具有嵌入式IC系统的无边框LCD显示器及其制造方法与流程

文档序号:21941481发布日期:2020-08-21 15:20阅读:229来源:国知局
具有嵌入式IC系统的无边框LCD显示器及其制造方法与流程

相关申请的交叉引用

本申请要求2018年1月4日提交的题为“液晶显示器用玻璃中芯片(lcdcig)”的美国临时申请第62/613,717号和2018年2月5日提交的题为“液晶显示器用玻璃中芯片(lcdcig)”的美国临时申请第62/626,437号的优先权,所述临时申请通过引用全部并入本文。

本公开总的涉及电子设备,并且更特别地,涉及具有显示器的电子设备。



背景技术:

许多不同类型的电子设备都包括可以向用户提供视觉信息的电子视觉显示器。例如,液晶显示器(lcd)是一种广泛使用的显示器,可以用在多种电子设备中,这些电子设备包括数码相机、手表、计算器以及包括智能手机在内的移动电话。lcd是一种平板显示器,出于若干原因,lcd通常是理想的显示器选项,这些原因可以包括:lcd相对较薄、重量轻且在功耗方面很高效。此外,已知lcd具有高分辨率、高色度显示和高清晰度。

大多数电子设备中的lcd都是具有lcd面板和内置驱动电路单元的lcd模块的一部分。lcd面板通常包括薄膜晶体管(tft)阵列基板、滤色器基板、位于tft阵列基板与滤色器基板之间的液晶层、以及设置在lcd面板下方以用作光源的背光组件。驱动电路单元通常包括设置在lcd面板的外环处以驱动lcd面板的lcd驱动器集成电路(驱动器ic)。lcd面板包括在两个玻璃基板(上述tft阵列基板和滤色器基板)之间的矩阵形状的像素,具有用于控制分别提供给像素的信号的开关器件,如薄膜晶体管。像素阵列在tft阵列基板上以矩阵图案设置在两个玻璃基板之间。为每个像素提供诸如tft之类的开关元件,以控制到各个像素的驱动信号。

驱动电路单元包括上述驱动器ic以及印刷电路板(pcb),在所述印刷电路板(pcb)上提供了驱动电路,以生成用于驱动lcd面板的各种信号,如控制信号、时钟信号和数据信号。驱动器ic连接到lcd面板和pcb上,以向tft、存储电容器、像素电极和lcd面板的互连布线施加信号。互连布线包括栅极总线和数据总线,这些总线布置为使得每个像素可由驱动电路单元单独寻址。驱动器ic包括结合焊盘组,其中每个结合焊盘均包括金属凸块。待安装驱动器ic的表面设置有匹配的焊盘组。通过将结合焊盘组焊接到所述匹配的焊盘组,将驱动器ic安装在所述表面上。

玻璃上芯片(cog)和薄膜上芯片(cof)是安装驱动器ic并将其连接以控制lcd面板的两种常用方法。cog是一种倒装芯片焊接技术,其中使用各向异性导电膜(acf)将驱动器ic安装到lcd面板的阵列基板的非显示区。cof也是一种倒装芯片焊接技术,但将驱动器ic安装在柔性印刷电路板(fpc)上,柔性印刷电路板继而又安装在lcd面板的阵列基板的非显示区上。这是不期望的,因为这会导致lcd模块和lcd面板的总占位面积(footprint)大于最终产品(例如,智能手机或平板电脑)中出于审美原因而被覆盖的实际显示区和死角区。

图1和图2示出了通过使用cog布置安装驱动器ic而产生的非显示区的示例。图1示出了显示模块100的透视图,其示出了cog技术的示例。显示模块100包括lcd面板102、驱动器区104和fpc106。

lcd面板102是多层组件,其包括由液晶层(未示出)隔开的一对堆叠的透明(具有透光性的)玻璃基板,即阵列基板108和过滤器基板110。液晶层包含液晶分子,所述液晶分子是当施加电磁场时改变光学特性的物质。该制造过程包括将液晶注入tft阵列基板108与滤色器基板110之间的间隙中,从而生产lcd面板102。

