定影装置和定影温度控制方法与流程

文档序号:18702391发布日期:2019-09-17 23:06阅读:1300来源:国知局
定影装置和定影温度控制方法与流程

本发明的实施方式涉及一种定影装置和定影温度控制方法。



背景技术:

图像形成系统具有定影装置。定影装置将调色剂热定影于片材。定影装置具有定影部件和加压部件。定影部件利用加压部件对片材进行加压。

基于定影部件的长边方向的温度分布来控制定影部件的温度。更优选的是,在长边方向的多个部位检测定影部件的温度。

例如,定影装置可以具有位置固定的多个温度检测传感器。但是,在这种情况下,存在不能检测未配置温度检测传感器的部位的温度的问题。如果增加温度检测传感器,则存在元件成本增加的问题。

例如,定影装置可以使一个温度检测传感器沿长边方向移动。在这种情况下,需要进行温度检测传感器的位置控制。但是,存在能够进行位置控制的电动机价格高的问题。

例如,可以考虑位置检测传感器与价格低的电动机组合。但是,位置检测传感器需要检测温度检测传感器的移动范围内的任意位置。这种位置检测传感器存在需要大的配置空间的问题。此外,这种位置检测传感器存在价格高的问题。

实施方式的定影装置具有:定影部件,具有形成于两端部的非加热区域和夹在所述非加热区域之间的加热区域;温度检测传感器,检测所述定影部件的表面的温度;移动机构,使所述温度检测传感器移动,使得沿所述定影部件的宽度方向对所述非加热区域和所述加热区域进行扫描;移动时间计算部,基于伴随所述温度检测传感器的移动而由所述温度检测传感器检测出的温度变化,求出所述移动机构到扫描范围的第一端部和第二端部的到达时间,计算所述温度检测传感器在所述第一端部和所述第二端部之间移动的第一移动时间以及从所述第一端部或所述第二端部到所述温度检测传感器的移动位置的第二移动时间;移动位置计算部,根据所述第二移动时间相对于所述第一移动时间的比例来计算所述移动位置;以及温度控制部,基于由所述移动位置计算部计算出的所述移动位置和在所述移动位置上所述温度检测传感器检测出的温度,进行所述定影部件的温度控制。

实施方式的定影温度控制方法,其特征在于,准备定影部件,所述定影部件在宽度方向的两端部设置有非加热区域,并且在所述非加热区域之间设置有加热区域,使温度检测传感器沿所述宽度方向对所述两端部中的所述非加热区域以及所述加热区域进行扫描,基于所述温度检测传感器检测出的温度变化,求出到扫描范围的第一端部和第二端部的到达时间,计算所述温度检测传感器在所述第一端部和所述第二端部之间移动的第一移动时间以及从所述第一端部或所述第二端部到移动位置的第二移动时间,根据所述第二移动时间相对于所述第一移动时间的比例,计算所述温度检测传感器的所述移动位置,基于计算出的所述移动位置和在所述移动位置上所述温度检测传感器检测出的温度,进行所述定影部件的温度控制。

附图说明

图1是示出第一实施方式的图像形成系统的构成例的截面示意图。

图2是示出第一实施方式的定影装置的构成例的截面示意图。

图3是示出第一实施方式的定影装置的主要部分的构成例的立体示意图。

图4是示出第一实施方式的定影装置的移动机构的卡合部的构成例的立体示意图。

图5是第一实施方式的定影装置的控制系统的框图。

图6是示出第一实施方式的定影装置的温度检测传感器的输出例的曲线图。

图7是示出第一实施方式的定影装置的定影部件的稳定状态的温度分布例的曲线图。

图8是示出第一实施方式的定影装置的定影部件的稳定状态的温度分布例的曲线图。

图9是示出第一实施方式的定影温度控制方法流程的例子的流程图。

图10是示出第一实施方式的定影温度控制方法中的端部判定流程的例子的流程图。

图11是示出第一实施方式的定影温度控制方法中的温度控制流程的例子的流程图。

图12是示出第二实施方式的定影装置的主要部分的构成例的主视示意图。

图13是示出第二实施方式的定影装置的主要部分的构成例的俯视示意图。

具体实施方式

(第一实施方式)

