板:nx<ny=nz
其中,nx和ny表示面内折射率,nz表示厚度折射率。
c板和a板波片是单轴双折射板。波片也可以是双轴双折射的,其中nx,ny和nz都不相等;这种板通常称为双轴膜。
具有等于波长的四分之一(λ/4)的面内延迟(re)的a板被称为四分之一波片(qwp)。同样,re等于波长的一半(λ/2)的a板称为半波片(hwp)。理想的消色差qwp能够在每个波长下将入射偏振光延迟λ/4。为了实现这种理想的消色差qwp,qwp的波长色散必须反转,并且必须满足以下等式:
re(450)/re(550)=0.818,re(650)/re(550)=1.182,
其中re(450),re(550)和re(650)分别是在450nm,550nm和650nm的光波长下的面内延迟。消色差(或宽带)波片是非常需要的,因为它可以在每个波长下以相同的方式引导光以产生最佳的观看质量。然而,普通波片呈现正常的色散曲线,这不适用于宽带波片应用。
与正a板类似,具有反向波长色散曲线的正c板也是宽带应用所需要的。这种c板可以满足以下等式:
rth(450)/rth(550)=0.818,rth(650)/rth(550)=1.182,
其中rth(450),rth(550)和rth(650)分别是在450nm,550nm和650nm的光波长下的面外延迟。需要具有相对于面外延迟的反向波长色散特性的正c板。
a板通常用在液晶显示器(lcd)中作为补偿膜以改善视角。它们还可以用于oled(有机发光二极管)显示装置中。例如,qwp可以与线性偏振器一起使用以在oled器件中以提供圆偏振器,以减少由oled反射的环境光,从而改善观看质量。这些应用通常利用a板提供的面内相位延迟来进行面内相移补偿。例如,与c板组合的a板在减少交叉偏振器在倾斜视角下的漏光特别有用。然而,a板也表现出负面外延迟rth,其由等式rth=[nz-(nx+ny)/2]×d定义,其值为从其方向产生的|re/2|。当在光学器件中需要负rth时,该特性可能是有益的。例如,在垂直排列(va)模式的lcd中,lc单元中的液晶分子以垂直方式排列,这导致正延迟。因此,除了va-lcd中的平面内补偿之外,a板还可以提供平面外补偿。然而,在诸如面内开关(ips)模式lcd和oled显示器的其他装置中,在a板中呈现的rth是不所期望的,因为它可能导致轴外光的相移并导致漏光。因此,本领域还需要提供一种具有减小面外延迟的正面内延迟器,以改善显示器的视角和对比度。通过将正c板与a板组合使用,可以实现面外延迟的减小。此外,最理想的是,正c板具有反向波长色散特性,以实现消色差补偿。
技术实现要素:
本文所公开的实施例涉及一种光学补偿膜,其通过聚合物共混物的溶液流延制成,所述聚合物共混物包含:
(a)硝化苯乙烯类含氟聚合物,和
(b)聚酰亚胺,
其中所述光学补偿膜具有正面外延迟,其满足0.7<r(450)/r(550)<1且1<r(650)/r(550)<1.25的关系,其中r(450),r(550)和r(650)分别是在450nm,550nm和650nm的光波长下的面外延迟,并且其中硝化苯乙烯类含氟聚合物具有苯乙烯类基团:
其中r1,r2和r3各自独立地为氢原子,烷基,取代的烷基或卤素,其中r1,r2和r3中的至少一个为氟原子,并且其中n是1至5的整数,表示苯乙烯环上硝基的数量。
在另一个实施例中,基于(a)和(b)的总重量,硝化苯乙烯类含氟聚合物(a)的含量为约60%至约90%或约70%至约80%,聚酰亚胺(b)的含量为约10%至约40%或约20%至约30%。
在另一个实施例中,本发明提供了一种多层光学膜,其包含本发明的光学补偿膜和折射率分布为nx>ny=nz的a板,其中nx和ny表示面内折射指数,nz厚度折射率。
在某些其他实施例中,提供聚合物树脂。树脂具有以下基团:
其中r1,r2和r3各自独立地为氢原子,烷基,取代的烷基或卤素,其中r1,r2和r3中的至少一个为氟原子,并且其中n为1至5的整数,表示苯乙烯环上的硝基数。在某些实施例中,聚合物树脂包含苯乙烯类含氟聚合物(上文)和聚酰亚胺的混合物或共聚物。
在本发明的其他实施例中,提供聚合物溶液。聚合物溶液包含溶剂和具有苯乙烯类基团的聚合物:
其中r1,r2和r3各自独立地为氢原子,烷基,取代的烷基或卤素,其中r1,r2和r3中的至少一个为氟原子,并且其中n为1至5的整数,表示苯乙烯环上的硝基数。在某些实施例中,聚合物溶液中的聚合物包含苯乙烯类含氟聚合物(上文)和聚酰亚胺的混合物或共聚物。
附图说明
图1是描绘示例性波长色散曲线的形状的曲线图:(a)正延迟的反转曲线,(b)正延迟的正常曲线,(c)负延迟的正常曲线和(d)负延迟的反转曲线。
具体实施方式
波片的延迟(r)由等式r=δn×d定义,其中δn是双折射率,d是波片的厚度。双折射率分为面内双折射率δnin=nx-ny和面外双折射率δnth=nz-(nx+ny)/2。面内延迟由等式re=(nx-ny)×d表示,面外延迟由rth=[nz-(nx+ny)/2]×d表示。
可以通过以不同的增量确定波长在约400nm至约800nm的波长范围内的双折射率来测量波片的双折射率(δn)。或者,可以在特定光波长下测量双折射率。在整个说明书中,当给出双折射或延迟关系而没有指定波长时,表示波长始终都是在约400nm至约800nm的范围内。
在本发明的一个实施例中,提供了一种光学补偿膜,其通过聚合物共混物的溶液流延制成,所述聚合物共混物包含:
(a)硝化苯乙烯类含氟聚合物和
(b)聚酰亚胺,
其中所述光学补偿膜具有正面外延迟,其满足0.7<r(450)/r(550)<1且1<r(650)/r(550)<1.25的关系,其中r(450)),r(550)和r(650)分别是在450nm,550nm和650nm的光波长下的面外延迟,并且其中硝化苯乙烯类含氟聚合物具有苯乙烯类基团:
其中r1,r2和r3各自独立地为氢原子,烷基,取代的烷基或卤素,其中r1,r2和r3中的至少一个为氟原子,并且其中n为1至5的整数,表示苯乙烯环上硝基的数量。
在另一个实施例中,基于(a)和(b)的总重量,硝化苯乙烯类含氟聚合物(a)为约60%至约90%或约70%至约80%,聚酰亚胺(b)为约10%至约40%或约20%至约30%。
根据本发明的光学补偿膜具有正面外延迟(rth)和反向的面外波长色散特性,通过该特性,相位延迟的值朝向更短的波长逐渐减小。该分散特性由在450nm,550nm和650nm波长下测量的延迟比率表示,其满足r(450)/r(550)<1和r(650)/r(550)>1的关系。r(450)/r(550)的比率可以是0.71至0.99,0.72至0.98,0.74至0.97,0.76至0.96,0.78至0.95,0.8至0.9或0.81至0.85。r(650)/r(550)的比率可以是1.01至1.24,1.02至1.23,1.03至1.22,1.04至1.21,1.05至1.2或1.1至1.19。在一个实施例中,正面外延迟满足0.8<r(450)/r(550)<0.9和1.01<r(650)/r(550)<1.2的关系。
在本文所公开的实施例中,光学补偿膜的面外延迟(rth)在波长(λ)550nm处为约50nm至约200nm;最优选地约100nm至约150nm。优选地,膜厚度为约5至约30微米(μm);最优选地约5微米至约20微米。
在某些实施例中,适用于本发明的硝化苯乙烯类含氟聚合物(a)包含如下所示的聚合物主链中的苯乙烯类基团:
其中r1,r2和r3各自独立地为氢原子,烷基,取代的烷基或卤素,其中r1,r2和r3中的至少一个为氟原子,并且其中n为1至5的整数,表示苯乙烯环上的硝基数。
