光学镜头的制作方法

文档序号:20597856发布日期:2020-05-01 21:21阅读:170来源:国知局
光学镜头的制作方法
本申请涉及一种光学镜头,更具体地,本申请涉及一种包括五片透镜的光学镜头。
背景技术
:随着科学技术的发展以及无人驾驶等新兴技术的普及,车载镜头作为汽车辅助驾驶系统中的重要部分,在图像的高清度、画面舒适度等方面的要求越来越严格,如色差、清晰度等。由于需要安装在汽车上,尺寸过大的镜头不仅会对行车造成干扰,而且会严重影响汽车外形的美观程度。车载镜头对于像素要求极高,在原有镜头的基础上,一般可通过增加透镜的数量来提高分辨率,达到高像素要求。现有常规技术中,会通过增加透镜数量至6枚、7枚甚至更多来获得高解像,但这会严重影响镜头的小型化、低成本的实现。因此,目前市场正需要一款高解像兼顾像差小、小型化、低成本等特点的光学镜头来满足应用需求。技术实现要素:本申请提供了可适用于车载安装的、可至少克服或部分克服现有技术中的上述至少一个缺陷的光学镜头。本申请的一个方面提供了这样一种光学镜头,该光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。其中,第一透镜可具有负光焦度,其物侧面为凸面,像侧面为凹面;第二透镜可具有负光焦度,其物侧面为凸面,像侧面为凹面;第三透镜可具有正光焦度,其物侧面和像侧面均为凸面;第四透镜可具有正光焦度,其物侧面和像侧面均为凸面;以及第五透镜可具有负光焦度。在一个实施方式中,第五透镜的物侧面可为凹面,像侧面可为凸面。在一个实施方式中,第五透镜的物侧面和像侧面均可为凹面。在一个实施方式中,第二透镜和第三透镜可互相胶合形成第一胶合透镜。在一个实施方式中,第四透镜和第五透镜可互相胶合形成第二胶合透镜。在一个实施方式中,光学镜头的光学总长度ttl与光学镜头的整组焦距值f之间可满足:ttl/f≤3.8。在一个实施方式中,光学镜头的光学后焦bfl与光学镜头的透镜长度tl之间可满足:bfl/tl≥0.25。在一个实施方式中,光学镜头的最大视场角fov、光学镜头的最大视场角所对应的第一透镜的物侧面的最大通光口径d以及光学镜头最大视场角所对应的像高h之间可满足:d/h/fov≤0.035。在一个实施方式中,第三透镜和第四透镜之间的空气间隔d5与光学镜头的光学总长度ttl之间可满足:d5/ttl≥0.04。在一个实施方式中,第二透镜和第三透镜的组合焦距值f23与光学镜头的整组焦距值f之间可满足:0.7≤f23/f≤1.4。在一个实施方式中,第四透镜的焦距值f4与第五透镜的焦距值f5之间可满足:0.6≤︱f4/f5︱≤1.4。本申请的另一方面提供了这样一种光学镜头,该光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。其中,第一透镜、第二透镜和第五透镜均可具有负光焦度;第三透镜和第四透镜均可具有正光焦度;第二透镜和第三透镜可互相胶合形成第一胶合透镜;第四透镜和第五透镜可互相胶合形成第二胶合透镜;以及光学镜头的光学后焦bfl与光学镜头的透镜长度tl之间可满足:bfl/tl≥0.25。在一个实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面。在一个实施方式中,第二透镜的物侧面可为凸面,像侧面可为凹面。在一个实施方式中,第三透镜的物侧面和像侧面均可为凸面。在一个实施方式中,第四透镜的物侧面和像侧面均可为凸面。在一个实施方式中,第五透镜的物侧面可为凹面,像侧面可为凸面。在一个实施方式中,第五透镜的物侧面和像侧面均可为凹面。在一个实施方式中,光学镜头的光学总长度ttl与光学镜头的整组焦距值f之间可满足:ttl/f≤3.8。在一个实施方式中,光学镜头的最大视场角fov、光学镜头的最大视场角所对应的第一透镜的物侧面的最大通光口径d以及光学镜头最大视场角所对应的像高h之间可满足:d/h/fov≤0.035。在一个实施方式中,第三透镜和第四透镜之间的空气间隔d5与光学镜头的光学总长度ttl之间可满足:d5/ttl≥0.04。在一个实施方式中,第二透镜和第三透镜的组合焦距值f23与光学镜头的整组焦距值f之间可满足:0.7≤f23/f≤1.4。在一个实施方式中,第四透镜的焦距值f4与第五透镜的焦距值f5之间可满足:0.6≤︱f4/f5︱≤1.4。