摄像镜头的制作方法

文档序号:17255829发布日期:2019-03-30 09:20阅读:181来源:国知局
摄像镜头的制作方法
本申请涉及一种摄像镜头,更具体地,涉及一种包括六片透镜的摄像镜头。
背景技术
:随着诸如如手机、电脑和平板等智能电子设备的快速更新换代,市场对这些产品的摄像镜头要求也越来越高。除了要求镜头成像具备高分辨率和大孔径之外,还要求在较广的视场范围内都具有优良的成像品质。然而,摄像镜头的视场角度越大,所撷取的影像的tv畸变(tvdistortion)通常越严重。同时,当前主流手机上所携带的广角镜头多采用六片式透镜结构,且各个透镜大多采用旋转对称(轴对称)的非球面作为其面型结构。这类旋转对称的非球面可以看成是子午平面内的一条曲线绕光轴旋转360°而形成的,因此其只在子午平面内具有充分的自由度,并不能很好地对轴外像差进行矫正。此外,旋转对称的非球面对广角镜头的tv畸变矫正并无实质性贡献。技术实现要素:本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的摄像镜头,例如广角小畸变摄像镜头。一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,摄像镜头的成像范围内的tv畸变的最大值tdt可满足|tdt|≤2.5%。在一个实施方式中,第二透镜的物侧面可为凸面,像侧面可为凹面;以及第四透镜的物侧面可为凹面。在一个实施方式中,摄像镜头的x轴方向的像高ihx与摄像镜头的y轴方向的像高ihy可满足在一个实施方式中,第六透镜的像侧面是非旋转对称的非球面;以及第六透镜的像侧面的加工张角θ可满足θ<72°。在一个实施方式中,第二透镜的y轴方向的有效焦距fy2与第三透镜的y轴方向的有效焦距fy3可满足3.0<fy2/fy3<5.0。在一个实施方式中,第五透镜的x轴方向的有效焦距fx5与第六透镜的x轴方向的有效焦距fx6可满足-0.5<fx5/fx6<0。在一个实施方式中,第一透镜的y轴方向的有效焦距fy1与第二透镜的y轴方向的有效焦距fy2可满足-0.5<fy1/fy2<0。在一个实施方式中,第一透镜的物侧面可为凹面;以及摄像镜头的y轴方向的有效焦距fy与第一透镜的物侧面的曲率半径r1可满足-1.0<fy/r1<0。在一个实施方式中,摄像镜头的x轴方向的全视场角fovx与摄像镜头的y轴方向的全视场角fovy可满足tan(fovx/2)×tan(fovy/2)<2.0。另一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,第五透镜的x轴方向的有效焦距fx5与第六透镜的x轴方向的有效焦距fx6可满足-0.5<fx5/fx6<0。又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,第二透镜的物侧面可为凸面,像侧面可为凹面;以及第四透镜的物侧面可为凹面。又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,第六透镜的像侧面是非旋转对称的非球面;以及第六透镜的像侧面的加工张角θ可满足θ<72°。又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,摄像镜头的x轴方向的像高ihx与摄像镜头的y轴方向的像高ihy可满足又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,第二透镜的y轴方向的有效焦距fy2与第三透镜的y轴方向的有效焦距fy3可满足3.0<fy2/fy3<5.0。又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,第一透镜的y轴方向的有效焦距fy1与第二透镜的y轴方向的有效焦距fy2可满足-0.5<fy1/fy2<0。又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,第一透镜的物侧面可为凹面;以及摄像镜头的y轴方向的有效焦距fy与第一透镜的物侧面的曲率半径r1可满足-1.0<fy/r1<0。又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,摄像镜头的x轴方向的全视场角fovx与摄像镜头的y轴方向的全视场角fovy可满足tan(fovx/2)×tan(fovy/2)<2.0。本申请采用了多片(例如,六片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述摄像镜头具有广角、小畸变、高像面亮度以及高成像质量等至少一个有益效果。另外,通过引入非旋转对称的非球面,对摄像镜头的轴外子午像差和弧矢像差同时进行矫正,减小了摄像镜头实际成像的tv畸变,从而进一步获得像质的提升。附图说明结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:图1示出了根据本申请实施例1的摄像镜头的结构示意图;图2示意性示出了实施例1的摄像镜头的rms光斑直径在第一象限内的情况;图3示出了根据本申请实施例1的摄像镜头的tv畸变图;图4示出了根据本申请实施例2的摄像镜头的结构示意图;图5示意性示出了实施例2的摄像镜头的rms光斑直径在第一象限内的情况;图6示出了根据本申请实施例2的摄像镜头的tv畸变图;图7示出了根据本申请实施例3的摄像镜头的结构示意图;图8示意性示出了实施例3的摄像镜头的rms光斑直径在第一象限内的情况;图9示出了根据本申请实施例3的摄像镜头的tv畸变图;图10示出了根据本申请实施例4的摄像镜头的结构示意图;图11示意性示出了实施例4的摄像镜头的rms光斑直径在第一象限内的情况;图12示出了根据本申请实施例4的摄像镜头的tv畸变图;图13示出了根据本申请实施例5的摄像镜头的结构示意图;图14示意性示出了实施例5的摄像镜头的rms光斑直径在第一象限内的情况;图15示出了根据本申请实施例5的摄像镜头的tv畸变图;图16示出了根据本申请实施例6的摄像镜头的结构示意图;图17示意性示出了实施例6的摄像镜头的rms光斑直径在第一象限内的情况;图18示出了根据本申请实施例6的摄像镜头的tv畸变图;图19示出了根据本申请实施例7的摄像镜头的结构示意图;图20示意性示出了实施例7的摄像镜头的rms光斑直径在第一象限内的情况;图21示出了根据本申请实施例7的摄像镜头的tv畸变图。