阵列基板和过滤器基板均包括透明电极的对准阵列,所述透明电极的对准阵列可以施加电磁场以控制电极之间的液晶材料的相应小区域的光学特性。阵列基板上的每个电极与各自的晶体管(例如,薄膜晶体管(tft))相关联。一对阵列基板与过滤器基板电极之间的电磁场强度取决于相应的tft的状态,所述tft的状态则又取决于从驱动器区104发送的驱动信号。过滤器基板110也是滤色器基板110,因为其包括用于每个像素的相应滤色器(未示出)以向显示的图像添加颜色。

驱动器区104是为驱动器ic112(图2中所示)提供安装位置的lcd模块100的区。驱动器ic112是其中包括驱动器电路的lsi芯片。驱动器ic112配置为基于来自远程信号源(未示出)的信号(例如,图像数据)进行操作。远程信号源可以根据应用而变化。驱动器ic112配置为从输入图像信号生成输出驱动信号,并且将输出驱动信号发送到液晶面板102的显示区域。驱动器102在非显示区域中直接安装在液晶面板102的阵列基板108上,即,通过玻璃上芯片(cog)安装方法进行安装。

图2示出了显示模块100的靠近驱动器ic112的部分的局部侧视图。驱动器ic112是安装在数据线上的源极驱动集成电路封装。驱动器ic112经由图像信号输入凸块114接收图像信号,将所接收的图像信号转换成相应的驱动信号(例如,电压或电流信号),并且经由驱动信号输出凸块116将驱动信号传输至lcd面板102。

图像信号输入凸块114连接至导电图案118,导电图案118则又经由各向异性导电膜(acf)120连接至fpc106。驱动信号输出凸块116经由各向异性导电膜120连接至数据线122。如图所示,tft阵列基板108支撑导电图案120和数据线122。

因此,尽管显示模块100的使用为具有集成驱动器ic112的lcd面板102带来了便利,但该技术仍具有尚待改进的若干缺点。该技术涉及若干复杂且昂贵类型的连接件和部件安装技术,并且阵列基板的驱动器区会产生死区,从而阻碍了将整个显示模块的占位区用作实际的显示区域。

因此,期望改进现有的lcd封装技术以减少显示器的成本和死区。本公开提供了包括这样的期望改进的新颖的封装技术。



技术实现要素:

根据本公开的一些方面,一种显示模块包括:液晶显示(lcd)面板,所述液晶显示面板包括:薄膜晶体管(tft)阵列基板,所述tft阵列基板的液晶层侧与其背面侧相反,其中所述tft阵列基板包括设置在其液晶层侧的多个像素,其中所述tft阵列基板限定了驱动器腔,所述驱动器腔朝向所述tft阵列基板的所述液晶层侧延伸到其背面侧中并且延伸到腔底部,面向所述tft阵列基板的所述液晶层的滤色器基板,以及设置在所述tft阵列基板与所述滤色器基板之间的液晶层;用于驱动所述lcd面板的驱动器集成电路(驱动器ic),其中所述驱动器ic设置在所述tft阵列基板的所述驱动器腔中,其中所述驱动器ic包括接口侧和与接口侧相反的非接口侧,其中所述接口侧包括图像信号输入焊盘和驱动信号输出焊盘;以及在所述tft阵列基板上的再分布层(rdl),其中所述rdl在所述驱动器ic的至少一部分上延伸,其中所述rdl提供所述驱动器ic的所述驱动信号输出焊盘与所述多个像素中的至少一个像素之间的至少一个直接电气连接。

在一些实施例中,所述rdl位于所述tft阵列基板的背面侧504b上。

在一些实施例中,所述驱动器腔呈圆形、椭圆形、正方形和矩形截面形状之一。

在一些实施例中,所述驱动器ic定位在所述驱动器腔中,使得所述驱动器ic的所述非接口侧面向所述腔底部。

在一些实施例中,所述显示模块还包括用于将所述驱动器ic结合在所述tft阵列基板的所述驱动器腔中的粘合剂层,其中所述粘合剂层的至少一部分设置在所述腔底部与所述驱动器ic的所述非接口侧之间。