本申请采用了例如五片透镜,通过优化设置镜片的形状,合理分配各镜片的光焦度以及形成胶合透镜等,实现光学镜头的高解像、小型化、小像差、小色差、前端小口径、低成本、后焦长等有益效果中的至少一个。附图说明结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:图1为示出根据本申请实施例1的光学镜头的结构示意图;图2为示出根据本申请实施例2的光学镜头的结构示意图;图3为示出根据本申请实施例3的光学镜头的结构示意图;以及图4为示出根据本申请实施例4的光学镜头的结构示意图。具体实施方式为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜,第一胶合透镜也可被称作第二胶合透镜。在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。以下对本申请的特征、原理和其他方面进行详细描述。根据本申请示例性实施方式的光学镜头包括例如五个具有光焦度的透镜,即第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。这五个透镜沿着光轴从物侧至像侧依序排列。根据本申请示例性实施方式的光学镜头还可进一步包括设置于成像面的感光元件。可选地,设置于成像面的感光元件可以是感光耦合元件(ccd)或互补性氧化金属半导体元件(cmos)。第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。第一透镜设置为凸面朝向物侧的弯月形状能够尽可能地收集大视场光线,使光线进入后方光学系统,有利于减小前端口径,增加通光量。在实际应用中,考虑到车载镜头室外安装使用环境,会处于雨雪等恶劣天气,这样的凸向物侧的弯月形状设计,有利于水滴的滑落,减小对成像的影响。第二透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。第三透镜可具有正光焦度,其物侧面和像侧面均可为凸面。第四透镜可具有正光焦度,其物侧面和像侧面均可为凸面。第五透镜可具有负光焦度,其物侧面可为凹面,像侧面可选的可为凸面或凹面。在示例性实施方式中,可在例如第三透镜与第四透镜之间设置用于限制光束的光阑,以进一步提高镜头的成像质量。当将光阑设置于第三透镜与第四透镜之间时,可有效收束进入光学系统的光线,减小光学系统镜片的口径。可替代地,在另一示例性实施方式中,可在例如第一透镜与第二透镜之间设置用于限制光束的光阑,以进一步提高镜头的成像质量。然而,应注意,上述光阑位置仅是示例而非限制;在替代的实施方式中,也可根据实际需要将光阑设置在其他位置。在示例性实施方式中,根据需要,根据本申请的光学镜头还可包括设置在第五透镜与成像面之间的滤光片,以对具有不同波长的光线进行过滤;以及还可包括设置在滤光片与成像面之间的保护玻璃,以防止光学镜头的内部元件(例如,芯片)被损坏。如本领域技术人员已知的,胶合透镜可用于最大限度地减少色差或消除色差。在光学镜头中使用胶合透镜能够改善像质、减少光能量的反射损失,从而提升镜头成像的清晰度。另外,胶合透镜的使用还可简化镜头制造过程中的装配程序。在示例性实施方式中,可通过将第二透镜的像侧面与第三透镜的物侧面胶合,而将第二透镜和第三透镜组合成第一胶合透镜。第一胶合透镜的采用,有效减小了系统色差,且使得光学系统整体结构紧凑,满足小型化要求,同时降低镜片单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题。因若离散的镜片位于光线转折处,容易因加工/组立误差造成敏感,所以胶合透镜的使用有效降低了敏感度。在第一胶合透镜中,靠近物侧的第二透镜具有负光焦度,靠近像侧的第三透镜具有正光焦度,通过负片在前,正片在后的排布,可以将前方光线发散后经快速汇聚后再过渡到后方,更有利于减小后方光线光程,实现短ttl。在示例性实施方式中,可通过将第四透镜的像侧面与第五透镜的物侧面胶合,而将第四透镜和第五透镜组合成第二胶合透镜。第二胶合透镜的采用,本身可以自身消色差,减小公差敏感度,也可以残留部分色差以平衡系统的色差。在第二胶合透镜中,靠近物侧的第四透镜具有正光焦度,靠近像侧的第五透镜具有负光焦度。