具体实施方式为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中,最靠近被摄物的表面称为该透镜的物侧面;每个透镜中,最靠近成像面的表面称为该透镜的像侧面。在本文中,出于描述的便利,我们定义x轴、y轴和z轴彼此垂直的x-y-z直角坐标系,在该直角坐标系中,其原点位于摄像镜头的光轴上,z轴与光轴重合,x轴与z轴垂直且位于弧矢平面内,y轴与z轴垂直且位于子午平面内。此外,措辞“加工张角”定义为透镜的表面沿着x轴与y轴的角平分线方向的加工角度。然而,应理解的是,本文中所提及的“x轴方向”、“y轴方向”和“z轴方向”仅表示分别与直角坐标系的x轴、y轴和z轴平行的方向,而非限定为直角坐标系的三个轴。除非另有说明,否则本文中的各参量符号均表示沿摄像镜头的y轴方向的特征参量值。例如,在没有特别说明的情况下,条件式“fy/r1”中的r1表示第一透镜的物侧面的y轴方向的曲率半径。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。以下对本申请的特征、原理和其他方面进行详细描述。根据本申请示例性实施方式的摄像镜头可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列,各相邻透镜之间均可具有空气间隔。在示例性实施方式中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜可具有正光焦度;第四透镜具有正光焦度或负光焦度;第五透镜可具有正光焦度;第六透镜可具有负光焦度。满足上述光焦度分配,有利于减缓光线的偏折角度,从而利用反摄远原理达到增大视场角度的目的,尤其是与第一透镜采用正透镜的摄远结构相比,使第一透镜具有负光焦度可使得系统更容易增大视场角度。此外,可以通过将第一透镜至第六透镜中的至少一个透镜的物侧面和/或像侧面设置为非旋转对称的非球面,来进一步提升像质。非旋转对称的非球面是一种自由曲面,在旋转对称的非球面基础上,增加了非旋转对称分量,因而在透镜系统中引入非旋转对称的非球面有利于通过对轴外子午像差和弧矢像差进行有效矫正,极大地提升光学系统的性能。同时,引入非旋转对称的非球面,还可达到减小tv畸变的目的。可选地,第六透镜的像侧面可为非旋转对称的非球面。在示例性实施方式中,第二透镜的物侧面可为凸面,像侧面可为凹面;第四透镜的物侧面可为凹面。合理配置第二透镜和第四透镜的面型以形成类双高斯结构,有助于改善广角镜头的像差,并可提升光学系统的成像品质;同时,第六透镜形状的变化有利于匹配芯片主光线角度,防止产生色彩偏差。可选地,第二透镜可具有正光焦度;以及第四透镜可具有负光焦度且其像侧面可为凹面。在示例性实施方式中,第三透镜的物侧面可为凸面,像侧面可为凸面。在示例性实施方式中,第五透镜的像侧面可为凸面。在示例性实施方式中,第六透镜的物侧面可为凸面,像侧面可为凹面。在示例性实施方式中,本申请的摄像镜头可满足条件式|tdt|≤2.5%,其中,tdt为摄像镜头的成像范围内tv畸变的最大值。满足条件式|tdt|≤2.5%,有利于减弱大视场角镜头实际成像的变形情况。在示例性实施方式中,本申请的摄像镜头可满足条件式θ<72°,其中,θ为第六透镜的像侧面的加工张角。限制第六透镜的像侧面的加工张角,有助于保证第六透镜的加工可行性以及加工精度,另外也可保证检测精度,防止因加工张角过大而导致无法有效检测。在示例性实施方式中,本申请的摄像镜头可满足条件式其中,ihx为摄像镜头的x轴方向的像高,ihy为摄像镜头的y轴方向的像高。更具体地,ihx和ihy进一步可满足条件式可保证摄像镜头具有超大像面并实现超高像素;同时匹配芯片形状进行设计,还有利于在aa制程(即,主动对准(activealignment))中实现偏差矫正。在示例性实施方式中,本申请的摄像镜头可满足条件式3.0<fy2/fy3<5.0,其中,fy2为第二透镜的y轴方向的有效焦距,fy3为第三透镜的y轴方向的有效焦距。更具体地,fy2和fy3进一步可满足2.77≤fy2/fy3≤4.60。控制第二透镜和第三透镜在y轴方向的有效焦距,形成类双高斯对称结构,有利于消除光学系统的像差,并与第一透镜以及第四透镜配合,组合光焦度较为接近,从而可以有效消除像差,并可提高光学调制传递函数(mtf)等性能。在示例性实施方式中,本申请的摄像镜头可满足条件式-0.5<fx5/fx6<0,其中,fx5为第五透镜的x轴方向的有效焦距,fx6为第六透镜的x轴方向的有效焦距。更具体地,fx5和fx6进一步可满足-0.4≤fx5/fx6≤-0.1,例如-0.35≤fx5/fx6≤-0.21。由于第五透镜和/或第六透镜采用自由曲面设计,使其在x轴方向和y轴方向非旋转对称,有利于达到减小tv畸变的目的。在示例性实施方式中,本申请的摄像镜头可满足条件式-0.5<fy1/fy2<0,其中,fy1为第一透镜的y轴方向的有效焦距,fy2为第二透镜的y轴方向的有效焦距。更具体地,fy1和fy2进一步可满足-0.5<fy1/fy2<-0.2,例如-0.46≤fy1/fy2≤-0.39。满足条件式-0.5<fy1/fy2<0,有利于减缓光线偏折,降低第一透镜的敏感度;另一方面,还有利于保证镜头结构的紧凑性,并可提升边缘视场的成像品质。在示例性实施方式中,第一透镜的物侧面为凹面;并且本申请的摄像镜头可满足条件式-1.0<fy/r1<0,其中,fy为摄像镜头的y轴方向的有效焦距,r1为第一透镜的物侧面的曲率半径。更具体地,fy和r1进一步可满足-1.0<fy/r1<-0.5,例如-0.90≤fy/r1≤-0.55。满足条件式-1.0<fy/r1<0,有利于减小广角镜头的第一透镜口径,另一方面还可增大镜头的视场角度,同时还可兼顾多摄镜头的外观美观以及一致性效果。可选地,第一透镜的像侧面可为凹面。在示例性实施方式中,本申请的摄像镜头可满足条件式tan(fovx/2)×tan(fovy/2)<2.0,其中,fovx为摄像镜头的x轴方向的全视场角,fovy为摄像镜头的y轴方向的全视场角。更具体地,fovx和fovy进一步可满足0<tan(fovx/2)×tan(fovy/2)<1.5,例如0.14≤tan(fovx/2)×tan(fovy/2)≤1.45。