用于图案保真度控制的方法与设备与流程

文档序号:18323512发布日期:2019-08-03 10:43阅读:349来源:国知局
用于图案保真度控制的方法与设备与流程

本申请要求于2016年12月23日递交的美国申请62/438,665的优先权,该申请的全部内容通过引用合并于本文中。

本发明中的描述涉及一种通过组合计算光刻建模与产品上的测量来确定产品诱发的形貌的方法及一种应用该方法的设备。本发明中的描述也涉及一种识别热点且对热点进行分级的方法和设备。



背景技术:

光刻设备可以用于(例如)集成电路(ic)的制造中。在这种情况下,图案形成装置(例如掩模)可以包括或提供对应于ic的单层的器件图案(“设计布局”),且这一图案可转印至衬底(例如,硅晶片)上的目标部分(例如包括一个或更多个管芯)上,该衬底已通过诸如经由图案形成装置的图案辐照目标部分的方法来涂覆辐射敏感材料(“抗蚀剂”)层。一般而言,单一衬底包括多个相邻目标部分,图案是由光刻设备依次转印至该多个相邻目标部分,一次一个目标部分。在一种类型的光刻设备中,将整个图案形成装置的图案一次转印至一个目标部分上;这样的设备通常被称作步进器。在通常被称作步进扫描设备的替代设备中,投影束在给定的参考方向(“扫描”方向)上横过图案形成装置进行扫描,同时平行或反向平行于所述参考方向而同步地移动衬底。图案形成装置的图案的不同部分渐进地转印至一个目标部分。一般而言,由于光刻设备将具有放大因数m(通常<1),故衬底被移动的速度f将为投影束扫描图案形成装置的速度的因数m倍。

在将图案从图案形成装置转印至衬底之前,衬底可经历各种工序,诸如上底漆、抗蚀剂涂覆以及软焙烤。在曝光之后,衬底可经受其它工序,诸如曝光后焙烤(peb)、显影、硬焙烤以及转印的图案的测量/检查。这一系列工序用作制造器件(例如,ic)的单层的基础。衬底之后可经历各种过程,诸如蚀刻、离子注入(掺杂)、金属化、氧化、化学机械抛光等等,所述过程都意图完成器件的单层。如果在器件中需要几个层,则针对每一层重复整个工序或其的变形例。最终,在衬底上的每一目标部分中将存在器件。之后,通过诸如切片或锯割的技术使这些器件彼此分离,据此,可以将单个器件安装于载体上、连接至引脚等等。

因此,制造诸如半导体器件的器件典型地涉及使用多个制作过程来处理衬底(例如半导体晶片)以形成所述器件的各种特征和多个层。典型地使用(例如)沉积、光刻、蚀刻、化学机械抛光以及离子注入来制造和处理这些层和特征。可以在衬底上的多个管芯上制作多个器件,且之后将所述器件分离成单个器件。这种器件制造过程可被视为图案化过程。图案化过程涉及使用光刻设备中的图案形成装置进行图案化步骤(诸如光学和/或纳米压印光刻术)以将图案形成装置的图案转印至衬底,且图案化过程典型地但可选地涉及一个或更多个相关的图案处理步骤,诸如通过显影设备进行抗蚀剂显影、使用焙烤工具来焙烤衬底、使用蚀刻设备而使用图案进行蚀刻等等。



技术实现要素:

产品衬底通常包括在极小(亚毫米)分辨率的图案密度诱发的形貌;这种形貌的量级通常以纳米为单位。然而,相比于过程聚焦余量,该量级可以是相当大的。装备于光刻设备内的传统的水平传感器无法以亚毫米侧向分辨率测量衬底的这种产品形貌。另外,曝光狭缝大小及形状的物理极限使得这种形貌极难以由光刻设备聚焦控制系统使用水平传感器数据加以校正。

因此,期望(例如)能够有效地测量这种形貌且识别哪些图案特征至少部分地归因于形貌而倾向于有缺陷。

在一个实施例中,提供一种确定形貌的方法,该方法包括:获得第一聚焦值,所述第一聚焦值从对未经图案化的衬底的图案化建模的计算光刻模型导出或从未经图案化的衬底上的图案化层的测量导出;获得第二聚焦值,所述第二聚焦值从具有形貌的衬底的测量导出;和根据第一聚焦值和第二聚焦值确定形貌的值。

在一个实施例中,提供一种热点评估的方法,该方法包括:获得针对第一热点和第二热点中的每一个的过程窗口数据,所述过程窗口数据包括用于第一热点和第二热点中的每一个的聚焦信息;和由硬件计算机基于衬底的形貌数据评估过程窗口数据的聚焦信息,以识别或改变第一热点和/或第二热点的临界状态。

在一个实施例中,提供一种计算机程序产品,包括其上记录有指令的计算机非暂时性可读介质,所述指令在由计算机执行时实施以上方法中的任一个。

附图说明

图1图示一种光刻设备的示意图;

图2描绘光刻单元或簇的实施例;

图3图示对应于图1中的子系统的模拟模型的框图;

图4a图示四个图案中的每一个的cd(cd-pw)的由聚焦(水平轴线)和剂量(垂直轴线)跨越的子过程窗口;

图4b图示四个图案的cd(cd-opw)的由聚焦(水平轴线)和剂量(垂直轴线)所跨越的子过程窗口(由点影线区域表示);

图5图示示意性示例的测量后的微米分辨率的形貌;

图6图示通过水平传感器技术评估的示意性形貌;

图7图示形貌测量的示例性方法;

图8图示结合由形貌数据调整的聚焦分布的第一热点和第二热点的泊松(bossung)曲线;

图9图示包括用于热点的临界状态的识别和/或分级的形貌的示例性方案;及

图10图示可辅助实施本发明中所披露的方法及流程中的任一个的计算机系统的实施例的框图。

具体实施方式

图1示意性地描绘一种光刻设备la,本发明中所描述的技术可以与该光刻设备相关联地利用。该设备包括:配置成调节辐射束b(例如uv辐射或duv辐射)的照射光学系统(照射器)il,构造成支撑图案形成装置(例如掩模)ma且连接至第一定位器pm的图案形成装置支撑件或支撑结构(例如,掩模台)mt,该第一定位器pm配置成根据某些参数准确地定位图案形成装置;构造成保持衬底(例如涂覆抗蚀剂的晶片)w且连接至第二定位器pw的一个或更多个衬底台(例如晶片台)wta、wtb,该第二定位器pw配置成根据某些参数准确地定位衬底;和配置成将由图案形成装置ma赋予辐射束b的图案投影至衬底w的目标部分c(例如包括一个或更多个管芯)上的投影光学系统(例如,折射、反射或反射折射光学系统)ps。

照射光学系统可以包括用于引导、成形或控制辐射的各种类型的光学部件,诸如包括折射型、反射型、磁性型、电磁型、静电型或其它类型的光学部件,或其任何组合。在这种特定情况下,照射系统也包括辐射源so。

图案形成装置支撑件以依赖于图案形成装置的方向、光刻设备的设计及其它条件(诸如例如图案形成装置是否被保持于真空环境中)的方式来保持图案形成装置。图案形成装置支撑件可使用机械、真空、静电或其它夹持技术来保持图案形成装置。图案形成装置支撑件可以是(例如)框架或台,其可根据需要是固定的或可移动的。图案形成装置支撑件可确保图案形成装置例如相对于投影系统处于所期望的位置。可认为本发明中使用的任何术语“掩模版”或“掩模”与更上位的术语“图案形成装置”同义。

本发明中所使用的术语“图案形成装置”应该被广泛地解释为指可以用以在辐射束的横截面中赋予辐射束图案以便在衬底的目标部分中产生图案的任何器件。应该注意的是,例如,如果被赋予至辐射束的图案包括相移特征或所谓辅助特征,则该图案可不确切地对应于衬底的目标部分中的所期望的图案。一般而言,被赋予至辐射束的图案将对应于目标部分中所产生的器件(诸如集成电路)中的特定功能层。

图案形成装置可以是透射式的或反射式的。图案形成装置的示例包括掩模、可编程反射镜阵列及可编程lcd面板。掩模在光刻中为公知的,且包括诸如二元掩模类型、交替型相移掩模类型及衰减相移掩模类型的掩模类型,以及各种混合掩模类型。可编程反射镜阵列的示例使用小反射镜的矩阵布置,所述小反射镜中的每一个可以单独地倾斜,以便在不同方向上反射入射辐射束。倾斜的反射镜在由反射镜矩阵反射的辐射束中赋予图案。

如此处所描绘的,所述设备是透射类型(例如,使用透射图案形成装置)。然而,所述设备可以是反射类型(例如,使用如上文所提及的类型的可编程反射镜阵列,或使用反射式掩模)。所述设备可使用与典型掩模不同种类的图案形成装置;示例包括可编程反射镜阵列或lcd矩阵。