在光阑之后使用具有正光焦度的第四透镜,可以进一步矫正前方镜片组产生的像差,同时使光束再次汇聚,即可增大镜头的光圈,又可缩短镜头总长,使光学系统更紧凑,使得该光学系统具有相对较短的镜头总长。第五透镜设置成其焦距与第四透镜的焦距相接近,以有助于将经过第四透镜的光线平缓过渡至成像面。上述胶合透镜的使用,分担了系统的整体色差矫正,可有效校正像差,提高解像力,且使得光学系统整体紧凑,满足小型化要求。在示例性实施方式中,光学镜头的光学总长度ttl与光学镜头的整组焦距值f之间可满足:ttl/f≤3.8,更理想地,可进一步满足ttl/f≤3.5。满足条件式ttl/f≤3.8,可保证系统的小型化特性。在示例性实施方式中,光学镜头的光学后焦bfl与光学镜头的透镜长度tl之间可满足:bfl/tl≥0.25,更理想地,可进一步满足bfl/tl≥0.35。通过满足条件式bfl/tl≥0.25,可在实现小型化的基础上,满足后焦长的特性,有利于光学镜头的组装。在示例性实施方式中,光学镜头的最大视场角fov、光学镜头的最大视场角所对应的第一透镜物侧面的最大通光口径d以及光学镜头最大视场角所对应的像高h之间可满足:d/h/fov≤0.035,更理想地,可进一步满足d/h/fov≤0.025。满足条件式d/h/fov≤0.035,可实现镜头前端小口径特性。在示例性实施方式中,第三透镜和第四透镜之间的空气间隔d5与光学镜头的光学总长度ttl之间可满足:d5/ttl≥0.04,更理想地,可进一步满足d5/ttl≥0.06。通过设置使得第一胶合透镜与第二胶合透镜之间的中心距离较大,以有利于光阑附近光线的平稳过渡,有利于像质的提升。在示例性实施方式中,第二透镜和第三透镜的组合焦距值f23与光学镜头的整组焦距值f之间可满足:0.7≤f23/f≤1.4,更理想地,可进一步满足0.9≤f23/f≤1.2。通过控制第一透镜与第四透镜之间的光线走势,可减小由于经第一透镜进入的大角度光线引起的像差,同时使镜片结构紧凑,从而有利于实现小型化特性。在示例性实施方式中,第四透镜的焦距值f4与第五透镜的焦距值f5之间可满足:0.6≤︱f4/f5︱≤1.4,更理想地,可进一步满足0.8≤︱f4/f5︱≤1.2。通过设置使得相邻的第四透镜和第五透镜的焦距相近,可有助于光线的平缓过渡。在示例性实施方式中,根据本申请的光学镜头中的第一透镜可采用非球面镜片。非球面镜片的特点是:从镜片中心到周边曲率是连续变化的。与从镜片中心到周边有恒定曲率的球面镜片不同,非球面镜片具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面镜片后,能够尽可能地消除在成像的时候出现的像差,从而提升镜头的成像质量。例如,第一透镜可为非球面镜片,以进一步提高解像质量。应理解的是,为了提高成像质量,根据本申请的光学镜头可增加非球面镜片的数量。在示例性实施方式中,光学镜头所采用的镜片可以是塑料材质的镜片,还可以是玻璃材质的镜片。塑料材质的镜片热膨胀系数较大,当镜头所使用的环境温度变化较大时,塑料材质的透镜会引起镜头的光学后焦变化量较大。采用玻璃材质的镜片,可减小温度对镜头光学后焦的影响,但是成本较高。根据本申请的上述实施方式的光学镜头通过合理的镜片形状的设置及光焦度的设置,仅使用5片架构就能够实现高解像要求,在满足小型化的同时,能够兼顾像差小、敏感度低,生产良率高的低成本要求。因此,根据本申请的上述实施方式的光学镜头能够具有高解像、小型化、小像差、小色差、前端小口径、低成本、后焦长等有益效果中的至少一个,可更好地符合车载镜头的要求。本领域技术人员应当理解,上文中使用的光学镜头的光学总长度ttl是指从第一透镜物侧面的中心至成像面中心的轴上距离;光学镜头的光学后焦bfl是指从最后一个透镜第五透镜像侧面的中心至成像面中心的轴上距离;以及光学镜头的透镜组长度tl是指从第一透镜物侧面的中心至最后一个透镜即第五透镜像侧面中心的轴上距离。本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五个透镜为例进行了描述,但是该光学镜头不限于包括五个透镜。如果需要,该光学镜头还可包括其它数量的透镜。下面参照附图进一步描述可适用于上述实施方式的光学镜头的具体实施例。实施例1以下参照图1描述根据本申请实施例1的光学镜头。