在一些实施例中,所述显示模块还包括机械耦合到所述tft阵列基板的柔性印刷电路(fpc),其中所述fpc电耦合到所述驱动器ic。在一些这样的实施例中,所述fpc包括多个电迹线,并且所述电迹线中的至少一个电迹线电气连接至所述驱动器ic的所述图像信号输入焊盘。

根据本公开的一些其它方面,一种制造显示模块的方法,其包括:在阵列基板的液晶层侧上形成多个薄膜晶体管;在所述阵列基板的背面侧中形成驱动器腔;其中所述阵列基板的所述背面侧与所述阵列基板的所述液晶层侧相反;在所述阵列基板的所述背面侧中形成驱动器腔,其中所述驱动器腔包括至少一个侧壁,所述侧壁从所述tft阵列基板的所述背面侧延伸到所述tft阵列基板中并且延伸到腔底部;将驱动器集成电路(驱动器ic)粘附在所述驱动器腔中;在所述tft阵列基板的所述背面侧上形成再分布层(rdl),其中所述rdl的形成包括通过至少一个通孔形成所述驱动器ic与所述多个像素中的至少一个像素之间的电气连接的至少一部分;将滤色器基板与所述tft阵列基板耦合,使得所述tft阵列基板的所述液晶层侧面向所述滤色器基板;以及在所述tft阵列基板与所述滤色器基板之间形成液晶层。

在一些实施例中,所述方法还包括:在所述阵列基板的所述背面侧形成管芯腔,其中所述管芯腔包括至少一个管芯腔侧壁,所述侧壁从所述tft阵列基板的所述背面侧延伸到所述tft阵列基板中直到管芯腔底部,以及将集成电路管芯(ic管芯)粘附在所述驱动器腔中。

在一些实施例中,所述驱动器ic包括接口侧和与所述接口侧相反的非接口侧;其中所述驱动器ic定位在所述驱动器腔中,使得所述驱动器ic的所述非接口侧面向所述腔底部;并且其中所述接口侧包括图像信号输入焊盘和驱动信号输出焊盘。

在一些实施例中,所述rdl的形成包括在所述驱动器ic的所述接口侧的至少一部分上形成所述rdl;并且所述至少一个电气连接的形成包括在所述驱动器ic的所述驱动信号输出焊盘与所述多个像素中的至少一个像素之间形成所述至少一个电气连接。

在一些实施例中,所述驱动器ic在所述驱动器腔中的粘附导致所述驱动器ic与所述至少一个侧壁之间的间隙;并且其中所述rdl的形成包括将介电材料沉积在所述驱动器ic上方和所述间隙中。

在一些实施例中,所述方法还包括蚀刻掉所述驱动器ic上方的所述rdl的至少一部分,以暴露出所述图像信号输入焊盘和所述驱动信号输出焊盘。

在一些实施例中,所述方法还包括将柔性印刷电路(fpc)附接到所述tft阵列基板上。

根据本公开的另外方面,一种显示模块包括:具有多个像素和薄膜晶体管(tft)阵列基板的液晶显示(lcd)面板,其中所述tft阵列基板限定了驱动器腔,所述驱动器腔延伸到所述tft阵列基板的背面侧,所述背面侧与所述tft阵列基板的液晶层侧相反,所述驱动器腔延伸到腔底部;用于驱动所述lcd面板的驱动器集成电路(驱动器ic),其中所述驱动器ic设置在所述驱动器腔中,其中所述驱动器ic包括接口侧和与所述接口侧相反的非接口侧,其中所述接口侧包括图像信号输入焊盘和驱动信号输出焊盘;以及电耦合到所述驱动器ic的柔性印刷电路(fpc),其中所述图像信号输入焊盘布置成从所述fpc接收图像信号,并且所述驱动信号输出焊盘布置成向所述多个像素中的一个或多个像素发送驱动信号。

在一些实施例中,所述驱动器腔呈圆形、椭圆形、正方形和矩形截面形状之一。

在一些实施例中,所述驱动器ic定位在所述驱动器腔中,使得所述驱动器ic的所述非接口侧面向所述腔底部。

在一些实施例中,所述显示模块还包括用于将所述驱动器ic结合在所述tft阵列基板的所述驱动器腔中的粘合剂层,其中所述粘合剂层的至少一部分设置在所述腔底部与所述驱动器ic的所述非接口侧之间。