光刻设备也可以属于如下类型:其中衬底的至少一部分可由具有相对较高折射率的液体(例如水)覆盖,以便填充投影系统与衬底之间的空间。也可以将浸没液体施加至光刻设备中的其它空间,例如掩模与投影系统之间的空间。浸没技术用于增大投影系统的数值孔径在本领域中是公知的。本发明中所使用的术语“浸没”并不意味着诸如衬底的结构必须浸没于液体中,而是仅意味着液体在曝光期间位于投影系统与衬底之间。

参看图1,照射器il接收来自辐射源so(例如,汞灯或准分子激光器、lpp(激光产生等离子体)euv源)的辐射束。例如,当辐射源为准分子激光器时,辐射源与光刻设备可以是分离的实体。在这些情况下,不将源认为是构成光刻设备的部分,且辐射束借助于包括(例如)合适的定向反射镜和/或扩束器的束传递系统bd从源so传递至照射器il。在其它情况下,例如,当源为汞灯时,源可以是光刻设备的组成部分。源so和照射器il连同束传递系统bd(在需要时)可被称作辐射系统。

照射器il可以包括用于调整辐射束的空间强度分布和/或角强度分布的调整器ad。一般而言,可以调整照射器的光瞳平面中的强度分布的至少外部和/或内部径向范围(通常分别被称作σ-外部和σ-内部)。另外,照射器il可以包括各种其它部件,诸如积分器in和聚光器co。照射器可以用以调节辐射束,以在其横截面中具有所期望的均一性和强度分布。

辐射束b入射于图案形成装置(例如,掩模)ma上,图案形成装置ma保持于图案形成装置支撑件(例如,掩模台)mt上,且由图案形成装置图案化。在已横穿图案形成装置(例如,掩模)ma的情况下,辐射束b穿过投影光学系统ps,该投影光学系统ps将束聚焦至衬底w的目标部分c上,由此将图案的图像投影于目标部分c上。借助于第二定位器pw和位置传感器if(例如,干涉测量装置、线性编码器、2d编码器或电容式传感器),可准确地移动衬底台wt,例如,以便将不同目标部分c定位于辐射束b的路径中。相似地,第一定位器pm和片一位置传感器(图1中未明确描绘)可以用以(例如)在从掩模库进行机械获取之后或在扫描期间相对于辐射束b的路径准确地定位图案形成装置(例如,掩模)ma。

可以使用图案形成装置对准标记m1、m2和衬底对准标记p1、p2来对准图案形成装置(例如掩模)ma和衬底w。虽然如所图示的衬底对准标记占据专用目标部分,但所述衬底对准标记可位于目标部分之间的空间中(这些衬底对准标记被称为划线对准标记)。相似地,在多于一个管芯设置于图案形成装置(例如,掩模)ma上的情形中,图案形成装置对准标记可位于所述管芯之间。小的对准标识也可以包括于器件特征当中的管芯内,在此情况下,期望使标识尽可能地小且无需与相邻特征不同的任何成像或过程条件。下文进一步描述检测对准标识的对准系统。

这一示例中的光刻设备la是所谓的双平台类型,其具有两个衬底台wta、wtb和两个站-曝光站和测量站-在该两个站之间可交换衬底台。在曝光站处曝光一个衬底台上的一个衬底的同时,可以在测量站处将另一衬底装载至另一衬底台上且进行各种预备步骤。预备步骤可以包括使用水平传感器ls来绘制衬底的表面控制的图,使用对准传感器as来测量对准标识在衬底上的位置,执行任何其它类型的量测或检查等等。这实现设备的生产量的实质性增加。更一般而言,光刻设备可属于具有两个或多于两个台(例如,两个或多于两个衬底台、衬底台和测量台、两个或多于两个的图案形成装置台等等)的类型。在这些“多平台”装置中,可并行地使用多个台,或可以在一个或更多个台上进行预备步骤,同时将一个或更多个其它台用于曝光。例如,在全文以引用的方式并入本发明中的美国专利第5,969,441号中描述双平台光刻设备。

虽然水平传感器ls和对准传感器as显示为邻近衬底台wtb,但将了解,另外或替代地,水平传感器ls和对准传感器as可设置为邻近投影系统ps以关于衬底台wta进行测量。

所描绘的设备可以在各种模式下使用,包括(例如)步进模式或扫描模式。光刻设备的构造和操作对于本领域技术人员是公知的,且无需对其进一步描述以理解本发明的实施例。

如图2中所显示,光刻设备la构成光刻系统的部分,其被称作光刻单元lc或光刻元或簇。光刻单元lc也可以包括用以对衬底执行曝光前和曝光后过程的设备。通常,这些设备包括用以沉积抗蚀剂层的旋涂器sc、用以显影曝光后的抗蚀剂的显影器de、激冷板ch和焙烤板bk。衬底处置器或机器人ro自输入/输出端口i/o1、i/o2拾取衬底,在不同过程设备之间移动衬底,且之后将衬底递送至光刻设备的装载台lb。常常被统称为涂覆显影系统(track)的这些装置是在涂覆显影系统控制单元tcu的控制下,涂覆显影系统控制单元tcu自身受到管理控制系统scs控制,该管理控制系统scs也经由光刻控制单元lacu来控制光刻设备。因此,不同设备可以被操作以最大化生产量和处理效率。

上文所提及的图案形成装置包括或可形成一个或更多个设计布局或图案(出于方便起见下文为设计图案)。可利用计算机辅助设计(cad)程序来产生设计图案,这种过程常常被称作电子设计自动化(eda)。大多数cad程序遵循一预定设计规则的集合,以便产生功能设计图案/图案形成装置。通过处理和设计限制来设定这些规则。例如,设计规则定义电路器件(诸如,栅极、电容器等等)或互连线之间的空间容许度,以便确保电路器件或线不以不期望的方式彼此相互作用。设计规则限制中的一个或更多个可被称作“临界尺寸”(cd)。可以将电路的临界尺寸定义为线或孔的最小宽度,或两条线或两个孔之间的最小空间。因此,cd确定被设计的电路的总尺寸和密度。当然,集成电路制作中的目标之一是在衬底上如实地再生产原始电路设计(经由图案形成装置)。

因此,在光刻设备中,照射系统以照射模式的形式将照射(即辐射)提供至图案形成装置,投影系统通过图案形成装置系统经由空间图像(ai)将照射引导且成形至衬底上。照射模式定义照射的特性,诸如角度或空间强度分布(例如,传统的、偶极、环形、四极等等)、照射西格玛(σ)设定等等。空间图像(ai)为在衬底水平处的辐射强度分布。曝光衬底上的抗蚀剂层,且将空间图像转印至抗蚀剂层以在其中作为潜影“抗蚀剂图像”(ri)。可以将抗蚀剂图像(ri)定义为抗蚀剂层中的抗蚀剂的溶解度的空间分布。

现在,为了实现图案化过程设计、控制、监控等等,可以对图案化过程的一个或更多个部分以数学的方式建模和/或模拟。例如,光刻过程可被模拟/建模以分析输入的设计图案布局如何在特定条件下由光刻设备成像。因此将典型地执行以数学方式对由光刻设备的成像建模的模拟。

图3中图示用于模拟光刻设备中的光刻术的示例性流程图。照射模型301表示提供至图案形成装置的照射的光学特性(包括辐射强度分布和/或相位分布)。投影系统模型302表示投影系统的光学特性(包括由投影系统引起的对辐射强度分布和/或相位分布的改变)。设计图案模型303表示设计图案布局的光学特性(包括由给定设计图案布局303引起的辐射强度分布和/或相位分布的改变),该设计图案布局为在图案形成装置上或由图案形成装置形成的特征的布置的表示。可根据设计图案模型303、投影系统模型302和设计图案模型303模拟空间图像304。可使用抗蚀剂模型305根据空间图像304模拟抗蚀剂图像306。光刻术的模拟可(例如)预测抗蚀剂图像中的轮廓和cd。

更具体地,应该注意的是,照射模型301可表示照射模式和/或照射系统的光学特性,其包括但不限于数值孔径设定、照射西格玛(σ)设定、特定照射形状(例如,离轴辐射照射,诸如环形、四极、偶极等等)等。投影系统模型302可表示投影系统的光学特性,包括像差、失真、一个或更多个折射率、一个或更多个物理尺寸、一个或更多个物理尺度等。设计图案模型303可表示物理图案形成装置的一个或更多个物理属性,如例如以全文引用的方式并入本发明中的美国专利第7,587,704号中所描述的。可使用抗蚀剂模型以根据空间图像计算抗蚀剂图像,可以在全部披露内容以引用的方式并入本文中的美国专利申请公开出版物第us2009-0157360号中发现其的示例。抗蚀剂模型仅与抗蚀剂层的属性(例如,在曝光、peb及显影期间发生的化学过程的效应)有关。光刻设备的光学属性(例如,照射模式、图案形成装置和投影系统的属性)规定空间图像。由于可改变用于光刻设备中的图案形成装置,因此可能期望使图案形成装置的光学属性与至少包括照射系统和投影系统的光刻设备的其余部分的光学属性分离。