在硝化苯乙烯类含氟聚合物(a)中,每个苯乙烯类基团可以被取代或不可以被取代(但至少一个被取代);苯乙烯类含氟聚合物中苯乙烯类基团上的硝基的平均数可以为约0.2至约1,这在本文中称为聚合物中硝基的取代度(ds)。理想地,硝基的ds为约0.5至约0.9,0.6至0.8,或0.65至0.75。
硝化苯乙烯类含氟聚合物(a)可以通过苯乙烯类含氟聚合物的硝化来制备,所述苯乙烯类含氟聚合物可以是均聚物或共聚物。均聚物的实例包括但不限于聚(α,β,β-三氟苯乙烯),聚(α,β-二氟苯乙烯),聚(β,β-二氟苯乙烯),聚(α-氟苯乙烯)或聚(β-氟苯乙烯)。在一个实施例中,苯乙烯类含氟聚合物是聚(α,β,β-三氟苯乙烯)。共聚物可以通过一种或多种含氟单体与一种或多种烯键式不饱和单体的共聚来制备。这种含氟单体的实例包括但不限于α,β,β-三氟苯乙烯,α,β-二氟苯乙烯,β,β-二氟苯乙烯,α-氟苯乙烯,β-氟苯乙烯及其组合。
在一个实施例中,苯乙烯类含氟聚合物是α,β,β-三氟苯乙烯与以下的一种或多种烯键式不饱和单体的共聚物,所述烯键式不饱和单体选自苯乙烯,丙烯酸甲酯,甲基丙烯酸甲酯,丙烯酸丁酯,甲基丙烯酸丁酯,丙烯酸2-乙基己酯,丙烯酸,甲基丙烯酸,α-甲基苯乙烯,4-甲基苯乙烯,乙烯基联苯,丙烯腈,异戊二烯及其组合。
在本文公开的某些实施例中,聚酰亚胺(b)包含刚性棒状基团,当溶液流延到基材上时,所述棒状基团能够形成面内取向。由此制备的聚合物膜表现出负的面外双折射,并且通常称为用于光学延迟补偿的负c板。与未取代的苯乙烯类含氟聚合物(例如聚(α,β,β-三氟苯乙烯))不同,硝化苯乙烯类含氟聚合物可在溶剂中与聚酰亚胺混溶,并且该混合物可制成光学特性的透明膜。将硝化苯乙烯类含氟聚合物与聚酰亚胺共混使得苯乙烯类含氟聚合物膜的波长色散曲线从正常变为反向,这非常适用于消色差宽带应用。
在本文所公开的实施例中,通过芳香族二酐与芳香族二胺反应制备聚酰亚胺。芳香族二酐可以基于苯(式2-5,如下)或萘(式6-7,如下);芳香族二胺也可以基于苯(式8和9,如下)或萘(式10和11,如下)。适用于本发明的聚酰亚胺已在美国专利号5344916,5480964,5580950和7820253中公开,其内容通过引用整体并入本文。理想地,聚酰亚胺通过使一种或多种二酐与一种或多种二胺反应制备,所述二酐例如均苯四甲酸二酐(pmda)(2),3,3',4,4'-联苯四羧酸二酐(3),4,4′-(六氟异亚丙基)二邻苯二甲酸酐(6fda)(4),4,4'-(乙炔-1,2-二基)二邻苯二甲酸酐(eddpa)(5),4,4'-联萘-1,1',8,8'-四羧酸二酐(bnda)(6)和1,4,5,8-萘四羧酸二酐(nda)(7),所述二胺如2,4-二氨基均三甲苯(dam)(8),2,2'-双(三氟甲基)联苯胺(pfmb)(9),1,5-萘二胺(dan)(10),[1,1'-联萘]-5,5'-二胺(dabn)(11),3,5-二乙基-甲苯-2,6-二胺(2,6-detda)(12),3,5-二乙基-甲苯-2,4-二胺(2,4-detda)(13)和4,4'-(9-亚芴基)二苯胺)(frda)(14)。最理想的二酐是6fda(4),eddpa(5)和bnda(6),最理想的二胺是dam(8),2,6-detda(12),2,4-detda(13),和frda(14)。在一个实施例中,芳香族二酐是选自6fda(4),eddpa(5),bnda(6)及其组合中的一种或多种,并且芳香族二胺是选自由以下组成的组中的一种或多种:dam(8),2,6-detda(12),2,4-detda(13),frda(14)及其组合。二酐和芳香族二胺的各种化学组成如下所示:
适用于形成本文所用聚酰亚胺的其它二酐或二胺包括式15的那些(5,5'-[1,4-亚苯基双(1,3,4-恶二唑-5,2-二基)]双-1,3-异苯并呋喃二酮),16(5,5'-(1,3,4-恶二唑-2,5-二基)双-1,3-异苯并呋喃二酮),17(4,4'-(1,4-亚苯基)-双(1,3,4-恶二唑-2,5-二基)二(邻甲苯胺)),18(4,4'-亚甲基双(2,6-二乙基-苯胺)),19(4,4'-(六氟异亚丙基)二苯胺)和20(4,4'-(六氟异亚丙基)-双(对亚苯基氧基))二苯胺)。这些额外的二酐和二胺如下所示:
在进一步的实施例中,对于苯乙烯环上的硝基,硝化苯乙烯类含氟聚合物(a)具有约0.6至约0.8的平均取代度(ds),并且聚酰亚胺(b)为以下组分的反应产物,包括:
i.基于(i)和(ii)的总摩尔数,4,4'-(六氟异亚丙基)二邻苯二甲酸酐(6fda)的量为约40至约60摩尔%,
ii.基于(i)和(ii)的总摩尔数,4,4'-联萘-1,1',8,8'-四羧酸二酐(bnda)的量为约40至约60摩尔%,
iii.基于(iii)和(iv)的总摩尔数,2,4-二氨基均三甲苯(dam)的量为约60至约80摩尔%,和
iv.基于(iii)和(iv)的总摩尔数,4,4'-(9-亚芴基)二苯胺)(frda)的量为约20至约40摩尔%。
在另一个实施例中,对于苯乙烯环上的硝基,硝化苯乙烯类含氟聚合物(a)具有约0.6至约0.8的平均取代度(ds),并且聚酰亚胺(b)为以下组分的反应产物,包括:
i.基于(i)和(ii)的总摩尔数,4,4'-(六氟异亚丙基)二邻苯二甲酸酐(6fda)的量为约40至约60摩尔%,
ii.基于(i)和(ii)的总摩尔数,4,4'-联萘-1,1',8,8'-四羧酸二酐(bnda)的量为约40至约60摩尔%,和
iii.2,4-二氨基均三甲苯(dam)。
在另一个实施例中,对于苯乙烯环上的硝基,硝化苯乙烯类含氟聚合物(a)具有约0.6至约0.8的平均取代度(ds),并且聚酰亚胺(b)为以下组分的反应产物,包括:
i.基于(i)和(ii)的总摩尔数,4,4'-(六氟异亚丙基)二邻苯二甲酸酐(6fda)的量为约20至约40摩尔%,
ii.基于(i)和(ii)的总摩尔数,4,4'-(乙炔-1,2-二基)二邻苯二甲酸酐(eddpa),其量为约60至约80摩尔%,和
iii.3,5-二乙基-甲苯-2,6-二胺(2,6-detda)和3,5-二乙基-甲苯-2,4-二胺(2,4-detda)的混合物。
在本文所公开的某些实施例中,通过从包含一种或多种硝化苯乙烯类含氟聚合物和一种或多种聚酰亚胺的溶液共混物中流延来制备光学补偿膜。溶液混合物可以通过混合含氟聚合物溶液和聚酰亚胺溶液来制备,或者可以通过将粉末状含氟聚合物和聚酰亚胺的混合物溶解在溶剂中来制备。合适的溶剂包括甲基乙基酮,环戊酮,甲苯,甲基异丁基酮,二氯甲烷,氯仿,1,2-二氯乙烷,甲基戊基酮,甲基异丙基酮,甲基异戊基酮,乙酸乙酯,乙酸正丁酯,丙二醇甲醚乙酸盐及其混合物。在另一个实施例中,溶液共混物还包含一种或多种添加剂,其能够增加本发明的光学补偿膜的正面外延迟和/或改善0.7<r(450)/r(550)<1和1<r(650)/r(550)<1.25的理想关系,例如通过促进调节或易于控制关系r(450)/r(550)和r(650)/r(550),相对于聚合物共混物和相关膜,单独地和相对于彼此。添加剂的实例包括但不限于ir吸收剂,uv吸收剂和二酰亚胺化合物,其通过使二酐与单胺反应或通过使二胺与单酐反应来制备。
在一个实施例中,本发明的光学补偿膜通过溶液流延在基材上制备。将聚合物溶液流延到基材上可以通过本领域已知的方法进行,例如旋涂,喷涂,辊涂,幕涂或浸涂。基质是本领域已知的,包括三乙酰纤维素(tac),环烯烃聚合物(cop),聚酯,聚乙烯醇,纤维素酯,乙酸丙酸纤维素(cap),聚碳酸酯,聚丙烯酸酯,聚烯烃,聚氨酯,聚苯乙烯,玻璃,其他材料常用于lcd器件,以及oled显示器件中常用的其他材料。
优选地,硝化苯乙烯类含氟聚合物组分在流延成膜时具有满足δnth>0.02或>0.025或>0.03,或>0.035的方程的面外双折射率(δnth)。较高双折射材料的优点在于它们可以提供足够的正面外延迟(rth)作为膜,以减少或消除聚酰亚胺膜中显示的负rth。