在一些实施例中,所述显示模块还包括在所述tft阵列基板上的再分布层(rdl),其中所述rdl提供所述驱动器ic的所述驱动信号输出焊盘与所述多个像素中的至少一个像素之间的至少一个直接电气连接。

在一些实施例中,所述fpc包括多个电迹线,并且所述电迹线中的至少一个电迹线电气连接至所述驱动器ic的所述图像信号输入焊盘。

附图说明

图1和图2分别示出了lcd显示模块的透视图和侧视图。

图3示出了根据本公开的实施例的示例性显示模块的示意性截面图。

图4是示出根据本公开的用于制造显示模块的示例性方法的工艺流程图。

具体实施方式

本公开涉及液晶模块以及用于制造具有驱动器集成电路(驱动器ic)的液晶模块的方法。驱动器ic是tft-lcd面板的部件,驱动器ic接收图像数据并向tft阵列基板上的像素阵列传送精确的模拟电压或电流。当向每个像素内的液晶施加电压时,液晶发生弯曲,从而改变通过每个单独像素的光的强度。与前玻璃基板上的滤色器组合,每个像素都产生自己的颜色,所述颜色与其它像素一起构成面板上的整个图像。

用于lcd面板的驱动器ic包括栅极驱动器和源极驱动器。栅极驱动器打开面板上的水平行上的每个像素单元内的晶体管。当晶体管打开时,源极驱动器将产生电压,所述电压施加到该行上的每个像素单元内的液晶上,以进行数据输入。上述组合决定了每个像素产生的颜色。诸如移动电话之类的小型面板应用将优选地仅包括单个源极驱动器和单个栅极驱动器,由于空间和成本方面的考虑,将这些驱动器集成到单个芯片中。

将驱动器ic集成到常规lcd面板中的便利性有助于简化lcd技术在许多不同平台、应用和技术领域中的实现。然而,除了将驱动器ic和/或fpc安装到阵列基板上而产生的死区(即,不能用于显示图像的lcd模块占位的区域)之外,此外由于驱动器ic集成中涉及的制造过程的复杂性和成本,集成的驱动器ic是有代价的。本公开包括对lcd封装技术的改进,其降低了lcd模块的制造成本以及与现有设备和制造工艺相关的死区。例如,本公开包括驱动器腔和驱动器ic布置以及其它相关的制造工艺,其消除了各向异性导电膜(acf)的使用,减少或消除了玻璃上的表面痕迹,减少了au凸块的数量,并消除了驱动器ic和fpc之间先前的复杂焊接。

由于多种原因,许多显示和图像获取系统都不能在相同位置显示或感测不同的色彩通道。因此,像素栅格被分成单色区,当在远处观看时,所述单色区有助于所显示或感测的颜色。在一些显示器中,这些单色区是可单独寻址的元素,有时也称为子像素。例如,lcd通常将每个像素竖直地分成三个子像素。然而,为了简单起见,本公开将简单地提及像素。应当理解,这里提及的像素可以等同地应用于有时所称的子像素。

在本发明的以下详细描述中,参考附图,所述附图形成了本发明的一部分,并且在附图中通过说明的方式示出了其中可以实施本发明的特定实施例。足够详细地描述了这些实施例,以使本领域技术人员能够实施本发明。在不脱离本发明的范围的情况下,可以利用另一些实施例并且可以进行结构改变。