因此,模拟的目标是准确地预测例如边缘放置、空间图像强度斜率和/或cd,其之后可以与预期设计进行比较。可针对各种条件执行这一预测,所述条件诸如各种剂量、聚焦等等条件。预期设计通常被定义为可以以诸如gdsii或oasis或其它文件格式的标准化数字文件格式提供的预光学邻近校正(opc)设计图案。

可识别设计布局的一个或更多个部分,其被称为片段(clip)、临界特征或热点(出于方便起见,下文为热点)。在实施例中,从设计布局提取热点的集合,且该集合表示设计布局中的复杂图案(例如,可由使用者提供约50至1000个热点,但可提供、识别或使用任何数目的热点)。这些热点表示设计的小部分(即,电路、单元、图案或设计片段),且尤其表示需要特别注意和/或验证的小部分。可通过经验(包括由使用者提供的热点)、通过试误法或通过执行全芯片模拟来识别热点。在实施例中,热点的成像属性限定了过程窗口的边界(例如,剂量和聚焦过程窗口,其内的曝光后的特征具有在图案化过程的容许度范围(例如,±5%、±10))内的临界尺寸值。热点可以包括一个或更多个测试图案或量规图案以在其评估中使用。

可由使用者基于设计图案中要求特别注意的一个或更多个已知的临界特征区域而先验地提供的初始较大热点集合。或者,在实施例中,可通过使用识别一个或更多个临界特征区域的某种自动(诸如机器视觉)或手动算法从整个设计图案提取初始较大热点集合。

所述模拟可以涉及评估设计图案中的图案中的一些图案的过程窗口。图案的过程窗口是处理参数的空间,将根据处理参数的空间在规格内产生图案。根据数学观点,过程窗口为由所有处理参数所跨越的向量空间中的区域。在给定的图案化过程中,图案的过程窗口是由图案的规格和图案化过程中所涉及的物理学规定。

将由所有处理参数跨越的向量空间中的区域用作过程窗口可能是不方便的。可使用子空间(即,由比所有处理参数少的处理参数所跨越的空间)(“子pw”)的区域,而非由所有处理参数所跨越的空间(“全pw”)的区域。例如,在具有许多处理参数的图案化过程中,由聚焦和剂量跨越的子空间的区域可以用作子pw。

处理参数是图案化过程的参数。图案化过程可以包括在图案的实际光刻转印上游和下游的过程。处理参数可属于多个类别。第一类别可以是光刻设备或用于图案化过程中的任何其它设备的参数。这种类别的示例包括光刻设备的照射系统、投影系统、衬底平台等的参数。第二类别可以是在图案化过程中执行的任何工序的参数。这种类别的示例包括聚焦、剂量、带宽、曝光持续时间、显影温度、用于显影中的化学成份等。第三类别可以是设计图案的参数。这种类别的示例可以包括分辨率增强技术(ret)或光学邻近校正调整,诸如辅助特征的形状和/或部位。第四类别可以是衬底的参数。示例包括抗蚀剂层下面的结构的特性、抗蚀剂层的化学成份和/或抗蚀剂层的物理尺度。第五类别可以是表示图案化过程的一个或更多个参数的时间变化的特性的参数。这种类别的示例可以包括高频平台移动(例如,频率、振幅等)、高频激光带宽改变(例如,频率、振幅等)和/或高频激光波长改变的特性。这些高频改变或移动是高于用以调整基础参数(例如,平台位置、激光强度等)的机构的响应时间的高频改变或移动。第六类别可以是在曝光上游或下游的特性,诸如曝光后焙烤(peb)、显影、蚀刻、沉积、抗蚀剂涂覆、掺杂和/或封装。

设计图案中的各种图案可以具有不同过程窗口。与潜在的系统性缺陷有关的图案规格的示例包括检查cd、颈缩、线拉回、线薄化、边缘放置、重叠、抗蚀剂顶部损耗、抗蚀剂底切和/或桥接。设计图案中的所有图案或其一部分的过程窗口可通过合并每一单独的图案的过程窗口(例如,使所述过程窗口重叠)来获得。

在示例中,当图案的规格仅规定图案的cd时,图案的过程窗口可被称作cd过程窗口(cd-pw)。当图案的规格仅规定一组图案的cd时,该组图案的重叠过程窗口可被称作cd重叠过程窗口(cd-opw)。cd-pw或cd-opw可具有子pw。图4a显示四个图案中的每一个的cd(cd-pw)的由聚焦(水平轴线)和剂量(垂直轴线)所跨越的子pw。图4b显示四个图案的cd(cd-pw)的由聚焦(水平轴线)和剂量(垂直轴线)所跨越的子pw(由点影线区域表示)。因此,cd-opw为四个图案的cd-pw的重叠区域。

如上文所提及,限定重叠过程窗口的边界的图案的那些过程窗口可被视为热点,这是因为如果过程窗口处理参数中的一个或更多个相对略微偏离那些图案的各自的过程窗口定义,那些图案很可能是有缺陷的。因此,通过例如识别热点、在考量下减小它们的数目和/或对其为图案化过程中的经受过程变化的缺陷的潜在可能性进行分级而集中考量热点是有用的。

现在,在衬底的典型处理中,器件结构的一个或更多个重叠层形成于衬底上。因此,在实施例中,第一层可通过图案化抗蚀剂而形成,该抗蚀剂之后用作用于层的蚀刻的掩模。之后,一种或更多种材料可沉积于该第一层上。例如,可提供一种或更多种填充材料以“填充”满任何剩余的凹部。随后,在涂覆另一抗蚀剂层以图案化下一层之前,可执行平坦化过程(例如,化学机械抛光(cmp))以使衬底的所述层平滑以供涂覆抗蚀剂层。提供平滑使得后续抗蚀剂层期望地是平滑的。

然而,形貌可存在于衬底的在抗蚀剂层下面的层中,而不论是否已存在所述层的平坦化过程。形貌可由衬底上的多个层之上的局部图案密度变化引入,即使在已对这些层中的一个或更多个层使用平坦化过程的情况下。因此,图案密度和对层0至n-1的平坦化的组合效应因此形成在层n的曝光期间会遇到的形貌。

因此,形貌可尤其诱发管芯内或场内效应,这是因为其由管芯或场水平处的图案密度变化引起(在下文中,论述将集中于管芯水平,但相同的考量适用于场水平-在实施例中,管芯对应于物体的变成单个器件的一部分。即,在物体为半导体晶片的情况下,物体被对应于管芯切割成小块,每一管芯变成例如半导体器件;而在实施例中,场对应于用以图案化衬底的光刻设备的曝光场的大小或尺寸,且因此场可以包括多个管芯,其中例如图案形成装置提供包括多个管芯的图案)。这一形貌效应不同于横过衬底的管芯间变化(例如,由衬底翘曲等等引起)。此外,这一管芯内形貌效应具有高度系统性且是相对可预测的,且基于器件设计的一个或更多个功能块的空间频率。这是因为针对于在衬底上制造特定器件的特定图案化过程,横过衬底的每一管芯中出现图案密度变化的基本上相同组合。

图5显示在衬底上沿x方向和y方向延伸的场(具有多个管芯,在这种情况下为30个管芯)的亚毫米(通常为亚微米)分辨率形貌的示意性示例。可见形貌中的相对系统性变化。可使用高分辨率光学测量工具(诸如干涉度量测量设备)来获得这种形貌。然而,这一过程是破坏性的,这是因为其涉及特定的涂层,且该过程是在无图案化过程叠层(例如抗蚀剂、抗反射涂层等)的情况下执行的。因此,无图案化过程叠层且存在不同于一般的图案化过程中的涂层的涂层使得这一测量不表示图案化过程中的形貌。因此,用以测量的形貌的典型工具趋向于是慢的,可能对衬底器件图案是破坏性的,和/或可不表示一般图案化过程中的形貌。因此,这种形貌测量并不特别与图案化过程整合兼容。