图1示出了根据本申请实施例1的光学镜头的结构示意图。如图1所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4和第五透镜l5。第一透镜l1为具有负光焦度的弯月透镜,其物侧面s1为凸面,像侧面s2为凹面。另外,第一透镜l1为非球面镜片,其物侧面s1和像侧面s2均为非球面。第二透镜l2为具有负光焦度的弯月透镜,其物侧面s3为凸面,像侧面s4为凹面。第三透镜l3为具有正光焦度的双凸透镜,其物侧面s4和像侧面s5均为凸面。其中,第二透镜l2和第三透镜l3互相胶合形成第一胶合透镜。第四透镜l4为具有正光焦度的双凸透镜,其物侧面s7和像侧面s8均为凸面。第五透镜l5为具有负光焦度的弯月透镜,其物侧面s8为凹面,像侧面s9为凸面。其中,第四透镜l4和第五透镜l5互相胶合形成第二胶合透镜。可选地,该光学镜头还可包括具有物侧面s10和像侧面s11的滤光片l6和/或保护透镜l6’。滤光片l6可用于校正色彩偏差。保护透镜l6’可用于保护位于成像面ima的图像传感芯片。来自物体的光依序穿过各表面s1至s11并最终成像在成像面ima上。在本实施例的光学镜头中,可在第三透镜l3与第四透镜l4之间(即,第一胶合透镜与第二胶合透镜之间)设置光阑sto以提高成像质量。表1示出了实施例1的光学镜头的各透镜的曲率半径r、厚度t、折射率nd以及阿贝数vd,其中,曲率半径r和厚度t的单位均为毫米(mm)。表1面号曲率半径r厚度t折射率nd阿贝数vd14.85331.30001.5264.2122.08182.9000350.00001.00001.8133.2845.30003.00001.7449.245-4.90001.0000sto无穷0.500070.50003.00001.5961.258-5.00001.00001.7825.729-35.00000.100010无穷0.95001.5264.2111无穷4.2500ima无穷本实施例采用了五片透镜作为示例,通过合理分配各个透镜的光焦度与面型,各透镜的中心厚度以及各透镜间的空气间隔,可使镜头具有高解像、小型化、小像差、小色差、前端小口径、低成本、后焦长等有益效果中的至少一个。各非球面面型z由以下公式限定:其中,z为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表1中曲率半径r的倒数);k为圆锥系数conic;a、b、c、d、e均为高次项系数。下表2示出了可用于实施例1中的非球面透镜表面s1-s2的圆锥系数k以及高次项系数a、b、c、d和e。表2面号kabcde1-0.6092-5.4529e-03-1.3583e-04-1.1751e-05-1.0934e-053.0000e-072-0.3524-1.1510e-02-6.4987e-051.0403e-051.3146e-05-6.5838e-06下表3给出了实施例1的光学镜头的最大视场角所对应的第一透镜l1的物侧面s1的最大通光口径d、光学镜头的最大视场角所对应的像高h、光学镜头的最大视场角fov、第二透镜l2和第三透镜l3的组合焦距值f23(即,第一胶合透镜的焦距值)、第四透镜l4的焦距值f4、第五透镜l5的焦距值f5、光学镜头的整组焦距值f、光学镜头的光学总长度ttl(即,从第一透镜l1的物侧面s1的中心至成像面ima的轴上距离)、光学镜头的透镜长度tl(即,从第一透镜l1的物侧面s1中心至最后一个透镜第五透镜l5的像侧面s9中心的轴上距离)、光学镜头的光学后焦bfl(即,最后一个透镜第五透镜l5的像侧面s9的中心至成像面ima的轴上距离)、以及第三透镜l3与第四透镜l4之间的空气间隔d5。表3d(mm)4.6468f(mm)5.5884h(mm)4.8040ttl(mm)19.0000fov(°)54tl(mm)13.7000f23(mm)6.4900bfl(mm)5.3000f4(mm)6.6513d5(mm)1.5000f5(mm)-7.2244在本实施例中,光学镜头的光学后焦bfl与光学镜头的透镜长度tl之间满足bfl/tl=0.3869;光学镜头的最大视场角fov、光学镜头的最大视场角所对应的第一透镜l1的物侧面s1的最大通光口径d以及光学镜头最大视场角所对应的像高h之间满足d/h/fov=0.0179;光学镜头的光学总长度ttl与光学镜头的整组焦距值f之间满足ttl/f=3.3999;第二透镜l2和第三透镜l3的组合焦距值f23与光学镜头的整组焦距值f之间满足f23/f=1.1613;第四透镜l4的焦距值f4与第五透镜l5的焦距值f5之间满足︱f4/f5︱=0.9207;以及第三透镜l3和第四透镜l4之间的空气间隔d5与光学镜头的光学总长度ttl之间满足d5/ttl=0.0789。