因此,以下详细描述不应被理解为限制性的,并且本发明的范围仅由所附权利要求以及所述权利要求所赋予的等同物的全部范围进行限定。

现在将参考附图描述本发明的一个或多个实施方式,其中,贯穿所有附图,相似的附图标记用于指代相似的元件,并且其中所示的结构不一定按比例绘制。

图3示出了根据本公开的lcd模块300的示例性实施例的示意性截面图。lcd模块300包括lcd面板302、驱动器集成电路(驱动器ic)314和柔性印刷电路(fpc)324。通常,lcd模块300的典型操作将会如下。驱动器ic314将经由fpc324从一些外部源接收图像数据,所述外部源例如是安装在连接到fpc324的第二端的pcb342上的其它封装ic340。驱动器ic314将评估接收到的图像数据,生成相应的lcd驱动信号,并将驱动信号传输至lcd面板302。lcd面板302将接收驱动信号并操作其像素阵列以生成与接收到的图像数据相对应的图像的视觉表示。

lcd面板302包括薄膜晶体管(tft)阵列基板304,薄膜晶体管(tft)阵列基板304的液晶层侧304a与其背面侧304b相反。滤色器基板310耦合到tft阵列基板304上、面向tft阵列基板304的液晶层侧304a。液晶层312设置在tft阵列基板304的液晶层侧304a与滤色器基板310之间。tft阵列基板304和滤色器基板310二者都可以由玻璃形成。lcd面板302还包括在tft阵列基板304和滤色器基板310之间形成在tft阵列基板304的液晶层侧304a上的多个tft像素306。tft阵列基板304还限定了驱动器腔308,驱动器腔308朝向tft阵列基板304的液晶层侧304a延伸到其背面侧304b中并且延伸到腔底部308a。tft阵列基板304还在阵列基板304的背面侧304b中限定了一个或多个管芯腔334。tft阵列基板304还限定了一个或多个玻璃通孔328,玻璃通孔328形成在阵列基板304的背面侧304b中并贯通延伸到液晶层侧304a以提供驱动器ic314与tft像素306之间的电气连接,以及可能需要的任何其它电气连接。

驱动器ic314被配置为接收发送到显示模块300的图像数据,将接收到的图像数据转换为lcd驱动信号,并将lcd驱动信号传输至tft像素306,从而lcd面板302将显示与接收到的图像数据相对应的图像。

如图3所示,驱动器腔308和管芯腔334可以位于lcd面板302的周界内,图3示出了位于lcd面板302的后面、在tft阵列基板304的背面侧304b上的驱动器腔308和管芯腔334。可以认为lcd模块300具有显示区域和非显示区域,所述显示区域对应于lcd面板203的产生图像的部分,所述非显示区域是其它的一切部分。从这个角度来看,在所示的实施例中,可以将驱动器腔308和管芯腔334的位置指定为在显示区域中,因为它们位于lcd面板302的外周界内。因此,与现有技术相比,所示的实施例增加了lcd显示区域占比(显示区域与整个显示模块占位区的比值)。显示区域可以与玻璃基板相同,因为在正面无需进行cof焊接。

驱动器腔308和管芯腔334从tft阵列基板304的背面侧304b延伸到tft阵列基板304中。tft阵列基板304的液晶层侧304a构成tft阵列基板304的有源侧,该有源侧与tft阵列基板304的其上形成tft像素306的一侧是同一侧。因此,tft阵列基板304的有源侧也是面向滤色器基板310的一侧。

在所示的实施例中,驱动器腔308和管芯腔334延伸到tft阵列基板304中至相应的腔底部。驱动器ic314设置在驱动器腔308中,并且另外的集成电路管芯(ic管芯)336可以设置在驱动器腔334中。这允许将另外的ic从模块外设备移至显示模块的背面侧,以进一步减少最终配置下的占位面积。在一些实施例中,如所示的实施例中,驱动器ic314通过粘合剂层322粘附在驱动器腔308中,并且另外的集成电路管芯336可以通过粘合剂层322粘附在管芯腔334中。粘合剂层322可以包括任何合适的粘合剂,例如,使用胶水或粘片膜(daf)。

在一些实施例中,如所示的实施例中,驱动器腔308的侧壁和管芯腔334的侧壁不与驱动器ic314直接接触。取而代之,在驱动器腔308的侧壁与驱动器ic314之间以及在管芯腔334的侧壁与相应的ic管芯336之间设置间隙330。如下所讨论的,在将驱动器ic314放置在驱动器腔308中之后,在驱动器ic314上方和tft阵列基板304的背面侧304b上形成再分布层(rdl)320。形成rdl320的过程始于在tft阵列基板304和驱动器ic314上方形成介电层;在此期间,驱动器腔308的侧壁与驱动器ic314之间的间隙330被rdl320的一部分介电材料填充。