图6显示使用利用图案轮廓增强水平传感器的测量的回旋过程来评估与图5中由水平传感器(诸如水平传感器ls)测量的场相同的场的形貌的示意性示例。这一技术涉及通过使用图案布局感知反回旋对测量进行过采样来估计形貌。但是,尽管水平传感器在图案化过程中具有良好整合(其是快速的、非破坏性的,且可以测量在一般图案化过程中的形貌),但这一技术是相对粗略的(且相比于图5是较不准确的)的评估,且由于相对大的水平传感器斑指纹的物理限制,该技术可能无法实现较佳分辨率。实际上,如图6中所见,水平传感器将不会辨识形貌中的许多(若存在的话)。因此,管理聚焦控制的基于水平传感器的控制系统不会校正形貌中的许多或大部分(如果存在的话),这是因为其的测量结果不会显示形貌中的许多或大部分(如果存在的话)。

这一微米分辨率形貌可以产生聚焦控制和过程窗口居中的大量问题。因此,形貌的知识可以在热点和其它图案特征的图案保真度改善方面是重要的。此外,图案化热点的分级、cmp后的热点识别也需要这一形貌信息。

因此,期望例如具有准确的、可过程整合的、高分辨率的形貌测量技术。

因此,本发明中提供一种新的形貌测量技术。在实施例中,这一技术涉及使用对应于未经图案化衬底的数据(例如,cd数据)与具有形貌的衬底的非形貌测量数据(例如,cd数据)的组合来获得形貌。例如,在实施例中,这一技术涉及使用计算光刻程序建模和相对高分辨率(相比于例如水平传感器)和相对快的、临界尺寸测量的组合来确定形貌。这一技术可易于整合于图案化过程及其控制系统中。因此,提供了一种可过程整合的、可缩放的、按需的分辨率形貌测量技术。

所述技术的流程的实施例描绘于图7中。图7显示亚微米分辨率形貌确定的过程。

在1110处,规定了形貌确定的分辨率连同衬底上形貌被确定的部位。因此,1110处的图表以点的形式显示所述部位的示例,其中形貌连同形貌的分辨率被确定。在这一情况下,选择0.5毫米的分辨率作为示例,且以点的间隔显示该分辨率。另外,在这一示例中,根据特定的管芯规定部位和分辨率。不是针对管芯的一部分、针对包括多个管芯的场、针对衬底的区域等来规定部位和分辨率。

可由系统(例如,运行软件以实施所述过程的至少部分的硬件处理器)自动地选择或由使用者手动地控制分辨率和/或部位的选择。分辨率和/或部位的选择可由例如过程效率(例如,较高的分辨率、较多处理时间)、下文所描述的测量工具的能力、使用者的需要等加以规定。因此,所期望的分辨率可基于应用需要变化。另外,可选择部位及其分布以便实现检查设备的最佳检查速度(例如,使得多个部位处于检查设备的同一视场内)。可选地,可自形貌的图案密度图的功率光谱密度的截止频率(其与分辨率相关)导出最小分辨率。

在分辨率和部位的规格下,通过经由1160的计算路线及经由1120及1130的测量路线处理被识别的部位。

在1120处,光刻设备曝光衬底上的抗蚀剂层,该衬底具有利用图案评估的形貌。在实施例中,图案为非器件测试图案或器件图案。

另外,图案在多个不同的聚焦条件(例如,围绕最佳聚焦的多个聚集值)下曝光至衬底上。因此,参看1110,可以在处于、高于和低于最佳聚焦条件的多个聚焦条件中的每一个下曝光此处所描绘的管芯。例如,曝光可以是典型地用以通过分析例如泊松曲线而基于管芯的所选的部位的cd测量来识别最佳剂量和聚焦(或过程窗口)的聚焦曝光矩阵(fem)。虽然这一技术并不需要来自fem曝光的剂量数据,但可以在这一技术中使用特定剂量下的聚焦数据以获得形貌。

在1130处,测量且针对每一聚焦条件测量对每一部位的聚焦敏感的非形貌参数(例如,cd)。即,测量非形貌参数所针对的一个或更多个特征为非形貌参数的大小随着聚焦的大小改变而变化的特征。期望地,选择具有高敏感度(例如,在最高敏感度的20%内)的特征。可使用计算机模拟来识别高聚焦敏感度特征。

因此,测量在不同的聚焦条件下曝光的多个管芯。另外,测量那些管芯中的每一个中的多个部位。因此,返回参看1110中的管芯,将针对例如多个聚焦条件中的每一个的管芯中的左上部位获得非形貌参数(例如,cd)的测量。相似地,管芯中的所有其它部位将具有在多个聚焦条件中的每一个处的非形貌参数(例如,cd)的测量的集合。因此,每一部位将具有针对多个聚焦条件的非形貌参数(例如,cd)的值的数据集。这种数据集可之后提供至下文进一步详细描述的1140处的计算过程。或者,可针对每一部位根据那些测量(例如,所述数据的分布的中心、平均值或峰值,其中中心、平均值或峰值对应于最接近于非形貌参数的期望值的非形貌参数值)确定最佳聚焦,且将最佳聚焦作为数据集提供至1140。

在实施例中,用于检查非形貌参数(例如,cd)的量测工具具有显著高于例如水平传感器的分辨率,且可以在例如0.5毫米分辨率进行测量。在实施例中,量测为电子束检查工具。在实施例中,在抗蚀剂的显影之后进行测量。在实施例中,在蚀刻之后进行测量。在实施例中,测量是非破坏性的(例如,电子束设定以便不是破坏性的)。

在实施例中,在部位处可存在待测量的一种图案类型,或在部位处仅测量一种图案类型。因此,每一部位将具有一个非形貌参数值。在实施例中,在部位处可存在多于一种图案类型,且因此针对每一部位可存在多个非形貌参数测量。在针对每一部位获得多于一个非形貌参数测量的情况下,那么如下文进一步所论述的,可针对每一部位进行多于一次形貌确定。因此,可例如增大准确度。然而,例如,可能增加测量时间。

在1150处,使用计算光刻模型来获得数据以用于与1130处的数据比较。在实施例中,可使用上文关于图3所描述的模拟模型来获取用于1120处的曝光的图案且针对用于1120处的曝光的图案的一个或更多个图案特征中的每一个预测在部位中的每一个处或附近的最佳聚焦。即,模型在不存在形貌且衬底表面是完全平坦的基础上进行计算。可之后输出针对每一部位的最佳聚焦的预测以用于在1140处与1130处的数据比较。在实施例中,数据可以包括与在1130处所产生的数据相似的数据。例如,可使用上文关于图3所描述的模拟模型来获取用于1120处的曝光的图案且确定针对一系列聚焦条件在部位中的每一个处的一个或更多个图案特征的被预测的cd。因此,计算光刻模型可产生与1130处的测量(例如,针对多个聚焦条件在每一部位处的cd测量的集合)相当的输出。

另外或替代地,对于使用1150处的计算光刻模型进行预测,可以相似于1120和1130中的方式曝光且测量覆盖有抗蚀剂层的未经图案化衬底(即,不具有被考虑的形貌的衬底),以获得针对多个聚焦条件在每一部位处的cd测量的集合。可之后将数据供应至1140,或可针对每一部位根据那些测量确定最佳聚焦且之后将最佳聚焦供应至1140。

之后,在1140处,处理来自1130和1150的数据集(对应于各个部位的每一数据集)以确定部位中的每一个部位处的形貌。在实施例中,用于部位的每一数据集1130、1150的统计或其它代表性信息之间的差提供该部位的形貌的度量。例如,在数据集1130、1150两者包括最佳聚焦值的情况下,那么部位的最佳聚焦值之间的差表示该部位处的形貌的度量。在数据集1130、1150两者包括依据部位的聚焦变化的非形貌参数值的情况下,可针对数据集1130、1150确定依据聚焦变化的cd值的分布的中心、平均值(例如,均值)或峰值。之后,那些聚焦中心、平均值或峰值(最佳聚焦)之间的差产生所述部位处的形貌的度量。当然,数据集1130、1150中的一个的最佳聚焦可对照另一数据集1130、1150的被确定的聚焦中心、平均值或峰值进行比较。

参看图7中的1140,描绘依据针对1110的管芯中的特定部位且基于来自1150的数据(例如,来自未经图案化衬底的被预测的数据或被测量的数据)的聚焦(在水平轴线中,其中0为名义聚焦,且其它值是与名义聚焦的散焦)变化的cd值(在垂直轴线中)的分布的示例曲线1160。另外,在1165处描绘聚焦中心、平均值或峰值(最佳聚焦)。相似地,在同一图表中描绘依据针对1110的管芯中的特定部位且基于来自1130的数据(例如,从具有形貌的衬底的被测量的数据)的聚焦变化的cd值的分布的示例曲线1170。另外,在1175处描绘聚焦中心、平均值或峰值(最佳聚焦)。根据这一数据,部位处的形貌可计算为中心、平均值或峰值1175与中心、平均值或峰值1165之间的差。在实施例中,依赖于在何处限定延伸穿过形貌的名义平面,差的正负号可指示形貌相对于所述平面为突起部或凹陷部。可之后在1140中针对部位中的每一个重复这一分析以获得衬底的区域的形貌,如在1190处示意性地描绘的。当然,无需产生曲线,且所述曲线仅仅出于所述方法的可视化而被呈现。并且,点1165和/或点1175可表示自1150或自1130提供的各自的最佳聚焦。并且,虽然数据可以是非连续的,但可通过内插、外插、拟合等等来获得数据点之间的数据。