满足条件式tan(fovx/2)×tan(fovy/2)<2.0,可保证摄像镜头的拍摄范围足够广,并有助于在小畸变状态下实现“鱼眼”镜头功效。在示例性实施方式中,上述摄像镜头还可包括光阑,以提升镜头的成像质量。可选地,光阑可设置在第二透镜与第三透镜之间。可选地,上述摄像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。根据本申请的上述实施方式的摄像镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得摄像镜头更有利于生产加工并且可适用于便携式电子产品。另外,通过引入非旋转对称的非球面,对摄像镜头的轴外子午像差和弧矢像差进行矫正,可保证像面亮度以进一步提高像质,同时达到减小tv畸变的目的,从而使得摄像镜头具有广角小畸变的特性。在本申请的实施方式中,各透镜的镜面多采用非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面中的至少一个可为非球面。可选地,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面均可为非球面。然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成摄像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该摄像镜头不限于包括六个透镜。如果需要,该摄像镜头还可包括其它数量的透镜。下面参照附图进一步描述可适用于上述实施方式的摄像镜头的具体实施例。实施例1以下参照图1至图3描述根据本申请实施例1的摄像镜头。图1示出了根据本申请实施例1的摄像镜头的结构示意图。如图1所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜e1、第二透镜e2、光阑sto、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、滤光片e7和成像面s15。第一透镜e1具有负光焦度,其物侧面s1为凹面,像侧面s2为凹面。第二透镜e2具有正光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凸面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凸面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凸面,像侧面s12为凹面。滤光片e7具有物侧面s13和像侧面s14。来自物体的光依序穿过各表面s1至s14并最终成像在成像面s15上。表1示出了实施例1的摄像镜头的各透镜的表面类型、曲率半径x、曲率半径y、厚度、材料、圆锥系数x以及圆锥系数y,其中,曲率半径x、曲率半径y和厚度的单位均为毫米(mm)。表1应当理解的是,上表中没有特别标示(空白处)的“曲率半径x”和“圆锥系数x”与对应的“曲率半径y”和“圆锥系数y”数值保持一致。以下各实施例中均与此类似。由表1可知,第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4和第五透镜e5中任意一个透镜的物侧面和像侧面以及第六透镜e6的物侧面s11均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表1中曲率半径r的倒数);k为圆锥系数(在表1中已给出);ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面s1-s11的高次项系数a4、a6、a8、a10、a12、a14、a16、a18和a20。面号a4a6a8a10a12a14a16a18a20s13.7873e-01-6.5704e-021.6266e-02-5.0014e-031.3326e-03-3.7291e-047.3216e-0500s22.7162e-01-4.4550e-023.1551e-03-1.5594e-033.0317e-044.9628e-053.2704e-0500s3-3.2474e-03-1.3683e-026.6793e-04-1.6358e-041.4671e-041.4723e-05-6.5201e-0600s41.6209e-022.1782e-038.7444e-042.2928e-049.0479e-051.4412e-058.4236e-0600s54.1975e-04-3.9445e-04-5.6657e-053.0201e-06-7.1351e-063.1489e-06-2.8700e-062.3177e-06-5.1660e-07s6-5.5444e-02-9.9131e-04-3.6195e-044.0684e-052.5237e-067.1976e-061.7505e-054.2050e-069.6352e-06s7-1.6191e-012.1206e-02-5.9565e-041.0877e-031.6857e-049.5538e-051.2582e-057.2058e-06-3.5971e-07s8-1.2269e-012.8370e-023.2517e-04-1.5529e-031.1545e-03-3.4359e-041.4233e-04-4.0626e-051.1866e-05s91.1339e-021.5853e-035.5950e-03-5.3417e-032.5751e-03-1.0459e-033.4745e-04-9.5820e-051.6100e-05s105.5174e-019.6116e-028.7529e-03-1.7412e-03-2.3852e-031.2928e-03-1.8206e-052.2242e-04-7.5715e-05s11-1.2202e+002.3608e-01-1.6147e-025.3917e-038.2289e-04-2.7027e-037.9405e-043.5427e-05-3.5938e-05表2由表1还可以看出,第六透镜e6的像侧面s12为非旋转对称的非球面(即,aas面),非旋转对称的非球面的面型可利用但不限于以下非旋转对称的非球面公式进行限定:其中,z为平行于z轴方向的面的矢高;cx、cy分别为x、y方向面顶点的曲率(=1/曲率半径);kx、ky分别为x、y方向圆锥系数;ar、br、cr、dr、er、fr、gr、hr、jr分别为非球面旋转对称分量中的4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶系数;ap、bp、cp、dp、ep、fp、gp、hp、jp分别为非球面非旋转对称分量中的4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶系数。