实施例2以下参照图2描述了根据本申请实施例2的光学镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图2示出了根据本申请实施例2的光学镜头的结构示意图。如图2所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4和第五透镜l5。第一透镜l1为具有负光焦度的弯月透镜,其物侧面s1为凸面,像侧面s2为凹面。另外,第一透镜l1为非球面镜片,其物侧面s1和像侧面s2均为非球面。第二透镜l2为具有负光焦度的弯月透镜,其物侧面s4为凸面,像侧面s5为凹面。第三透镜l3为具有正光焦度的双凸透镜,其物侧面s5和像侧面s6均为凸面。其中,第二透镜l2和第三透镜l3互相胶合形成第一胶合透镜。第四透镜l4为具有正光焦度的双凸透镜,其物侧面s7和像侧面s8均为凸面。第五透镜l5为具有负光焦度的弯月透镜,其物侧面s8为凹面,像侧面s9为凸面。其中,第四透镜l4和第五透镜l5互相胶合形成第二胶合透镜。可选地,该光学镜头还可包括具有物侧面s10和像侧面s11的滤光片l6和/或保护透镜l6’。滤光片l6可用于校正色彩偏差。保护透镜l6’可用于保护位于成像面ima的图像传感芯片。来自物体的光依序穿过各表面s1至s11并最终成像在成像面ima上。在本实施例的光学镜头中,可在第一透镜l1与第二透镜l2之间设置光阑sto以提高成像质量。下表4示出了实施例2的光学镜头的各透镜的曲率半径r、厚度t、折射率nd以及阿贝数vd,其中,曲率半径r和厚度t的单位均为毫米(mm)。下表5示出了可用于实施例2中非球面透镜表面s1-s2的圆锥系数k以及高次项系数a、b、c、d和e。下表6给出了实施例2的光学镜头的最大视场角所对应的第一透镜l1的物侧面s1的最大通光口径d、光学镜头的最大视场角所对应的像高h、光学镜头的最大视场角fov、第二透镜l2和第三透镜l3的组合焦距值f23(即,第一胶合透镜的焦距值)、第四透镜l4的焦距值f4、第五透镜l5的焦距值f5、光学镜头的整组焦距值f、光学镜头的光学总长度ttl、光学镜头的透镜长度tl、光学镜头的光学后焦bfl、以及第三透镜l3与第四透镜l4之间的空气间隔d5。表4面号曲率半径r厚度t折射率nd阿贝数vd15.23261.30001.5264.2121.82322.5000sto无穷0.5000423.00001.00001.8133.2854.52303.00001.7449.246-4.62321.4000710.82193.00001.5961.258-3.64611.00001.7825.729-50.00000.100010无穷0.95001.5264.2111无穷4.2771ima无穷表5面号kabcde1-0.6092-7.5578e-046.8384e-06-9.7149e-07-1.4333e-071.1299e-082-0.3524-2.8773e-03-6.4987e-051.0087e-05-2.3465e-07-1.9588e-06表6d(mm)5.4687f(mm)5.6166h(mm)4.9100ttl(mm)19.0271fov(°)53tl(mm)13.7000f23(mm)5.7500bfl(mm)5.3271f4(mm)4.9963d5(mm)1.4000f5(mm)-5.0142在本实施例中,光学镜头的光学后焦bfl与光学镜头的透镜长度tl之间满足bfl/tl=0.3888;光学镜头的最大视场角fov、光学镜头的最大视场角所对应的第一透镜l1的物侧面s1的最大通光口径d以及光学镜头最大视场角所对应的像高h之间满足d/h/fov=0.0210;光学镜头的光学总长度ttl与光学镜头的整组焦距值f之间满足ttl/f=3.3877;第二透镜l2和第三透镜l3的组合焦距值f23与光学镜头的整组焦距值f之间满足f23/f=1.0238;第四透镜l4的焦距值f4与第五透镜l5的焦距值f5之间满足︱f4/f5︱=0.9964;以及第三透镜l3和第四透镜l4之间的空气间隔d5与光学镜头的光学总长度ttl之间满足d5/ttl=0.0736。