以这一技术测量的形貌可利用一个或更多个光刻设备量测系统进行分辨的较大范围形貌加以补充。例如,以这一技术测量的形貌可以在光刻设备可产生相对准确的形貌数据所针对的那些部分上改变。

此外,以这一技术测量的形貌可利用由一个或更多个光刻设备量测系统获得的特定衬底的形貌数据加以补充。因此,可针对特定衬底基于来自测量特定衬底的一个或更多个光刻设备量测系统的形貌数据而产生较定制化的形貌。因此,例如,在实施例中,可通过组合来自这一技术的形貌和通过来自测量特定衬底的光刻设备的水平传感器的数据进行修改的形貌来产生“很及时”的形貌,以获得衬底和衬底上的特定部位的特定形貌。

以这一技术测量的形貌可以用以校准另一形貌确定技术。例如,另一技术可以是自图案周边密度图(即,当前及所有底层中的结构的图案密度信息)产生的模型,该模型可提供形貌的估计。因此,用本发明中所描述的技术测量的形貌可提供所述模型的校准。

使用本发明中所描述的技术确定的形貌可以用作反馈或前馈数据,以用于控制图案化过程中的设备(例如,光刻设备)以便实现例如布局/过程窗口感知控制。

使用本发明中所描述的技术确定的形貌可以用于热点的临界性或临界状态的计算热点识别和/或改善的分级;下文描述形貌感知热点识别和分级的实施例。因此,这一技术可与由产品诱发的系统性形貌辅助的图案化热点检测和/或分级方法组合使用。

使用本发明中所描述的技术确定的形貌可以用以识别图案几何形状诱发的重叠问题。例如,局部微形貌诱发的散焦可以在一个层中引入不同于其它层中的侧壁角的侧壁角。之后,蚀刻过程可相对于这一个层中的这一不同的侧壁角以不同于另一层的侧壁角的方式起作用,从而导致cd从一个层移位至另一层,且因此导致重叠忧虑。因此,了解这一微形貌可帮助控制这种重叠问题。

因此,这一技术提供新的形貌确定技术,其涉及使用对应于未经图案化衬底的数据(例如,cd数据)与具有形貌的衬底的非形貌测量数据(例如,cd数据)的组合来获得形貌。在实施例中,所述技术涉及计算光刻建模与非形貌参数测量的组合以获得形貌。另外,这一技术可易于整合至图案化过程及其控制系统中。并且,在实施例中,这一技术相对快,且可产生准确、相对高分辨率的形貌确定而不需要非破坏性的测量。

如上文所提及的,计算光刻模型可以用以识别和评估热点。例如,使用者可提供怀疑有故障的图案特征,且之后模型可基于例如过程窗口分析和图案化过程变化的考量而检测那些图案特征可能在图案化过程期间或之后是否有可能是有缺陷的。相似地,所述模型可评估图案布局中的特征中的所有特征或许多特征,且基于例如过程窗口分析而检测任何图案特征在图案化过程期间或之后是否有可能是有缺陷的。

因此,计算热点检测可识别为过程窗口(焦深/曝光宽容度)限制且为潜在缺陷(热点)的图案特征。但是,计算热点检测可识别大量(例如,每完整晶片数百万个)热点。这对于监控这些热点的大容量制造及关于它们进行控制呈现(如果不是不可能的话)相当大的挑战。因此,典型地,较小的热点子集(例如,数百或更少)被识别为最临界热点。这可典型地涉及对热点进行分级,使得从分级结束时识别最临界热点。

存在可以用于评价热点的临界状态且根据它们的临界状态程度对其进行分级的不同方法。例如,基于最小重叠过程窗口,对多个过程窗口pw边界点(边界参数,诸如最佳聚焦的最左、最佳聚焦的最右、最高曝光剂量和最低曝光剂量)上的热点进行分级。

虽然这些方法通过考虑这些热点的空间图像属性来对热点进行分级,但所述方法可能无法识别实际上在衬底上的一个或更多个最临界热点。这可能例如在衬底具有形貌(例如,典型地横过管芯和衬底为系统性的产品诱发的形貌)时发生。在那种情况下,重叠过程窗口(或可用的过程窗口)不仅受每热点的焦深和最佳聚焦差影响,而且也受每热点形貌影响。

因此,期望例如用以对产品衬底上的热点特征的临界状态进行识别和/或分级的方法,其中在特征之间存在形貌差。

因此,提供用以基于热点的空间图像属性和其中产生对应于热点的图案的衬底的形貌而对最临界或更临界热点进行识别和/或分级的技术。具体地说,披露了包括被建模的或被测量的管芯内或场内形貌以用于热点识别和/或分级的方法。因此,在实施例中,提供了由产品诱发的系统性形貌辅助的图案化热点识别和/或分级方法。

如上文所提及的,由于形貌,传统的热点识别和分级方法可以不考虑聚焦分布的移位(例如,系统性移位)。因此,提供了在热点识别和/或分级中将形貌作为因素记入的方法。

图8显示两个示例图案特征(在这一情况下为热点)的示例性泊松曲线,其中曲线描述它们的依据散焦(在水平轴线上)变化的临界尺寸(在左侧的垂直轴线上)。第一曲线1300针对于第一特征1305,第二曲线1310针对于不同的第二特征1315。进一步规定的是cd阈值1320,该cd阈值1320限定第一特征和第二特征的可接受cd的下限。当然,所需要的不仅是一个阈值,例如,每一图案特征可具有其自身的各自的阈值。此处为方便起见仅显示一个阈值。

也示出了在处于cd阈值内时限定这些特征的聚焦范围的外限或外侧界限的另外两个阈值。因此,阈值1330规定第一特征的曲线1300与阈值1320交叉的位置,且阈值1340规定曲线1310与阈值1320交叉的位置。因此,在阈值1330与1340之间且大于阈值1320的区域之后大体上提供用于检测热点的过程窗口。这些外限之外的任何散焦将高可能性地产生第一特征和第二特征两者的缺陷。

现在,图8进一步显示第一特征1305横过被调整以用于与第一特征相关联的形貌的衬底的聚焦分布1350(呈直方图的形式),和第二特征1315横过被调整以用于第二特征的形貌的衬底的聚焦分布1360(呈直方图形式)。如将了解,将不存在横过衬底的均匀聚焦。因此,可使用描述横过衬底的聚焦的变化的聚焦分布。例如,当横过衬底曝光特定特征时,聚焦分布可有效地为特定特征提供多个聚焦值中的每一个的出现次数的计数。因此,所使用的特定聚焦分布可以是例如自考量中的图案化过程、不同图案化过程等的过去执行所已知的聚焦分布。另外,其可特定针对设备和/或过程步骤的特定组合。例如,其可以是正态(高斯)分布。

另外或替代地,可使用从衬底获得的实际聚焦分布(具有变化容限)或将其用于进一步微调分级。衬底上的实际聚焦分布可能未必是高斯分布,特别是在存在使分布偏斜的系统性指纹的情况下。

为了获得实际聚焦分布,例如在特定特征的曝光处理期间,水平传感器可测量包括特定特征的区域中的衬底的高度且因此给出聚焦值,即,不管其处于在焦点处、正散焦或负散焦。但是,水平传感器的测量分辨率显著低于上文所描述的形貌(例如,相比于微米或亚微米形貌为数百微米)。此外,虽然水平控制系统将调整以使衬底尽可能最佳地聚焦对准,但将了解,并非曝光场中的所有区域将通常被放置成最佳地聚焦对准-当一些部分最佳地聚焦对准时,其它部分将处于散焦。

因此,可针对其中曝光特定特征的多个区域(例如,衬底上的所有区域)获得这些测量,所述区域包括管芯内的多个区域,其中特定特征在管芯内重复。因此,例如,如果特征仅在管芯中出现一次且存在横过衬底的100个管芯,则可针对特定特征获得100个聚焦值,且因此可获得分布,如图8中所显示。在实施例中,在横过衬底的相同数目个的部位中测量图案特征,使得不存在采样偏置。