下表3给出了可用于实施例1中的非旋转对称的非球面s12的ar、br、cr、dr、er、fr、gr、hr、jr系数以及ap、bp、cp、dp、ep、fp、gp、hp、jp系数。表3表4给出了实施例1中各透镜的y轴方向的有效焦距fy1至fy6、第五透镜e5的x轴方向的有效焦距fx5、第六透镜e6的x轴方向的有效焦距fx6、摄像镜头的x轴方向的有效焦距fx、摄像镜头的y轴方向的有效焦距fy、摄像镜头的光学总长度ttl(即,从第一透镜e1的物侧面s1至成像面s15在光轴上的距离)、摄像镜头的x轴方向和y轴方向的像高ihx和ihy以及摄像镜头的x轴方向和y轴方向的全视场角fovx和fovy。表4实施例1中的摄像镜头满足:其中,ihx为摄像镜头的x轴方向的像高,ihy为摄像镜头的y轴方向的像高;fy2/fy3=3.46,其中,fy2为第二透镜e2的y轴方向的有效焦距,fy3为第三透镜e3的y轴方向的有效焦距;fx5/fx6=-0.21,其中,fx5为第五透镜e5的x轴方向的有效焦距,fx6为第六透镜e6的x轴方向的有效焦距;fy1/fy2=-0.39,其中,fy1为第一透镜e1的y轴方向的有效焦距,fy2为第二透镜e2的y轴方向的有效焦距;fy/r1=-0.87,其中,fy为摄像镜头的y轴方向的有效焦距,r1为第一透镜e1的物侧面s1的曲率半径;tan(fovx/2)×tan(fovy/2)=1.45,其中,fovx为摄像镜头的x轴方向的全视场角,fovy为摄像镜头的y轴方向的全视场角。图2示出了实施例1的摄像镜头的rms光斑直径在第一象限内不同像高位置处的大小情况。图3示出了实施例1的摄像镜头的tv畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图2至图3可知,实施例1所给出的摄像镜头能够实现良好的成像品质。实施例2以下参照图4至图6描述根据本申请实施例2的摄像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图4示出了根据本申请实施例2的摄像镜头的结构示意图。如图4所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜e1、第二透镜e2、光阑sto、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、滤光片e7和成像面s15。第一透镜e1具有负光焦度,其物侧面s1为凹面,像侧面s2为凹面。第二透镜e2具有正光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凸面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凹面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凸面,像侧面s12为凹面。滤光片e7具有物侧面s13和像侧面s14。来自物体的光依序穿过各表面s1至s14并最终成像在成像面s15上。表5示出了实施例2的摄像镜头的各透镜的表面类型、曲率半径x、曲率半径y、厚度、材料、圆锥系数x以及圆锥系数y,其中,曲率半径x、曲率半径y和厚度的单位均为毫米(mm)。表5由表5可知,在实施例2中,第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4和第五透镜e5中任意一个透镜的物侧面和像侧面均为非球面;第六透镜e6的物侧面s11和像侧面s12为非旋转对称的非球面。表6示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表7示出了可用于实施例2中非旋转对称的非球面s11和s12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。面号a4a6a8a10a12a14a16a18a20s13.9329e-01-4.5775e-014.3955e-01-3.0845e-011.4959e-01-4.3661e-025.5538e-0300s29.5166e-01-1.5194e+002.3626e+00-3.5960e+003.9957e+00-2.7632e+008.8592e-0100s32.4032e-01-9.9176e-012.8803e+00-8.6319e+001.5669e+01-1.4012e+015.0792e+0000s42.1587e-01-5.2152e-013.2606e+00-2.4924e+011.1209e+02-2.3642e+022.0538e+0200s51.4415e-01-1.8166e+002.3354e+01-2.2250e+021.3329e+03-5.0166e+031.1437e+04-1.4393e+047.6911e+03s6-5.3454e-01-3.2002e-015.5726e+00-3.9891e+011.6071e+02-4.0520e+026.3369e+02-5.6771e+022.2420e+02s7-6.7701e-011.6556e+00-1.3999e+017.2848e+01-2.2761e+024.4672e+02-5.3851e+023.6615e+02-1.0828e+02s8-2.7382e-013.6958e-01-1.0115e+004.4101e+00-1.2404e+012.0006e+01-1.7888e+018.2660e+00-1.5493e+00s91.5632e-01-4.5216e-013.0244e+00-9.3515e+001.5132e+01-1.3972e+017.4505e+00-2.1468e+002.6187e-01s10-7.8445e-013.5894e+00-8.7897e+001.4540e+01-1.5802e+011.1011e+01-4.6843e+001.0922e+00-1.0437e-01表6表7表8给出了实施例2中各透镜的y轴方向的有效焦距fy1至fy6、第五透镜e5的x轴方向的有效焦距fx5、第六透镜e6的x轴方向的有效焦距fx6、摄像镜头的x轴方向的有效焦距fx、摄像镜头的y轴方向的有效焦距fy、摄像镜头的光学总长度ttl、摄像镜头的x轴方向和y轴方向的像高ihx和ihy以及摄像镜头的x轴方向和y轴方向的全视场角fovx和fovy。