当与a板组合时,本发明的光学补偿膜可以消除a板中存在的不需要的负面外延迟。此外,由于其反向色散特性,本发明的光学膜可以提供消色差补偿,以最佳地改善观看质量。
另外的实施例包括本文实施例中描述的光学补偿膜和具有nx>ny=nz的折射率分布的a-板,其中nx和ny表示面内折射率,nz表示厚度折射率。在一个实施例中,所述a板是四分之一波片(qwp)。在一个实施例中,qwp与线性偏振器组合起到圆偏振器的作用。这种圆偏振器可以用在oled显示装置中以减少环境光并因此改善观看质量。
本发明的多层膜可以通过层压,溶液流延或任何其它合适的产生聚合物膜的方法获得。在一个实施例中,将硝化苯乙烯类含氟聚合物(a)和聚酰亚胺(b)的聚合物共混物的溶液流延到a板上以获得多层膜。
类似地,本文公开的包含硝化苯乙烯类含氟聚合物(a)和聚酰亚胺(b)的聚合物共混物的膜的实施例也可以与折射率分布为nx>ny≠nz的b板组合。在一个方面,所述b板是双轴四分之一波片(qwp)。在另一个实施例中,双轴qwp与线性偏振器组合起到圆偏振器的作用。这种圆偏振器可以用在oled显示装置中以减少环境光并因此改善观看质量。
本发明的光学补偿膜可用于包括共面转换液晶显示装置,oled显示装置,3d显示装置,圆偏振器或3d眼镜。所述显示设备可以用于电视,计算机,移动电话,相机和其他应用。
在本发明另外的实施例中,提供聚合物树脂。聚合物树脂具有以下部分:
其中r1,r2和r3各自独立地为氢原子,烷基,取代的烷基或卤素,其中r1,r2和r3中的至少一个为氟原子,并且其中n为1-5的整数,表示苯乙烯环上的硝基数。
在某些实施例中,聚合物树脂包含苯乙烯类含氟聚合物(上文)和聚酰亚胺的混合物或共聚物。
在聚合物树脂的某些实施例中,硝基的ds大于0.25。在某些实施例中,硝基的ds大于0.4。在聚合物树脂的某些实施例中,硝基的ds大于0.6。在聚合物树脂的某些实施例中,硝基的ds大于0.8。
在本发明的一个实施例中,提供聚合物溶液。聚合物溶液包含溶剂和具有苯乙烯类基团的聚合物:
其中r1,r2和r3各自独立地为氢原子,烷基,取代的烷基或卤素,其中r1,r2和r3中的至少一个为氟原子,并且其中n为1-5的整数,表示苯乙烯环上的硝基数。
在某些实施例中,聚合物溶液中的聚合物包含苯乙烯类含氟聚合物(上文)和聚酰亚胺的混合物或共聚物。
在聚合物溶液的某些实施例中,溶剂选自:甲苯,甲基异丁基酮,环戊酮,二氯甲烷,1,2-二氯乙烷,甲基戊基酮,甲基乙基酮,甲基异戊基酮,及其混合物。在聚合物溶液的某些实施例中,溶剂选自:甲基乙基酮,二氯甲烷,环戊酮及其混合物。
在聚合物溶液的某些实施例中,硝基的ds大于0.25。在聚合物溶液的某些实施例中,硝基的ds大于0.4。在聚合物溶液的某些实施例中,硝基的ds大于0.6。在聚合物溶液的某些实施例中,硝基的ds大于0.8。
当本文所述的任何树脂与本文所述的溶剂组合以形成溶液然后溶液流延成膜时,由树脂形成的膜显示出根据本文公开的其他实施例的性质。
实施例
以下实施例描述和说明了本发明所述的聚合物,聚合物溶液,聚合物膜和方法的示例性实施例。提供示例性实施例仅用于说明的目的,而不应被解释为对本公开的限制,因为在不脱离本公开的精神和范围的情况下,可以对其进行许多变化。
实施例1:硝化聚(α,β,β-三氟苯乙烯)(n-ptfs1)的合成,ds=0.68
材料:聚(α,β,β-三氟苯乙烯)(ptfs)是内部产物,其特性粘度(iv)为1.10dl/g,按原样使用。二氯甲烷(dcm)来源于acros,通过sio2纯化。hno3来源于acros(68%-70%),按原样使用。h2so4来源于sigmaaldrich(95.0%-98.0%),按原样使用。