因此,聚焦分布给出散焦的范围的度量,由于诸如调平误差、由于衬底台的翘曲、过程诱发的衬底变形等各种因素,特定特征将很可能横过衬底经受该散焦。

在这一情况下,聚焦分布1350和1360大致为正态分布。然而,其无需为正态分布。因为分布的极值通常将指示故障几率时,所述分布的极值是显著大的,这是因为图案化过程将通常被设计以确保分布的中心部分使得特征在没有缺陷的情况下正确地且以希望的方式曝光。

在具有这些聚焦分布的情况下,之后通过使用特定特征的建模或测量的形貌米调整所述聚焦分布。实际上,形貌使得所述分布向左或向右移位。实际上,在实施例中,第一特征1305定位成低于延伸穿过形貌(例如,形貌的中部)的平面(例如在凹陷部处)(例如,大于10纳米,且高达15nm,更低),而第二特征1315定位成高于平面(例如,在突起部处)(例如,大于5纳米,且小于10纳米,更高)。因此,第一特征1305的形貌使得其的聚焦分布在一个方向上移位,而在此情况下,第二特征1315的形貌使得其聚焦分布在相反方向上移位。各个第一特征聚焦分布和第二特征聚焦分布由它们各自的形貌移位的结果在图8中被图示为聚焦分布1350和1360。

通过评估图8且不考量聚焦分布1350和1360,可见,在过程窗口的正散焦侧上,第一特征1305的曲线1300在低于第二特征1315的曲线1310的散焦绝对值处下降低于cd阈值1320,且因此第一特征1305被视为相比于第二特征1315(其在第一特征1305下降低于cd阈值所处的散焦处将具有大于cd阈值的cd)对正散焦侧具有更大的限制性。因此,第一特征1305可被视为在过程窗口的正散焦侧处是临界的。相似地,在过程窗口的负散焦侧处,第二特征1315的曲线1310在低于第一特征1305的曲线1300的散焦绝对值处下降低于cd阈值1320,且因此第二特征1315被视为相比于第一特征1305(其在第二特征1315下降小于cd阈值所处的散焦处将具有大于cd阈值的cd)对负散焦侧具有更大的限制性。因此,第二特征1315可被视为在过程窗口的负散焦侧处是临界的。为方便起见,所述结果在如下表1中通过列表显示:

表1

因此,在实施例中,可基于针对第一特征1305和第二特征1315中的每一个的这种分级进行图案化过程设计、控制、修改等。即,可对第一特征1305和第二特征1315两者进行高度分级。

然而,如上文所提及,在实施例中,在识别图案特征是否为临界热点和/或在依据作为热点的图案特征的临界状态对图案特征进行分级时考虑形貌。例如,图案特征之间的系统性形貌差可导致临界热点的识别和/或分级相比于上文所论述的识别和/或分级发生改变。

参看图8,在实施例中,可通过例如使用调整后的聚焦分布考虑衬底的形貌来完成临界热点的识别和/或分级。例如,在考虑正散焦侧的情况下,可见,第一特征1305的聚焦分布1350几乎完全在曲线1300的过程窗口内(即,正散焦侧处的聚焦分布1350值中的每一个值将产生曲线1300上的大于cd阈值1320的cd值)。但相比,可见,第二特征1315的聚焦分布1360不完全在曲线1310的过程窗口内。即,在正散焦侧处存在将产生曲线1310上的小于cd阈值1320的cd值的许多聚焦分布1360。这些大体上在区域1390处被给出。因此,第二特征1315应该被视为在正散焦侧处是临界的。但回顾之前,第二特征1315被视为在正散焦侧处是较不临界的。因此,鉴于这一分析,第二特征1315可被识别为在正散焦侧处是临界的,和/或可因此调整其分级。相似地,第一特征1305可被识别为在正散焦侧处是较不临界的,和/或可因此调整其分级。

因此,在考虑形貌的情况下,第二特征1315更可能是有缺陷的(正散焦缺陷),这是由于衬底上的第二特征1315的部位处的聚焦分布(例如,横过整个衬底)与过程窗口边界充分地重叠。因此,第二特征1315可被视为在考虑形貌数据时是更临界的。

在考虑负散焦侧的情况下,可见,第一特征1305的聚焦分布1350几乎完全在曲线1300的过程窗口内(即,负散焦侧处的聚焦分布1350值中的每一个值将产生曲线1300上的大于cd阈值1320的cd值)。相似地,可见,第二特征1315的聚焦分布1360几乎完全在曲线1310的过程窗口内(即,负散焦侧处的聚焦分布1360值中的每一个值将产生曲线1310上的大于cd阈值1320的cd值)。因此,在这一情况下,第一特征1305和第二特征1310可被视为相对同等地临界或中性的。但回顾之前,第一特征1305被视为在负散焦侧处较不临界,而第二特征1315被视为在负散焦侧处临界。因此,第二特征1315可被识别为在负散焦侧处同等地临界或中性的,和/或可因此调整其分级。相似地,第一特征1305可被识别为在负散焦侧处同等地临界或中性的,和/或可因此调整其分级。

为方便起见,这一分析的结果在如下表2通过列表显示:

表2

有趣的是,即使相比于第二特征1315高于延伸穿过形貌的平面,第一特征1305可相对低于延伸穿过形貌的平面,第二特征1315也可以被识别和/或分级为临界或更临界。

可施加适当的阈值或函数以确定聚焦分布与过程窗口之间的重叠程度。例如,可存在聚焦分布的至少0.5%、1%、2%或5%必须超出可适用的过程窗口以导致热点的临界状态的识别和/或分级改变的限制。在实施例中,可存在对重叠或非重叠的相对考量,例如第一特征相对于其过程窗口的聚焦分布的重叠(或非重叠)的比例对第二特征相对于其过程窗口的聚焦分布的重叠(或非重叠)的比例。例如,可评估各个过程窗口之外发生的相对量(在特征之间)。

如图8中所显示,可存在用于确定图案特征应该被识别为临界或较不临界的热点和/或是否应在热点分级中被调整的搜寻范围。例如,搜寻范围1370可以用以评估对负散焦侧的这种识别和/或分级调整。由于第二特征1315将被视为在不考虑形貌的负散焦侧上临界,因此如果在搜寻范围1370中存在第一特征1305的聚焦分布,将至少调整第二特征1315的临界状态和/或分级。相似地,搜寻范围1380可以用以评估正散焦侧上的这种识别和/或分级调整。由于第一特征1305将被视为在不考虑形貌的正散焦侧上临界,因此如果在搜寻范围1380中存在第二特征1315的聚焦分布,将至少调整第一特征1305的临界状态和/或分级。

虽然形貌数据被描述为被从聚焦分布数据添加/减去,但其可被从模拟的过程窗口曲线数据添加/减去。并且,虽然论述已描述关于曲线和图表的分析,但可仅仅关于数据执行所描述的技术而不必产生曲线、图表等。

图9图示包括热点识别或分级中的形貌的示例性方案。在1601处,过程基于形貌数据对如上文所描述的热点进行识别和/或分级。1601的过程获得关于1602处的聚焦分布的信息。在1602处,可如上文所描述的测量聚焦分布,或聚焦分布可以是某一正态(例如高斯)分布。分布可以是类似的聚焦分布1350和1360。1601的过程进一步根据图案化过程的计算建模获得多个图案特征(热点)的过程窗口结果。在1601处,可执行模拟以获得类似的曲线1300和1310的结果。1601的过程获得关于在1604和/或1605处考量了的图案特征相关联的形貌的信息。在1604处,形貌信息可以是建模的形貌,该建模的形貌可通过使用模型执行计算以导出至少考量了图案特征的形貌来获得。在1605处,形貌信息可以是至少考量了图案特征的测量的形貌,该测量的形貌可通过使用上文关于图5至图7所描述的干涉仪、sem或建模辅助测量技术的测量来获得。过程1601之后基于关于图8所描述的过程产生热点的临界状态的识别和/或分级(例如,再分级)。这些识别/分级的热点之后更加能反映图案化过程且可实现较准确热点临界状态确定,其之后导致较佳的图案化过程设计、控制、修改等且因此导致较佳图案化过程结果。

因此,在实施例中,将建模或测量的管芯内或场内形貌用于临界热点的识别或分级,这可导致比传统的技术更好的识别和/或分级结果。例如,本发明技术可提供包括平坦化(例如,化学机械抛光)对热点的影响的方式。因此,形貌辅助热点识别/分级可较准确地识别较具限制性或最具限制性的热点,因此可潜在地减少验证/监控量测时间。

在实施例中,提供一种确定形貌的方法,该方法包括:获得第一聚焦值,该第一聚焦值从对未经图案化的衬底的图案化建模的计算光刻模型导出或从未经图案化的衬底上的经图案化层的测量导出;获得第二聚焦值,该第二聚焦值从具有形貌的衬底的测量导出;和根据第一聚焦值和第二聚焦值确定形貌的值。