fy1(mm)-4.18fx(mm)2.18fy2(mm)9.54fy(mm)2.19fy3(mm)2.32ttl(mm)4.91fy4(mm)-5.87ihx(mm)1.73fy5(mm)3.10ihy(mm)2.48fy6(mm)-8.78fovx(°)76.5fx5(mm)3.10fovy(°)97.0fx6(mm)-8.92表8图5示出了实施例2的摄像镜头的rms光斑直径在第一象限内不同视场角处的大小情况。图6示出了实施例2的摄像镜头的tv畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图5至图6可知,实施例2所给出的摄像镜头能够实现良好的成像品质。实施例3以下参照图7至图9描述了根据本申请实施例3的摄像镜头。图7示出了根据本申请实施例3的摄像镜头的结构示意图。如图7所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜e1、第二透镜e2、光阑sto、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、滤光片e7和成像面s15。第一透镜e1具有负光焦度,其物侧面s1为凹面,像侧面s2为凹面。第二透镜e2具有正光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凸面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凹面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凸面,像侧面s12为凹面。滤光片e7具有物侧面s13和像侧面s14。来自物体的光依序穿过各表面s1至s14并最终成像在成像面s15上。表9示出了实施例3的摄像镜头的各透镜的表面类型、曲率半径x、曲率半径y、厚度、材料、圆锥系数x以及圆锥系数y,其中,曲率半径x、曲率半径y和厚度的单位均为毫米(mm)。表9由表9可知,在实施例3中,第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4和第五透镜e5中任意一个透镜的物侧面和像侧面均为非球面;第六透镜e6的物侧面s11和像侧面s12为非旋转对称的非球面。表10示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表11示出了可用于实施例3中非旋转对称的非球面s11和s12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。表10表11表12给出了实施例3中各透镜的y轴方向的有效焦距fy1至fy6、第五透镜e5的x轴方向的有效焦距fx5、第六透镜e6的x轴方向的有效焦距fx6、摄像镜头的x轴方向的有效焦距fx、摄像镜头的y轴方向的有效焦距fy、摄像镜头的光学总长度ttl、摄像镜头的x轴方向和y轴方向的像高ihx和ihy以及摄像镜头的x轴方向和y轴方向的全视场角fovx和fovy。fy1(mm)-4.29fx(mm)2.19fy2(mm)10.56fy(mm)2.20fy3(mm)2.29ttl(mm)4.91fy4(mm)-5.63ihx(mm)1.81fy5(mm)3.12ihy(mm)2.42fy6(mm)-8.70fovx(°)78.8fx5(mm)3.12fovy(°)95.6fx6(mm)-8.84表12图8示出了实施例3的摄像镜头的rms光斑直径在第一象限内不同视场角处的大小情况。图9示出了实施例3的摄像镜头的tv畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图8至图9可知,实施例3所给出的摄像镜头能够实现良好的成像品质。实施例4以下参照图10至图12描述了根据本申请实施例4的摄像镜头。图10示出了根据本申请实施例4的摄像镜头的结构示意图。如图10所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜e1、第二透镜e2、光阑sto、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、滤光片e7和成像面s15。第一透镜e1具有负光焦度,其物侧面s1为凹面,像侧面s2为凹面。第二透镜e2具有正光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凸面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凹面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凸面,像侧面s12为凹面。滤光片e7具有物侧面s13和像侧面s14。来自物体的光依序穿过各表面s1至s14并最终成像在成像面s15上。表13示出了实施例4的摄像镜头的各透镜的表面类型、曲率半径x、曲率半径y、厚度、材料、圆锥系数x以及圆锥系数y,其中,曲率半径x、曲率半径y和厚度的单位均为毫米(mm)。表13由表13可知,在实施例4中,第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4和第五透镜e5中任意一个透镜的物侧面和像侧面均为非球面;第六透镜e6的物侧面s11和s12为非旋转对称的非球面。