以下,参照附图对第一实施方式的定影装置和图像形成系统进行说明。

图1是示出第一实施方式的图像形成系统的构成例的截面示意图。

在各附图中,为了便于观察,夸大或简化了各部件的尺寸和形状(以下的附图也同样)。在各图中,除非另有说明,相同的构成采用相同的附图标记。

图1所示的实施方式的图像形成系统100例如是mfp(multi-functionperipherals多功能外围设备)、打印机和复印机等。

图像形成系统100具有:扫描部101、原稿自动输送部(adf)102、打印部103、供纸部104、翻转部105、手动供纸部106和控制器110。

以下,基于图1中记载的配置姿势对图像形成系统100的构成进行说明。图1中的图像形成系统100设置于水平面。图1中的纵向与铅垂方向一致。在图1中,图像形成系统100的装置的前面部朝向纸面眼前一侧。从与图像形成系统100的前面部相对的方向观察,朝向右侧(图示右侧)与图像形成系统100的右侧一致。从与图像形成系统100的前面部相对的方向观察,朝向左侧(图示左侧)与图像形成系统100的左侧一致。虽然没有特别图示,但是在图1中的纸面里侧设置有图像形成系统100的后面部。

在没有特别说明的情况下,基于上述图像形成系统100的配置姿势,对构成图像形成系统100的部件的相对位置使用前、后、上、下、左、右等术语。因此,前、后、上、下、左、右等术语有时与图示中的位置关系不同。

扫描部101读取原稿(省略图示)。在扫描部101的上部设置有承载原稿的原稿台101a。在原稿台101a上设置有adf102。

adf102将承载于原稿承载部102a的原稿向扫描部101的原稿台101a输送。向原稿台101a的原稿读取位置输送的原稿排出到原稿承载部102a下方的原稿排出台102b。

扫描部101具有对原稿进行照明的照明光源(省略图示)和对来自原稿的反射光进行光电转换的图像传感器(省略图示)。扫描部101利用照明光源和图像传感器,读取由adf102输送的原稿或放置在原稿台101a上的原稿的信息。

虽然省略了图示,但是在扫描部101的图示眼前一侧设置有操作面板(操作部),该操作面板(操作部)用于用户对图像形成系统100的动作进行操作。例如,操作面板具备具有各种键的操作面板和触摸面板式显示部。

在扫描部101的下方依次设置有打印部103(图像形成系统主体)和供纸部104。

供纸部104将形成有图像的片材p向打印部103供给。

为了将片材p向打印部103供给,供纸部104使片材p移动的方向是“第一供纸方向”。在图1的例子中,第一供纸方向是从图示左侧向右侧前进的方向。在片材p的片材面内与第一供纸方向正交的方向是“第一供纸正交方向”。

供纸部104具有供纸盒104a。在图1中作为一例设置有一个供纸盒104a。但是,供纸部104也可以设置多个供纸盒。

供纸盒104a以中央为基准来收容各种尺寸的片材p。在供纸盒104a中,各种尺寸的片材p的第一供纸正交方向的宽度的中心轴线与固定位置对位。

此外,供纸部104具有供纸辊104b。供纸辊104b将片材p从供纸盒104a向打印部103内的输送通路供给。

供纸部104中的片材p的供纸方法没有特别限定,只要是辊供纸方式即可。同样,片材p的分离方式也没有特别限定。例如,可以使用角爪方式、分离垫方式和分离辊方式等适当的分离方式。

打印部103基于由扫描部101读取的图像数据或由个人计算机等制作的图像数据,在片材p上形成图像。打印部103例如是串列式的彩色打印机。

打印部103具有:图像形成部30、输送部40、定影装置50和排扺辊60

图像形成部30利用黄色(y)、品红色(m)、青色(c)和黑色(k)的各色调色剂,在片材p上形成图像。

图像形成部30具有:曝光器31、成像单元32和转印单元33。

曝光器31产生曝光光31a。曝光光31a在包含于后述的成像单元32的四个感光鼓32a上形成与上述各色图像对应的潜影。

作为曝光器31可以使用利用激光扫描的曝光器。作为曝光器31也可以使用利用led等固体扫描元件的曝光器。

成像单元32具有作为像载体的四个感光鼓32a。各感光鼓32a从左侧朝向右侧相互分开且平行并列配置。

利用省略图示的驱动电动机,分别沿图示顺时针方向对各感光鼓32a进行转动驱动。

成像单元32在感光鼓32a的各外周部具有:带电器32b、显影器32c和感光体清洁器32e。带电器32b、显影器32c和感光体清洁器32e沿各感光鼓32a的转动方向依次配置。