在实施例中,所述确定包括第一聚焦值与第二聚焦值之间的差。在实施例中,第一值和第二值对应于最佳聚焦值。在实施例中,获得第二值包括对多个聚焦值中的每一个执行非形貌参数的测量。在实施例中,非形貌参数包括临界尺寸。在实施例中,第二聚焦值是从由电子束检查设备对具有形貌的衬底的测量导出。在实施例中,第一聚焦值从对未经图案化衬底的图案化建模的计算光刻模型导出。在实施例中,第一聚焦值从未经图案化衬底上的经图案化层的测量导出。在实施例中,形貌的所有凹部和突起部是亚微米尺度的。在实施例中,形貌的第一聚焦值、第二聚焦值和所确定的值是在横过衬底的多个部位处获得,且形貌的多个值被组合以形成形貌的图。在实施例中,该方法还包括由使用者在衬底上选择部位的分辨率和/或部位的位置布置。

在实施例中,提供了一种热点评估的方法,该方法包括:针对第一热点和第二热点中的每一个获得过程窗口数据,所述过程窗口数据包括用于第一热点和第二热点中的每一个的聚焦信息;和由硬件计算机基于衬底的形貌数据评估过程窗口数据的聚焦信息,以识别或改变第一热点和/或第二热点的临界状态。

在实施例中,所述评估包括对照横过衬底的聚焦分布评估聚焦信息,且其中使用形貌数据来偏移聚焦分布或聚焦信息。在实施例中,聚焦分布根据横过衬底定位的多个场或管芯的测量获得。在实施例中,所述评估包括聚焦分布与第一热点的聚焦信息的重叠或非重叠和聚焦分布与第二热点的聚焦信息的重叠或非重叠之间的相对考量。在实施例中,所述评估包括调整第一热点的临界状态相对于第二热点的临界状态的分级。在实施例中,过程窗口数据是通过计算光刻建模来获得。在实施例中,过程窗口数据的负散焦极端或正散焦极端处的聚焦信息被评估以识别或改变第一热点和/或第二热点的临界状态。在实施例中,形貌是亚微米或纳米级的。

如本领域普通技术人员应了解,本申请可实现为系统、方法或计算机程序产品。因此,本申请的方面可采取完全硬件实施例、完全软件实施例(包括固件、常驻软件、微码等)或组合软件与硬件方面的实施例的形式,这些实施例在本文中一般都可被称作“电路”、“模块”或“系统”。此外,本申请的方面可采取在任一个或更多个计算机可读介质中实现的计算机程序产品的形式,所述计算机可读介质具有实现于其上的计算机可用程序代码。

可利用一个或更多个计算机可读介质的任何组合。计算机可读介质可以是计算机可读信号介质或计算机可读储存介质。计算机可读储存介质可以是例如但不限于:电子、磁性、光学、电磁、红外或半导体系统、设备、器件,或前述各种的任何合适组合。计算机可读介质的更具体示例(非详尽列表)将包括下列存储介质:具有一个或更多个电线的电连接件、便携式计算机软盘、硬盘、随机存取存储器(ram)、只读存储器(rom)、可擦可编程只读存储器(eprom或闪存)、光纤、便携式光盘只读存储器(cdrom)、光学储存装置、磁性储存装置、或前述的任何合适组合。在本文件的情景中,计算机可读储存介质可以是可含有或储存用于由指令执行系统、设备或器件使用或结合指令执行系统、设备或器件使用的程序的任何有形介质。

计算机可读信号介质可包括其中实现有计算机可读程序代码的传播数据信号,例如,在基带中或作为载波的部分。这种传播信号可采取多种形式中的任一种形式,包括但不限于电磁的、光学的或其任何合适组合。计算机可读信号介质可以是并非计算机可读储存介质且可通信、传播或输送程序以供指令执行系统、设备或器件使用或结合指令执行系统、设备或器件使用的任何计算机可读介质。

实现于计算机可读介质上的计算机代码可使用任何适当介质米传输,所述介质包括但不限于无线、有线、光纤缆线、射频(rf)等或其任何合适的组合。

用于进行本申请的方面的操作的计算机程序代码可以以一个或更多个编程语言的任何组合写入,所述编程语言包括诸如javatm、smalltalktm、c++或其类似语言的面向对象的编程语言,和诸如“c”编程语言或相似编程语言的常规程序化编程语言。程序代码可完全在使用者的计算机上执行、部分在使用者的计算机上执行、作为单独软件包执行、部分在使用者的计算机上且部分在远程计算机上执行、或完全在远程计算机或服务器上执行。在后面的情况下,远程计算机可通过任一类型的网络(包括局域网络(lan)或广域网(wan))连接至使用者的计算机,或可(例如通过使用互联网服务提供商的因特网)连接至外部计算机。

计算机程序指令也可加载至计算机、其他可编程数据处理设备或其他装置上,以使在该计算机、其他可编程设备或其他装置上执行一系列操作步骤以产生计算机实施的过程,使得在该计算机、其他可编程设备上执行的指令提供用于实施流程图和/或框图的框或多个框中所指定的功能/动作的过程。

如上文所提到的,应了解,示例性实施例可采取完全硬件实施例、完全软件实施例或含有硬件元件和软件元件两者的实施例的形式。在一示例实施例中,所图示的实施例的机构可以以软件或程序代码米实施,所述软件或程序代码包括但不限于固件、常驻软件、微码等。

适合于储存和/或执行程序代码的数据处理系统将包括通过系统总线直接或间接耦接至存储元件的至少一个处理器。存储元件可以包括在实际执行程序代码期间使用的本地存储器、大容量储存器,和提供至少某一程序代码的暂时储存以便减少在执行期间必须从大容量储存器获取的代码的次数的高速缓存存储器。

输入/输出或i/o装置(包括但不限于键盘、显示器、指向装置等)可直接地或通过介入其间的i/o控制器耦接至系统。网络适配器也可耦接至系统,以实现数据处理系统通过介入其间的私人网络或公用网络耦接至其他数据处理系统或远程打印机或储存装置。调制解调器、电缆调制解调器和以太网卡仅是少数当前可利用的类型的网络适配器。

已经出于图示和描述的目的呈现本申请的描述,且该描述并不旨在是详尽的或将本发明限于所公开的形式。对于本领域技术人员而言,将明白许多修改和变化。选择并描述实施例以便最佳地解释本发明的原理、实际应用,且实现本领域其他技术人员针对具有适合于所预期的特定用途的各种修改的各种实施例来理解本发明。

图10示出可辅助实施本文中所公开的方法和流程中的任一个的计算机系统1700的实施例的框图。计算机系统1700包括用于通信信息的总线1702或其他通信机构,和与总线1702耦接以用于处理信息的处理器1704(或多个处理器1704和1705)。计算机系统1700还包括耦接至总线1702以用于储存待由处理器1704执行的信息和指令的主存储器1706,诸如随机存取存储器(ram)或其他动态储存装置。主存储器1706还可用于在待由处理器1704执行的指令的执行期间储存暂时性变量或其他中间信息。计算机系统1700还包括耦接至总线1702以用于储存用于处理器1704的静态信息和指令的只读存储器(rom)1708或其他静态储存装置。设置诸如磁盘或光盘的储存装置1710,且将该储存装置耦接至总线1702以用于储存信息和指令。

计算机系统1700可经由总线1702耦接至用于向计算机使用者显示信息的显示器1712,诸如阴极射线管(crt)或平板显示器或触控面板显示器。包括字母数字键和其他键的输入装置1714耦接至总线1702以用于将信息和命令选择通信至处理器1704。另一类型的使用者输入装置是光标控制器1716(诸如鼠标、轨迹球或光标方向键),用于将方向信息和命令选择通信至处理器1704且用于控制显示器1712上的光标移动。这种输入装置典型地在两个轴线(第一轴线(例如x)和第二轴线(例如y))上具有两个自由度,这允许所述装置指定平面中的位置。触摸面板(屏)显示器也可以用作输入装置。

根据一个实施例,本文描述的过程的部分可以由计算机系统1700响应于处理器104执行包含在主存储器1706中的一个或更多个指令的一个或更多个序列被执行。这样的指令可以被从另一计算机可读介质(诸如储存装置1710)读取到主存储器1706中。包含在主存储器1706中的指令的序列的执行使得处理器1704执行本文描述的过程步骤。在多处理布置中的一个或更多个处理器也可以被用于执行包含在主存储器1706中的指令的序列。在可替代的实施例中,硬接线电路可以用于替代软件指令或与软件指令结合。因此,本文的描述不限于硬件电路和软件的任何特定的组合。