表14示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15示出了可用于实施例4中非旋转对称的非球面s11和s12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。面号a4a6a8a10a12a14a16a18a20s13.9630e-01-4.5717e-014.3939e-01-3.0876e-011.4944e-01-4.3467e-025.8275e-0300s29.4685e-01-1.5154e+002.3615e+00-3.5972e+004.0016e+00-2.7496e+008.9034e-0100s32.3534e-01-9.9961e-012.8745e+00-8.6251e+001.5701e+01-1.3973e+014.9228e+0000s42.1676e-01-5.3631e-013.2335e+00-2.4860e+011.1214e+02-2.3762e+022.0032e+0200s51.4768e-01-1.8135e+002.3342e+01-2.2252e+021.3329e+03-5.0171e+031.1435e+04-1.4396e+047.7041e+03s6-5.2971e-01-3.1378e-015.5590e+00-3.9935e+011.6068e+02-4.0515e+026.3396e+02-5.6764e+022.2226e+02s7-6.8244e-011.6652e+00-1.4007e+017.2812e+01-2.2768e+024.4664e+02-5.3857e+023.6619e+02-1.0791e+02s8-2.7476e-013.7025e-01-1.0140e+004.4058e+00-1.2407e+012.0003e+01-1.7889e+018.2679e+00-1.5439e+00s91.5579e-01-4.5523e-013.0246e+00-9.3504e+001.5133e+01-1.3971e+017.4505e+00-2.1467e+002.6169e-01s10-7.9338e-013.5858e+00-8.7887e+001.4540e+01-1.5802e+011.1011e+01-4.6840e+001.0923e+00-1.0439e-01表14表15表16给出了实施例4中各透镜的y轴方向的有效焦距fy1至fy6、第五透镜e5的x轴方向的有效焦距fx5、第六透镜e6的x轴方向的有效焦距fx6、摄像镜头的x轴方向的有效焦距fx、摄像镜头的y轴方向的有效焦距fy、摄像镜头的光学总长度ttl、摄像镜头的x轴方向和y轴方向的像高ihx和ihy以及摄像镜头的x轴方向和y轴方向的全视场角fovx和fovy。fy1(mm)-4.35fx(mm)2.19fy2(mm)10.64fy(mm)2.19fy3(mm)2.33ttl(mm)4.95fy4(mm)-5.64ihx(mm)1.81fy5(mm)3.12ihy(mm)2.41fy6(mm)-9.09fovx(°)78.8fx5(mm)3.12fovy(°)95.6fx6(mm)-9.06表16图11示出了实施例4的摄像镜头的rms光斑直径在第一象限内不同视场角处的大小情况。图12示出了实施例4的摄像镜头的tv畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图11至图12可知,实施例4所给出的摄像镜头能够实现良好的成像品质。实施例5以下参照图13至图15描述了根据本申请实施例5的摄像镜头。图13示出了根据本申请实施例5的摄像镜头的结构示意图。如图13所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜e1、第二透镜e2、光阑sto、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、滤光片e7和成像面s15。第一透镜e1具有负光焦度,其物侧面s1为凹面,像侧面s2为凹面。第二透镜e2具有正光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凸面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凹面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凸面,像侧面s12为凹面。滤光片e7具有物侧面s13和像侧面s14。来自物体的光依序穿过各表面s1至s14并最终成像在成像面s15上。表17示出了实施例5的摄像镜头的各透镜的表面类型、曲率半径x、曲率半径y、厚度、材料、圆锥系数x以及圆锥系数y,其中,曲率半径x、曲率半径y和厚度的单位均为毫米(mm)。表17由表17可知,在实施例5中,第一透镜e1、第二透镜e2、第三透镜e3和第四透镜e4中任意一个透镜的物侧面和像侧面均为非球面;第五透镜e5和第六透镜e6中任意一个透镜的物侧面和像侧面为非旋转对称的非球面。表18示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表19示出了可用于实施例5中非旋转对称的非球面s9至s12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。