成像单元32配置在曝光器31的上方。

在四个感光鼓32a上从左侧朝向右侧形成与y、m、c、k的各色图像对应的潜影和调色剂像。

成像单元32中的各带电器32b、各显影器32c和各感光体清洁器32e除了用于成像的调色剂的颜色不同以外具有同样的构成。

带电器32b使感光鼓32a的表面均匀带电。

向带电的感光鼓32a照射基于图像数据调制的曝光光31a。在感光鼓32a上形成静电潜影。

显影器32c具有显影辊。显影辊将带电的调色剂向感光鼓32a的表面供给。如果向显影辊施加显影偏压,则感光鼓32a上的静电潜影被调色剂显影。

各显影器32c的上方分别隔着后述的转印单元33配置有调色剂盒32f。在本实施方式中配置有分别供给y、m、c、k的各色调色剂的四个调色剂盒32f。

在调色剂盒32f和显影器32c之间设置有调色剂补给器(省略图示)。调色剂盒32f内的调色剂由调色剂补给器向显影器32c供给。

感光体清洁器32e通过后述的转印单元33,从感光鼓32a的表面除去未一次转印的感光鼓32a上的残留调色剂。例如,感光体清洁器32e具有与感光鼓32a抵接的清洁刮板。清洁刮板除去感光鼓32a表面的残留调色剂。

转印单元33配置成从上方覆盖各感光鼓32a。

转印单元33通过对形成于各感光鼓32a表面的各调色剂像依次进行一次转印,形成各色调色剂的一次转印图像。此外,转印单元33通过将一次转印图像二次转印在片材p上,在片材p上形成调色剂像。

转印单元33具有:中间转印带33a、驱动辊33b、从动辊33c、一次转印辊33d、二次转印辊33e和中间转印带清洁器33f。

中间转印带33a通过驱动辊33b和多个从动辊33c以横向长的方式架设。利用省略图示的驱动电动机沿图示逆时针方向对驱动辊33b进行转动驱动。如果对驱动辊33b进行驱动,则中间转印带33a沿图示逆时针方向循环移动。中间转印带33a的线速度与预先确定的工艺线速度配合。

中间转印带33a图示下侧的表面与各感光鼓32a上侧的顶部接触。

在中间转印带33a的内侧,在与各感光鼓32a相对的位置分别配置有一次转印辊33d。

如果施加一次转印电压,则一次转印辊33d将感光鼓32a上的调色剂像一次转印于中间转印带33a。

二次转印辊33e隔着中间转印带33a与驱动辊33b相对。二次转印辊33e与中间转印带33a的抵接位置是二次转印位置。

当片材p通过驱动辊33b和二次转印辊33e之间时,向二次转印辊33e施加二次转印电压。如果施加二次转印电压,则二次转印辊33e将中间转印带33a上的调色剂像二次转印于片材p。

在图示左端部中的从动辊33c的附近配置有中间转印带清洁器33f。中间转印带清洁器33f从中间转印带33a除去未二次转印于片材p而残留在中间转印带33a上的残留转印调色剂。例如,中间转印带清洁器33f具有与中间转印带33a抵接的清洁刮板。清洁刮板除去中间转印带33a表面的残留调色剂。

输送部40将从供纸盒104a供纸的片材p向沿打印部103内的第一输送通路41的第一输送方向(从图示下侧朝向上侧的方向)输送。

第一输送通路41由多个输送导向部件构成。第一输送通路41引导片材p的输送。第一输送通路41设置在供纸辊104b和上述二次转印位置之间、二次转印位置和后述的定影装置50之间、以及定影装置50和后述的排扺辊60之间。