向装配有氮气入口/出口和机械搅拌器的1升三颈圆底烧瓶中的二氯甲烷(dcm)(200g,5重量%)中加入ptfs(iv,1.10dl/g)溶液。另外,通过将浓硫酸(31.18g)加入到硝酸(11.75g)中来制备混合酸溶液。将烧瓶置于室温水浴中。在10分钟内向烧瓶中搅拌着的ptfs溶液中加入混合酸。使反应混合物在室温下反应23小时,然后通过加入去离子水/冰(500ml)淬灭。然后倾析出顶部的水相,用去离子水反复洗涤有机相以除去酸。将所得有机层沉淀到甲醇(约1升)中并在高速混合器中研磨以得到粉末悬浮液。然后过滤粉末并用水和甲醇反复洗涤。将所得产物在80℃下减压干燥过夜。聚合物的特性粘度(iv)为1.20dl/g,通过
实施例2:硝化聚(α,β,β-三氟苯乙烯)(n-ptfs2)的合成,ds=0.86
向装配有氮气入口/出口和机械搅拌器的1升三颈圆底烧瓶中得二氯甲烷(dcm)(322g,5重量%)中加入ptfs(iv,1.10dl/g)溶液。另外,通过将浓硫酸(70.60g)加入到硝酸(27.81g)中来制备混合酸溶液。将烧瓶置于室温水浴中。在10分钟内向烧瓶中搅拌着的ptfs溶液中加入混合酸。使反应混合物在室温下反应21小时,然后通过加入去离子水/冰(800ml)淬灭。然后倾析出顶部的水相,用去离子水反复洗涤有机相以除去酸。将得到的有机层沉淀到甲醇(约1.5升)中并在高速混合器中研磨以得到粉末悬浮液。然后过滤粉末并用水和甲醇反复洗涤。将所得产物在80℃下减压干燥过夜。聚合物的特性粘度(iv)为1.20dl/g,通过
实施例3:聚酰亚胺1的合成(6fda/bnda/dam,50/50/100)
通过使4,4'-联萘-1,1',8,8'-四羧酸二酐(bnda)与过量的2,4-二氨基均三甲苯(dam)(摩尔比dam/bnda>2.5)在180℃下的间甲酚中持续18小时反应制备dam-bnda-dam二胺。将反应溶液沉淀到过量的甲醇中,得到粉末产物。然后过滤产物并用甲醇反复洗涤。将所得产物在80℃下减压干燥过夜,并准备用于下一步聚合。
向装配有氮气入口/出口和机械搅拌器的100ml三颈圆底烧瓶中加入n,n-二甲基乙酰胺(dmac)(22ml),dam-bnda-dam(3.2945g,5.00mmol)和4,4'-(六氟异亚丙基)二邻苯二甲酸酐(6fda)(2.1790g,4.91mmol)。使反应混合物在室温下反应18小时,然后加入吡啶(1.0ml)和乙酸酐(2.5ml)。使反应在120℃下继续进行2小时。冷却后,将所得溶液沉淀到甲醇(约100ml)中,得到纤维状产物。然后过滤产物并用甲醇反复洗涤。将所得产物在80℃下减压干燥过夜。聚合物的特性粘度(iv)为1.07dl/g,通过
实施例4:由n-ptfs和聚酰亚胺1(6fda/bnda/dam,50/50/100)的共混物流延的聚合物膜的制备
通过分别使用n-ptfs1和n-ptfs2以及各种比例的聚酰亚胺1(6fda/bnda/dam,50/50/100)制备聚合物膜。通过将n-ptfs固体溶解在环戊酮中制备10重量%的n-ptfs溶液。单独地,在环戊酮中制备10重量%的聚酰亚胺1溶液。然后通过以下表1中列出的各种重量比混合两种溶液来制备聚合物共混物溶液。使用叶片流延方法将制备的均匀和透明的共混物溶液施加到平板玻璃基板上。使涂膜在空气中干燥过夜,然后置于80℃-150℃的真空烘箱中2小时。干燥后,对膜进行剥离。膜是透明的。
实施例5:由n-ptfs和聚酰亚胺1(6fda/bnda/dam,50/50/100)的共混物流延的聚合物膜的性质
通过metriconmodel2010/mprismcoupler使用单膜模式在633nm的波长下测量自立式膜的双折射率和厚度。通过j.a.woollamm-2000或rc2椭圆测定法测定延迟和分散。633nm处的双折射率,厚度和色散因子r(450)/r(550)和r(650)/r(550)列于表1中。