面号a4a6a8a10a12a14a16a18a20s13.8493e-01-4.5837e-014.3922e-01-3.0865e-011.4944e-01-4.3732e-025.5327e-0300s29.6073e-01-1.5298e+002.3494e+00-3.6079e+003.9892e+00-2.7608e+009.0076e-0100s32.5079e-01-9.8086e-012.8828e+00-8.6540e+001.5603e+01-1.4073e+015.2402e+0000s42.1164e-01-5.1115e-013.2822e+00-2.4996e+011.1170e+02-2.3674e+022.0801e+0200s51.3701e-01-1.8349e+002.3312e+01-2.2258e+021.3329e+03-5.0167e+031.1437e+04-1.4391e+047.6858e+03s6-5.3065e-01-3.2324e-015.5509e+00-3.9903e+011.6068e+02-4.0526e+026.3351e+02-5.6778e+022.2546e+02s7-6.6931e-011.6563e+00-1.3999e+017.2866e+01-2.2756e+024.4680e+02-5.3843e+023.6616e+02-1.0850e+02s8-2.7552e-013.6856e-01-1.0079e+004.4172e+00-1.2400e+012.0007e+01-1.7888e+018.2644e+00-1.5516e+00表18表19表20给出了实施例5中各透镜的y轴方向的有效焦距fy1至fy6、第五透镜e5的x轴方向的有效焦距fx5、第六透镜e6的x轴方向的有效焦距fx6、摄像镜头的x轴方向的有效焦距fx、摄像镜头的y轴方向的有效焦距fy、摄像镜头的光学总长度ttl、摄像镜头的x轴方向和y轴方向的像高ihx和ihy以及摄像镜头的x轴方向和y轴方向的全视场角fovx和fovy。表20图14示出了实施例5的摄像镜头的rms光斑直径在第一象限内不同视场角处的大小情况。图15示出了实施例5的摄像镜头的tv畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图14至图15可知,实施例5所给出的摄像镜头能够实现良好的成像品质。实施例6以下参照图16和图18描述了根据本申请实施例6的摄像镜头。图16示出了根据本申请实施例6的摄像镜头的结构示意图。如图16所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜e1、第二透镜e2、光阑sto、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、滤光片e7和成像面s15。第一透镜e1具有负光焦度,其物侧面s1为凹面,像侧面s2为凹面。第二透镜e2具有正光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凸面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凹面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凸面,像侧面s12为凹面。滤光片e7具有物侧面s13和像侧面s14。来自物体的光依序穿过各表面s1至s14并最终成像在成像面s15上。表21示出了实施例6的摄像镜头的各透镜的表面类型、曲率半径x、曲率半径y、厚度、材料、圆锥系数x以及圆锥系数y,其中,曲率半径x、曲率半径y和厚度的单位均为毫米(mm)。表21由表21可知,在实施例6中,第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4和第五透镜e5以及第六透镜e6的物侧面s11中任意一个透镜的物侧面和像侧面均为非球面;第六透镜e6的像侧面s12为非旋转对称的非球面。表22示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表23示出了可用于实施例6中非旋转对称的非球面s12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。面号a4a6a8a10a12a14a16a18a20s18.3566e-01-1.3548e-013.1780e-02-1.0435e-022.2621e-03-8.6481e-041.4597e-0400s25.7062e-01-1.0042e-014.1546e-03-1.9245e-031.0616e-03-3.4157e-05-5.1508e-0600s3-8.8987e-03-2.8649e-022.1634e-036.1224e-043.4539e-04-6.3430e-05-2.2599e-0500s43.3821e-023.3303e-031.8001e-035.6898e-041.8015e-043.4437e-051.2439e-0500s52.3581e-03-1.4452e-03-1.2423e-05-1.2546e-051.6067e-05-6.0333e-062.6589e-06-4.4048e-061.9527e-06s6-1.2040e-014.4852e-04-2.3354e-041.4241e-04-3.5107e-069.3998e-064.6970e-06-9.6097e-064.9987e-06s7-3.2344e-014.2018e-02-1.8017e-031.6433e-03-2.5583e-041.9726e-04-4.1376e-051.7598e-05-1.8987e-05s8-2.1767e-015.9241e-02-2.7553e-03-1.0596e-036.1395e-04-1.4120e-04-1.1448e-05-4.6140e-06-2.3666e-05s96.9480e-02-1.7877e-038.8279e-03-7.4453e-033.7928e-03-1.5296e-033.6087e-04-1.4680e-04-3.7284e-06s101.3246e+001.9865e-012.7868e-021.7331e-036.3908e-043.6729e-03-5.2424e-042.9703e-04-2.2269e-04s11-2.5409e+005.7712e-01-4.2233e-028.2299e-03-4.9451e-03-3.7764e-032.1706e-039.0064e-04-5.3571e-04表22表23表24给出了实施例6中各透镜的y轴方向的有效焦距fy1至fy6、第五透镜e5的x轴方向的有效焦距fx5、第六透镜e6的x轴方向的有效焦距fx6、摄像镜头的x轴方向的有效焦距fx、摄像镜头的y轴方向的有效焦距fy、摄像镜头的光学总长度ttl、摄像镜头的x轴方向和y轴方向的像高ihx和ihy以及摄像镜头的x轴方向和y轴方向的全视场角fovx和fovy。