定影装置50将附着于通过二次转印位置的片材p的调色剂像定影于片材p。定影装置50配置在二次转印辊33e的上方。

定影装置50具有定影部件51和加压部件52。定影部件51和加压部件52将在第一输送通路41内前进的片材p夹持于定影夹缝。定影夹缝在与第一输送方向正交的方向(第一输送正交方向)上形成为带状,该带状延伸成比纸能够通过的片材p的最大宽度长。

定影部件51在定影夹缝中对片材p进行加热。定影部件51例如使用筒状的环形带或辊。

定影部件51的加热源没有特别限定,只要能够将定影部件51的表面温度控制为定影温度即可。例如根据调色剂的软化温度和工艺线速度等条件来预先确定定影温度。定影温度可以根据第一输送正交方向的位置而确定为不同的目标温度。

作为定影部件51的加热源,例如可以使用灯加热器、陶瓷加热器、感应加热源(ih加热器)和钢加热器等。

加压部件52在定影夹缝中对片材p进行加压。加压部件52例如使用筒状的环形带或辊。

利用省略图示的驱动电动机,对定影部件51和加压部件52的至少一方进行转动驱动。如果驱动电动机转动,则由定影部件51和加压部件52夹持的片材p以不超过工艺线速度的定影线速度向第一输送方向输送。

在图像形成系统100的整体构成的说明后,对本实施方式的定影装置50的详细构成进行说明。

排扺辊60在定影装置50的上方设置于第一输送通路41的端部。

在定影装置50的上方,第一输送通路41伴随从图示下侧朝向上侧而从右侧朝向左侧弯曲。

与排扺辊60相比在图示左侧,在图像形成部30的上方、且在扫描部101的下方配置有排扺台103a。

利用省略图示的驱动电动机以能够正反转的方式对排扺辊60进行转动驱动。

如果排扺辊60正转,则排扺辊60使在第一输送通路41内前进的片材p在排扺台103a上移动。如果排扺辊60持续正转,则片材p被排出到排扺台103a。

在片材p进入排扺辊60的状态下,如果排扺辊60反转,则片材p沿第一输送通路41端部的路径从左侧向右侧移动。在这种情况下,排扺辊60能够将片材p输送到后述的翻转部105。

翻转部105通过使通过定影装置50的片材p转回而向定位辊45对片材p进行翻转供纸。翻转部105在进行双面印刷时使用。

翻转部105隔着第一输送通路41配置在与图像形成部30相对的部位(图示右侧)。

翻转部105具有第二输送通路71。

第二输送通路71由多个输送导向部件构成。第二输送通路71引导片材p的输送。第二输送通路71在定影装置50和排扺辊60之间的输送通路切换部72中从第一输送通路41分路。在输送通路切换部72设置有输送通路切换部件73,该输送通路切换部件73在排扺辊60反转时将片材p从第一输送通路41向第二输送通路71引导。

第二输送通路71在供纸部104和定位单元定位辊45之间的合流部74与第一输送通路41合流。

在第二输送通路71的路径上配置有由省略图示的驱动电动机驱动的多个翻转输送辊。各翻转输送辊将片材p向第二输送方向输送。第二输送方向是如下方向:从排扺辊60经由第一输送通路41朝向输送通路切换部72,并且从输送通路切换部72经由第二输送通路71朝向合流部74。

从合流部74进入第一输送通路41的片材p沿第一输送通路41中的第一输送方向前进。

手动供纸部106将形成图像的片材p向打印部103供给。

手动供纸部106具有手动供纸盘106a和手动导向件106b。

手动供纸盘106a设置成能够以沿第二供纸正交方向延伸的转动轴线为中心旋转。在未使用手动供纸盘106a的情况下,手动供纸盘106a收容于与翻转部105重合的打印部103的侧部。