表1-n-ptfs/聚酰亚胺1混合膜
实施例6:聚酰亚胺2的合成(6fda/eddpa/dam,50/50/100)
向装有氮气入口/出口和机械搅拌器的100ml三颈圆底烧瓶中加入dmac(24ml),dam(1.5037g,10.01mmol),4.4'-(乙炔-1,2-二基)二邻苯二甲酸酐(eddpa)(1.5926g,5.00mmol)和6fda(2.2285g,5.02mmol)。使反应混合物在室温下反应18小时,然后加入吡啶(2.0ml)和乙酸酐(5.0ml)。使反应在120℃下继续进行2小时。冷却后,将所得溶液沉淀到甲醇(约100ml)中,得到纤维状产物。然后过滤产物并用甲醇反复洗涤。将所得产物在80℃下减压干燥过夜。聚合物的特性粘度(iv)为1.35dl/g,通过
实施例7:由n-ptfs和聚酰亚胺2(6fda/eddpa/dam)的共混物流延的聚合物膜的制备
通过分别使用n-ptfs1和n-ptfs2以及各种比例的聚酰亚胺2(6fda/eddpa/dam,50/50/100)制备聚合物膜。通过将n-ptfs固体溶解在环戊酮中制备10重量%的n-ptfs溶液。另外,在环戊酮中制备10重量%的聚酰亚胺2溶液。然后通过以表2中列出的各种比例混合两种溶液来制备聚合物共混物溶液。使用叶片流延方法将制备的均匀和透明的共混物溶液施加到平板玻璃基板上。使涂膜在空气中干燥过夜,然后置于80℃-150℃的真空烘箱中2小时。干燥后,剥离膜。膜是透明的。
实施例8:由n-ptfs和聚酰亚胺2(6fda/eddpa/dam,50/50/100)的共混物流延的聚合物膜的性质
通过metriconmodel2010/mprismcoupler使用单膜模式在633nm的波长下测量自支撑膜的双折射和厚度。延迟和分散度由j.a.woollamm-2000或rcellipsometry测定。表2中列出了633nm处的双折射,厚度,色散因子r(450)/r(550)和r(650)/r(550)。
表2-n-ptfs/聚酰亚胺2混合膜
实施例9:硝化聚(α,β,β-三氟苯乙烯)(n-ptfs3)的合成,ds=0.72
在氮气气氛下的19l反应器中将聚(α,β,β-三氟苯乙烯)(ptfs;iv,1.10dl/g)(1.2kg)与1,2-二氯乙烷(13.8kg)混合。将混合物搅拌加热至50℃。一旦所有固体溶解,将混合物进一步加热至55℃,在2.5小时内加入预制的硫酸(98%,2.89kg)和硝酸(69%,1.12kg)的混合物。然后将混合物加热至60℃并保持4小时。加入丙酸(13.3kg)使产物沉淀,同时将混合物冷却至室温。过滤所得悬浮液,首先用丙酸洗涤粗粉末产物两次,然后依次用甲醇洗涤。将所得产物在60℃下减压干燥,得到1.3kg粉末产物。通过元素分析(ea)确定产物中硝基的取代度(ds)为0.72。
实施例10:聚酰亚胺3的合成(6fda/bnda/dam/frda,50/50/70/30)
通过使4,4'-联萘-1,1',8,8'-四羧酸二酐(bnda)与过量的2,4-二氨基均三甲苯(dam)(摩尔比)反应制备dam-bnda-dam二胺。dam/bnda>2.5)在180℃下的间甲酚中保持18小时。将反应溶液沉淀到过量的甲醇中,得到粉末产物。然后过滤产物并用甲醇反复洗涤。将所得产物在80℃下减压干燥过夜,并准备用于下一步聚合。
通过使4,4'-联萘-1,1',8,8'-四羧酸二酐(bnda)与过量的4,4'-(9-亚芴基)二苯胺)(frda)(摩尔比frda/bnda>2.5)反应制备frda-bnda-frda二胺。在180℃下的间甲酚中保持18小时。将反应溶液沉淀到过量的甲醇中,得到粉末产物。然后过滤产物并用甲醇反复洗涤。将所得产物在80℃下减压干燥过夜,并准备用于下一步聚合。