驱动器ic314包括图像信号输入焊盘316和驱动信号输出焊盘318。在优选的实施例中,驱动器ic314和ic管芯336在相应的驱动器腔308和管芯腔334中定向,以允许容易地访问其输入焊盘316和输出焊盘318以及ic管芯336上可能存在的任何焊盘。在一些实施例中,驱动器ic314在一侧上具有其输入焊盘316和输出焊盘318,其中所述一侧用作驱动器ic314的接口侧;另外,与接口相反的一侧用作驱动器ic314的非接口侧。在这样的实施例中,优选的是,将驱动器ic314定向在驱动器腔308中,其中接口侧向上面向腔开口,并且非接口侧向下面向腔底部。该定向通常将允许最容易地制造从驱动器ic314和到驱动器ic314的电气连接。

再分布层(rdl)320形成在驱动器ic314和任何ic管芯336的上方以及tft阵列基板304的背面侧304b上。在一些实施例中,rdl320的下表面与tft阵列基板304直接接触。在一些实施例中,rdl320的形成可以由在tft阵列基板304上的有机涂层或层压介电材料开始。在该过程期间,驱动器腔308的侧壁与驱动器ic314之间的间隙330被一部分介电材料填充。接着,如果需要,可以进行平坦化工艺,例如可以进行化学机械平坦化(cmp)操作。此时,可以完成所期望的工艺以在用于lcd面板302的tft阵列基板304上形成多个tft像素306和相关电路。这可以包括通过至少一个玻璃通孔328在驱动器ic314与tft像素306之间形成rdl连接。

可以使用已知的rdl形成技术来形成rdl320。例如,可以使用图案化和金属沉积工艺如印刷、pvd、cvd、溅射、电镀和无电镀来形成rdl320。

rdl320由介电材料形成,并且包括嵌入在介电材料中的一个或多个金属互连结构320a。金属互连结构包括一个或多个金属层320a和多个通孔插塞结构,其根据需要提供贯穿rdl320的电气连接。例如,rdl320提供驱动器ic314的驱动信号输出焊盘318与多个tft像素306中的至少一个像素之间的至少一个直接电气连接320a。应当注意,为了简便起见,在图3所示的图示中,省略了rdl320中的一些金属层和通孔插塞结构。金属互连结构可以包括一层或多层al、cu、sn、ni、au、ag或其它合适的导电材料。

fpc324的第一端经由通过已知的au电镀技术由金(au)形成的凸块机械地连接至tft阵列基板304的背面侧304b。

fpc324可以包括由具有绝缘特性和柔性的合成树脂(例如,聚酰亚胺树脂)制成的基底构件。在基底构件上形成多个电迹线(全部由线326表示),并且电迹线中的至少一个电迹线电气连接至驱动器ic314的图像信号输入焊盘316。如前所述,fpc324的长维度的第一端连接至驱动器ic314和tft阵列基板304。根据最终使用显示模块300的应用,可以将第二端(远端)连接至多种不同的设备或电路,如安装在被连接到fpc324的第二端的pcb342上的其它封装ic340。

图4是示出根据本公开的用于制造显示模块的示例性方法的工艺流程图。在该实施例中,制造显示模块的方法包括步骤410:在tft阵列基板的液晶层侧上形成多个tft像素。接着,在步骤420中,在tft阵列基板的背面侧上形成玻璃通孔,以从背面侧连接至液晶层侧。接着,步骤430涉及在tft阵列基板的背面侧中形成一个或多个腔,所述腔可以包括驱动器腔和一个或多个管芯腔。接着,步骤440涉及将一个或多个半导体管芯粘附在一个或多个腔中。接着,步骤450涉及在tft阵列基板的背面侧上方形成介电层。最后,步骤460涉及在tft阵列基板的背面侧上形成再分布层(rdl)。

本领域技术人员将容易地观察到,在保持本发明的教导的同时,可以对设备和方法进行多种修改和改变。因此,以上公开内容应被解释为仅由所附权利要求书的边界和界限来限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1