fy1(mm)-5.28fx(mm)3.74fy2(mm)11.42fy(mm)3.73fy3(mm)4.12ttl(mm)10.22fy4(mm)-5.35ihx(mm)3.50fy5(mm)3.65ihy(mm)4.89fy6(mm)-14.98fovx(°)87.5fx5(mm)3.65fovy(°)106.4fx6(mm)-14.88表24图17示出了实施例6的摄像镜头的rms光斑直径在第一象限内不同像高位置处的大小情况。图18示出了实施例6的摄像镜头的tv畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图17至图18可知,实施例6所给出的摄像镜头能够实现良好的成像品质。实施例7以下参照图19至图21描述了根据本申请实施例7的摄像镜头。图19示出了根据本申请实施例7的摄像镜头的结构示意图。如图19所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜e1、第二透镜e2、光阑sto、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、滤光片e7和成像面s15。第一透镜e1具有负光焦度,其物侧面s1为凹面,像侧面s2为凹面。第二透镜e2具有正光焦度,其物侧面s3为凸面,像侧面s4为凹面。第三透镜e3具有正光焦度,其物侧面s5为凸面,像侧面s6为凸面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凹面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凸面,像侧面s12为凹面。滤光片e7具有物侧面s13和像侧面s14。来自物体的光依序穿过各表面s1至s14并最终成像在成像面s15上。表25示出了实施例7的摄像镜头的各透镜的表面类型、曲率半径x、曲率半径y、厚度、材料、圆锥系数x以及圆锥系数y,其中,曲率半径x、曲率半径y和厚度的单位均为毫米(mm)。表25由表25可知,在实施例7中,第一透镜e1、第二透镜e2、第三透镜e3、第四透镜e4和第五透镜e5中任意一个透镜的物侧面和像侧面以及第六透镜e6的物侧面s11均为非球面;第六透镜e6的像侧面s12为非旋转对称的非球面。表26示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27示出了可用于实施例7中非旋转对称的非球面s12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。面号a4a6a8a10a12a14a16a18a20s11.2535e+00-2.0322e-014.7670e-02-1.5653e-023.3932e-03-1.2972e-032.1895e-0400s28.5593e-01-1.5063e-016.2319e-03-2.8867e-031.5924e-03-5.1236e-05-7.7262e-0600s3-1.3348e-02-4.2973e-023.2451e-039.1835e-045.1808e-04-9.5144e-05-3.3898e-0500s45.0732e-024.9954e-032.7002e-038.5347e-042.7022e-045.1656e-051.8658e-0500s53.5371e-03-2.1679e-03-1.8635e-05-1.8818e-052.4101e-05-9.0500e-063.9883e-06-6.6072e-062.9291e-06s6-1.8060e-016.7278e-04-3.5031e-042.1362e-04-5.2660e-061.4100e-057.0455e-06-1.4415e-057.4981e-06s7-4.8516e-016.3026e-02-2.7025e-032.4649e-03-3.8375e-042.9589e-04-6.2064e-052.6398e-05-2.8480e-05s8-3.2651e-018.8861e-02-4.1330e-03-1.5894e-039.2093e-04-2.1180e-04-1.7172e-05-6.9210e-06-3.5499e-05s91.0422e-01-2.6816e-031.3242e-02-1.1168e-025.6893e-03-2.2945e-035.4130e-04-2.2020e-04-5.5926e-06s101.9869e+002.9798e-014.1802e-022.5996e-039.5863e-045.5093e-03-7.8636e-044.4555e-04-3.3404e-04s11-3.8114e+008.6569e-01-6.3349e-021.2345e-02-7.4176e-03-5.6646e-033.2559e-031.3510e-03-8.0356e-04表26表27表28给出了实施例7中各透镜的y轴方向的有效焦距fy1至fy6、第五透镜e5的x轴方向的有效焦距fx5、第六透镜e6的x轴方向的有效焦距fx6、摄像镜头的x轴方向的有效焦距fx、摄像镜头的y轴方向的有效焦距fy、摄像镜头的光学总长度ttl、摄像镜头的x轴方向和y轴方向的像高ihx和ihy以及摄像镜头的x轴方向和y轴方向的全视场角fovx和fovy。表28图20示出了实施例7的摄像镜头的rms光斑直径在第一象限内不同像高位置处的大小情况。图21示出了实施例7的摄像镜头的tv畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图20至图21可知,实施例7所给出的摄像镜头能够实现良好的成像品质。综上,实施例1至实施例7分别满足表29中所示的关系。表29本申请还提供一种摄像装置,其电子感光元件可以是感光耦合元件(ccd)或互补性氧化金属半导体元件(cmos)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有以上描述的摄像镜头。以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1