向配备有氮气入口/出口和机械搅拌器的100ml三颈圆底烧瓶中加入n,n-二甲基乙酰胺(dmac)(20ml),dam-bnda-dam(1.845g,2.80mmol),frda-bnda-frda(1.266g,1.20mmol)和4,4'-(六氟异亚丙基)二邻苯二甲酸酐(6fda)(1.777g,4.00mmol)。使反应混合物在室温下反应18小时,然后加入吡啶(1.0ml)和乙酸酐(2.5ml)。使反应在120℃下继续进行2小时。冷却后,将所得溶液沉淀到甲醇(约100ml)中,得到纤维状产物。然后过滤产物并用甲醇反复洗涤。将所得产物在80℃下减压干燥过夜。聚合物的特性粘度(iv)为0.49dl/g,通过
实施例11:由n-ptfs和聚酰亚胺3(6fda/bnda/dam/frda,50/50/70/30)的共混物流延的聚合物膜的制备
通过使用n-ptfs3(ds=0.72)和聚酰亚胺3(6fda/bnda/dam/frda,50/50/70/30)以不同的比例制备聚合物膜。通过将n-ptfs固体溶解在环戊酮中制备10重量%的n-ptfs溶液。另外地,在环戊酮中制备10重量%的聚酰亚胺3溶液。然后通过以表3中列出的各种比例混合两种溶液来制备聚合物共混物溶液。使用叶片流延方法将制备的均匀和透明的共混物溶液施加到平板玻璃基材上。使涂膜在空气中干燥过夜,然后置于80℃-150℃的真空烘箱中2小时。干燥后,剥离膜。膜是透明的。
实施例12:由n-ptfs和聚酰亚胺3的共混物(6fda/bnda/dam/frda,50/50/70/30)流延的聚合物膜的性质
通过metriconmodel2010/mprismcoupler使用单膜模式在633nm的波长下测量自立式膜的双折射和厚度。通过j.a.woollamrc2椭圆偏光法测定延迟和分散。表3中列出了633nm处的双折射,厚度和色散因子r(450)/r(550)和r(650)/r(550)。
表3-n-ptfs/聚酰亚胺3混合膜
实施例13:聚酰亚胺4的合成(6fda/eddpa/detda,30/70/100)
向装有氮气入口/出口和机械搅拌器的5000ml三颈圆底烧瓶中加入n,n-二甲基乙酰胺(dmac)(1524g),detda(169.1g,950mmol),eddpa(211.3g,665mmol)和4,4’-(六氟异亚丙基)二邻苯二甲酸酐(6fda)(126.4g,285mmol)。使反应混合物在室温下反应18小时,然后加入吡啶和乙酸酐。使反应在120℃下继续进行2小时。冷却后,将所得溶液与甲醇(5倍体积)混合,得到聚合物产物。然后过滤产物并用甲醇反复洗涤。将所得产物在80℃下减压干燥过夜。聚合物的特性粘度(iv)为0.88dl/g,通过
实施例14:由n-ptfs和聚酰亚胺4(6fda/eddpa/detda,30/70/100)的共混物流延的聚合物膜的制备
通过使用n-ptfs3(ds=0.72)和聚酰亚胺4(6fda/eddpa/detda,30/70/100)以各种比例制备聚合物膜。通过将n-ptfs固体溶解在环戊酮中制备10重量%的n-ptfs溶液。另外地,在环戊酮中制备10重量%的聚酰亚胺4溶液。然后通过以表4中列出的各种比例混合两种溶液来制备聚合物共混物溶液。使用叶片流延方法将制备的均匀和透明的共混物溶液施加到平板玻璃基板上。使涂膜在空气中干燥过夜,然后置于80℃-150℃的真空烘箱中2小时。干燥后,剥离膜。膜是透明的。
实施例15:由n-ptfs和聚酰亚胺4(6fda/eddpa/detda,30/70/100)的共混物流延的聚合物膜的性质
通过metriconmodel2010/mprismcoupler使用单膜模式在633nm的波长下测量自立式膜的双折射和厚度。通过j.a.woollamrc2椭圆偏光法测定延迟和分散。表4中列出了633nm处的双折射,厚度和色散因子r(450)/r(550)和r(650)/r(550)。
表4-n-ptfs/聚酰亚胺4混合膜