实施例3以下参照图3描述了根据本申请实施例3的光学镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例3的光学镜头的结构示意图。如图3所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4和第五透镜l5。第一透镜l1为具有负光焦度的弯月透镜,其物侧面s1为凸面,像侧面s2为凹面。另外,第一透镜l1为非球面镜片,其物侧面s1和像侧面s2均为非球面。第二透镜l2为具有负光焦度的弯月透镜,其物侧面s3为凸面,像侧面s4为凹面。第三透镜l3为具有正光焦度的双凸透镜,其物侧面s4和像侧面s5均为凸面。其中,第二透镜l2和第三透镜l3互相胶合形成第一胶合透镜。第四透镜l4为具有正光焦度的双凸透镜,其物侧面s7和像侧面s8均为凸面。第五透镜l5为具有负光焦度的双凹透镜,其物侧面s8和像侧面s9均为凹面。其中,第四透镜l4和第五透镜l5互相胶合形成第二胶合透镜。可选地,该光学镜头还可包括具有物侧面s10和像侧面s11的滤光片l6和/或保护透镜l6’。滤光片l6可用于校正色彩偏差。保护透镜l6’可用于保护位于成像面ima的图像传感芯片。来自物体的光依序穿过各表面s1至s11并最终成像在成像面ima上。在本实施例的光学镜头中,可在第三透镜l3与第四透镜l4之间(即,第一胶合透镜与第二胶合透镜之间)设置光阑sto以提高成像质量。下表7示出了实施例3的光学镜头的各透镜的曲率半径r、厚度t、折射率nd以及阿贝数vd,其中,曲率半径r和厚度t的单位均为毫米(mm)。下表8示出了可用于实施例3中非球面透镜表面s1-s2的圆锥系数k以及高次项系数a、b、c、d和e。下表9给出了实施例3的光学镜头的最大视场角所对应的第一透镜l1的物侧面s1的最大通光口径d、光学镜头的最大视场角所对应的像高h、光学镜头的最大视场角fov、第二透镜l2和第三透镜l3的组合焦距值f23(即,第一胶合透镜的焦距值)、第四透镜l4的焦距值f4、第五透镜l5的焦距值f5、光学镜头的整组焦距值f、光学镜头的光学总长度ttl、光学镜头的透镜长度tl、光学镜头的光学后焦bfl、以及第三透镜l3与第四透镜l4之间的空气间隔d5。表7面号曲率半径r厚度t折射率nd阿贝数vd16.16161.30001.5961.2522.40003.0000330.50001.00001.8133.2844.55503.00001.7449.245-5.13041.0000sto无穷0.600077.00003.00001.5961.258-7.55001.00001.7825.72925.00000.100010无穷0.95001.5264.2111无穷4.0959ima无穷表8面号kabcde1-5.6223-5.9323e-03-1.0953e-057.6991e-05-1.0953e-054.6302e-072-0.5000-1.1334e-02-1.1751e-054.7958e-051.3162e-05-3.2237e-06表9在本实施例中,光学镜头的光学后焦bfl与光学镜头的透镜长度tl之间满足bfl/tl=0.3702;光学镜头的最大视场角fov、光学镜头的最大视场角所对应的第一透镜l1的物侧面s1的最大通光口径d以及光学镜头最大视场角所对应的像高h之间满足d/h/fov=0.0203;光学镜头的光学总长度ttl与光学镜头的整组焦距值f之间满足ttl/f=3.3839;第二透镜l2和第三透镜l3的组合焦距值f23与光学镜头的整组焦距值f之间满足f23/f=1.1620;第四透镜l4的焦距值f4与第五透镜l5的焦距值f5之间满足︱f4/f5︱=0.9207;以及第三透镜l3和第四透镜l4之间的空气间隔d5与光学镜头的光学总长度ttl之间满足d5/ttl=0.0840。