本文中使用的术语“计算机可读介质”是指参与向处理器1704提供指令以供执行的任何介质。这样的介质可以采用很多形式,包括但不限于非易失性介质、易失性介质和传输介质。非易失性介质包括例如光盘或磁盘,诸如储存装置1710。易失性介质包括动态存储器,诸如主存储器1706。传输介质包括同轴电缆、铜线和光纤,包括包含总线1702的电线。传输介质还可以采用声波或光波的形式,诸如在射频(rf)和红外(ir)数据通信期间生成的声波或光波。常见形式的计算机可读介质包括例如软盘、柔性盘、硬盘、磁带、任何其他磁性介质、cd-rom、dvd、任何其他光学介质、穿孔卡、纸带、具有孔图案的任何其他物理介质、ram、prom和eprom、flash-eprom、任何其他存储器芯片或卡盒、如下文中所述的载波、或计算机可以从其进行读取的任何其他介质。

将一个或更多个指令的一个或更多个序列传送到处理器1704以供执行中可以涉及各种形式的计算机可读介质。例如,指令最初可以承载在远程计算机的磁盘上。远程计算机可以将指令加载到其动态存储器中,并且使用调制解调器通过电话线发送指令。计算机系统1700本地的调制解调器可以在电话线上接收数据并且使用红外发射器将数据转换成红外信号。耦接到总线1702的红外检测器可以接收红外信号中携带的数据并且将数据放置在总线1702上。总线1702将数据传送到主存储器1706,处理器1704从主存储器1706获取并且执行指令。由主存储器1706接收的指令可以可选地在由处理器1704执行之前或之后储存在储存装置1710上。

计算机系统1700还可以包括耦接到总线1702的通信接口1718。通信接口1718提供耦接到连接到本地网络1722的网络链路1720的双向数据通信。例如,通信接口1718可以是用于提供与相应类型的电话线的数据通信连接的综合业务数字网(isdn)卡或调制解调器。作为另一示例,通信接口1718可以是用于提供与兼容lan的数据通信连接的局域网(lan)卡。还可以实施无线链路。在任何这样的实施方式中,通信接口1718发送和接收携带表示各种类型的信息的数字数据流的电信号、电磁信号或光信号。

网络链路1020典型地通过一个或更多个网络提供到其他数据装置的数据通信。例如,网络链路1720可以通过本地网络1722提供到主计算机1724或到由因特网服务提供商(isp)1726操作的数据设备的连接。isp1726又通过现在通常称为“因特网”1728的全球分组数据通信网络提供数据通信服务。本地网络1722和因特网1728都使用携带数字数据流的电信号、电磁信号或光信号。通过各种网络的信号和在网络链路1720上并且通过通信接口1718的信号(其将数字数据传送到计算机系统1700和从计算机系统1700传送数字数据)是输送信息的载波的示例性形式。

计算机系统1700可以通过网络、网络链路1720和通信接口1718发送消息和接收数据,包括程序代码。在因特网示例中,服务器1730可以通过因特网1728、isp1726、本地网络1722和通信接口1718传输用于应用程序的所请求的代码。例如,一个这样的下载的应用可以提供本文中描述的方法或其部分。所接收的代码可以在被接收时由处理器1704执行,和/或储存在储存装置1710或其他非易失性储存器中以供稍后执行。以这种方式,计算机系统1700可以以载波的形式获取应用代码。

可使用以下方面来进一步描述所述实施例:

1、一种确定形貌的方法,所述方法包括:

获得第一聚焦值,所述第一聚焦值从对未经图案化的衬底的图案化建模的计算光刻模型导出或从未经图案化的衬底上的图案化层的测量导出;

获得第二聚焦值,所述第二聚焦值从具有形貌的衬底的测量导出;和

根据所述第一聚焦值和第二聚焦值确定所述形貌的值。

2、如方面1所述的方法,其中所述确定包括所述第一聚焦值与所述第二聚焦值之间的差。

3、如方面2所述的方法,其中所述第一值和所述第二值对应于最佳聚焦值。

4、如方面1至方面3中任一方面所述的方法,其中获得所述第二值包括对多个聚焦值中的每一个执行非形貌参数的测量。

5、如方面4所述的方法,其中所述非形貌参数包括临界尺寸。

6、如方面1至方面5中任一方面所述的方法,其中所述第二聚焦值从由电子束检查设备对具有所述形貌的所述衬底的测量导出。

7、如方面1至方面6中任一方面所述的方法,其中所述第一聚焦值从对未经图案化衬底的图案化建模的计算光刻模型导出。

8、如方面1至方面6中任一方面所述的方法,其中所述第一聚焦值从未经图案化的衬底上的图案化层的测量导出。

9、如方面1至方面8中任一方面所述的方法,其中所述形貌的所有凹部和突起部在亚微米尺度。

10、如方面1至方面9中任一方面所述的方法,其中在横过所述衬底的多个部位处获得所述形貌的所述第一聚焦值、所述第二聚焦值和所确定的值,且将所述形貌的多个值组合以形成所述形貌的图。

11、如方面10所述的方法,还包括由使用者在所述衬底上选择所述部位的分辨率和/或所述部位的位置布置。

12、一种热点评估的方法,所述方法包括:

获得针对第一热点和第二热点中的每一个的过程窗口数据,所述过程窗口数据包括用于所述第一热点和第二热点中的每一个的聚焦信息;和

由硬件计算机基于衬底的形貌数据评估所述过程窗口数据的聚焦信息,以识别或改变所述第一热点和/或所述第二热点的临界状态。

13、如方面12所述的方法,其中所述评估包括对横过衬底的聚焦分布评估所述聚焦信息,且其中使用所述形貌数据来偏移所述聚焦分布或所述聚焦信息。

14、如方面13所述的方法,其中从横过衬底定位的多个场或管芯的测量获得所述聚焦分布。

15、如方面13或方面14所述的方法,其中所述评估包括所述聚焦分布与所述第一热点的聚焦信息的重叠或非重叠和所述聚焦分布与所述第二热点的所述聚焦信息的重叠或非重叠之间的相对考量。

16、如方面12至15中任一方面所述的方法,其中所述评估包括调整所述第一热点的临界状态相对于所述第二热点的临界状态的分级。

17、如方面12至16中任一方面所述的方法,其中所述过程窗口数据是通过计算光刻建模来获得的。

18.如方面12至17中任一方面所述的方法,其中评估所述过程窗口数据的负散焦极端或正散焦极端处的所述聚焦信息以识别或改变所述第一热点和/或所述第二热点的临界状态。

19.如方面12至19中任一方面所述的方法,其中所述形貌为亚微米或纳米尺度。

20、一种计算机程序产品,包括在其上记录有指令的计算机非暂时性可读介质,所述指令在由计算机执行时实施如方面1至19中任一方面所述的方法。

尽管在本发明中可对ic的制造进行具体的参考,但应明确地理解,本发明中的描述具有许多其它可能的应用。例如,其可以用于集成光学系统、磁畴存储器的导引和检测图案、液晶显示面板、薄膜磁头等的制造。本领域技术人员将理解,在这种替代应用的上下文中,本文中使用的任何术语“掩模版”、“晶片”或“管芯”可以被认为分别与更上位的术语“掩模”、“衬底”或“目标部分”互换。

在本文中,术语“辐射”和“束”被用于涵盖全部类型的电磁辐射,包括紫外辐射(例如具有365nm、248nm、193nm、157nm或126nm的波长)和极紫外辐射(euv,例如具有在约5-100nm的范围内的波长)。

如本文中使用的术语“进行优化”和“优化”是指或意味着调整图案形成设备(例如,光刻设备)、图案形成过程或图案化过程等,使得结果和/或过程具有更为期望的特性,诸如衬底上的设计图案的投影的更高的准确度、更大的过程窗口等。因此,如本文中使用的术语“进行优化”和“优化”是指或意味着识别用于一个或更多个参数的一个或更多个值的过程,所述一个或更多个值与用于所述这些一个或更多个参数的一个或更多个值的初始集合相比提供至少一个相关度量的改善,例如局部最优化。“最优”和其它相关术语应该相应地进行解释。在实施例中,可以迭代地应用优化步骤,以提供一个或更多个度量的进一步改善。

虽然本文公开的构思可以用于在衬底(诸如硅晶片)上成像,但是应当理解,所公开的构思可以与任何类型的光刻成像系统一起使用,例如用于在除了硅晶片之外的衬底上成像的那些光刻成像系统。

以上的描述旨在是说明性的,而不是限制性的。因此,本领域的技术人员将明白,在不背离下面阐述的权利要求书的范围的情况下,可以对所描述的发明进行修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1