实施例4以下参照图4描述了根据本申请实施例4的光学镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图4示出了根据本申请实施例4的光学镜头的结构示意图。如图4所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4和第五透镜l5。第一透镜l1为具有负光焦度的弯月透镜,其物侧面s1为凸面,像侧面s2为凹面。另外,第一透镜l1为非球面镜片,其物侧面s1和像侧面s2均为非球面。第二透镜l2为具有负光焦度的弯月透镜,其物侧面s4为凸面,像侧面s5为凹面。第三透镜l3为具有正光焦度的双凸透镜,其物侧面s5和像侧面s6均为凸面。其中,第二透镜l2和第三透镜l3互相胶合形成第一胶合透镜。第四透镜l4为具有正光焦度的双凸透镜,其物侧面s7和像侧面s8均为凸面。第五透镜l5为具有负光焦度的双凹透镜,其物侧面s8和像侧面s9均为凹面。其中,第四透镜l4和第五透镜l5互相胶合形成第二胶合透镜。可选地,该光学镜头还可包括具有物侧面s10和像侧面s11的滤光片l6和/或保护透镜l6’。滤光片l6可用于校正色彩偏差。保护透镜l6’可用于保护位于成像面ima的图像传感芯片。来自物体的光依序穿过各表面s1至s11并最终成像在成像面ima上。在本实施例的光学镜头中,可在第一透镜l1与第二透镜l2之间设置光阑sto以提高成像质量。下表10示出了实施例4的光学镜头的各透镜的曲率半径r、厚度t、折射率nd以及阿贝数vd,其中,曲率半径r和厚度t的单位均为毫米(mm)。下表11示出了可用于实施例4中非球面透镜表面s1-s2的圆锥系数k以及高次项系数a、b、c、d和e。下表12给出了实施例4的光学镜头的最大视场角所对应的第一透镜l1的物侧面s1的最大通光口径d、光学镜头的最大视场角所对应的像高h、光学镜头的最大视场角fov、第二透镜l2和第三透镜l3的组合焦距值f23(即,第一胶合透镜的焦距值)、第四透镜l4的焦距值f4、第五透镜l5的焦距值f5、光学镜头的整组焦距值f、光学镜头的光学总长度ttl、光学镜头的透镜长度tl、光学镜头的光学后焦bfl、以及第三透镜l3与第四透镜l4之间的空气间隔d5。表10面号曲率半径r厚度t折射率nd阿贝数vd16.25921.30001.5961.2522.37802.5000sto无穷0.5000428.42261.00001.8133.2854.53103.00001.7449.246-5.08391.400076.65003.00001.5961.258-6.65001.00001.7825.72920.00000.100010无穷0.95001.5264.2111无穷4.1995ima无穷表11面号kabcde1-10.0000-4.7717e-03-3.2224e-049.1556e-05-1.1731e-055.9509e-072-0.2906-9.5615e-03-6.8002e-041.5788e-051.2390e-06-3.8367e-06表12d(mm)4.7463f(mm)5.5766h(mm)4.6580ttl(mm)18.9495fov(°)52tl(mm)13.7000f23(mm)6.4300bfl(mm)5.2495f4(mm)6.1364d5(mm)1.4000f5(mm)-6.1992在本实施例中,光学镜头的光学后焦bfl与光学镜头的透镜长度tl之间满足bfl/tl=0.3832;光学镜头的最大视场角fov、光学镜头的最大视场角所对应的第一透镜l1的物侧面s1的最大通光口径d以及光学镜头最大视场角所对应的像高h之间满足d/h/fov=0.0196;光学镜头的光学总长度ttl与光学镜头的整组焦距值f之间满足ttl/f=3.3980;第二透镜l2和第三透镜l3的组合焦距值f23与光学镜头的整组焦距值f之间满足f23/f=1.1530;第四透镜l4的焦距值f4与第五透镜l5的焦距值f5之间满足︱f4/f5︱=0.9899;以及第三透镜l3和第四透镜l4之间的空气间隔d5与光学镜头的光学总长度ttl之间满足d5/ttl=0.0739。综上,实施例1至实施例4分别满足以下表13所示的关系。表13以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1