手动导向件106b在手动供纸盘106a上以中央为基准对各种尺寸的片材p进行对位。

手动供纸部106在翻转部105的下方具有手动供纸辊106c和供纸垫106d。

手动供纸辊106c将手动供纸盘106a上的片材p供给到定位辊45。

供纸垫106d防止片材p的重叠输送。

但是,手动供纸部106中的片材p的供纸方法没有特别限定,只要是辊供纸方式即可。

控制器110基于来自省略图示的操作部的操作输入,控制图像形成系统100各装置部分的动作。

例如,控制器110具有:cpu、只读存储器(rom)、随机存取存储器(ram)、输入输出接口、输入输出控制电路、供纸输送控制电路、图像形成控制电路和定影控制电路。

cpu通过执行存储于rom或ram的程序,实现用于图像形成的处理功能。

控制器110中的输入输出控制电路对操作部和显示部进行控制。操作部可以使用由键盘、显示器等构成的操作面板。显示部也可以使用显示图像、文字信息等的显示器。

供纸输送控制电路对各种驱动电动机进行驱动控制,上述各种驱动电动机包含在供纸部104、翻转部105、打印部103、排扺辊60和翻转部105中。

图像形成控制电路基于来自cpu的控制信号,控制adf102、扫描部101和图像形成部30的动作。

定影控制电路基于来自cpu的控制信号,控制定影装置50的驱动电动机的动作和定影部件51的温度。

将在后面以定影温度控制为中心对控制器110的具体控制进行说明。

接着,对定影装置50进行详细说明。

图2是示出第一实施方式的定影装置的构成例的截面示意图。图3是示出第一实施方式的定影装置的主要部分的构成例的立体示意图。图4是示出第一实施方式的定影装置的移动机构的卡合部的构成例的立体示意图。

图2所示的定影装置50作为一例具有定影带感应加热方式的构成。定影装置50的定影部件51具有:定影带51a、衬垫51b、带导向件51c和隔离导向件51d。

定影带51a配置成构成定影部件51的表面。定影带51a是筒状的环形带。定影带51a的带宽度比纸能够通过的片材p的最大宽度宽。定影带51a是金属制成。例如,定影带51a可以由不锈钢等材料形成。

定影带51a受理由加压部件52的转动产生的转动驱动力而沿图示逆时针方向转动。

在定影带51a的外周部中,在与加压部件52相反一侧配置有加热部件53。在图2所示的例子中,作为加热部件53使用ih加热器。ih加热器通过利用交变磁通在定影带51a中产生涡电流,对定影带51a进行加热。ih加热器的交变磁通由交流电流的通电形成。

用于加热部件53的ih加热器具有相互独立地产生磁通的多个ih线圈。多个ih线圈沿定影带51a的长边方向(图示进深方向)排列。ih线圈的通电时对与ih线圈相对的定影带51a进行感应加热。在定影带51a中在ih线圈的相对部位形成有被ih线圈感应加热的加热区域。

ih线圈的个数和排列图案没有特别限定。在本实施方式中,如图3所示,在从定影带51a的第一端部e1(后侧的端部)朝向第二端部e2(前侧的端部)的宽度方向上以如下顺序形成有:第一非加热区域n1(非加热区域)、第一加热区域h1(加热区域)、第二加热区域h2(加热区域)、第三加热区域h3(加热区域)和第二非加热区域n2(非加热区域)。

第一非加热区域n1是在定影带51a中未相对配置加热部件53的ih线圈的区域。未由ih线圈的磁通对第一非加热区域n1进行感应加热。第一非加热区域n1形成在与第一端部e1相距距离d1的范围内。

第一加热区域h1形成在与第一端部e1相距从距离d1的位置到距离d1+d2的位置的范围内。

第二加热区域h2形成在与第一端部e1相距从距离d1+d2的位置到距离d1+d2+d3的位置的范围内。

第三加热区域h3形成在与第一端部e1相距从距离d1+d2+d3的位置到距离d1+d2+d3+d4的位置的范围内。

第二非加热区域n2与第一非加热区域n1同样,是未被ih线圈的磁通感应加热的区域。第一非加热区域n1形成在与第一端部e1相距从距离d1+d2+d3+d4的位置到第二端部的范围内。定影带51a长边方向的第二非加热区域n2的宽度是d5。

在此,d1>d5、d2=d4<d3。d2+d3+d4比图像形成系统100中的纸能够通过的片材p的最大宽度大。d3与在图像形成系统100中使用频度高的片材p的宽度尺寸大体相等。例如,图像形成系统100的纸通过最大宽度可以是a3纵向输送(a4横向输送)的宽度尺寸297mm。例如,宽度d3可以是a4纵向输送(a5横向输送)的宽度尺寸210mm。

在此,“横向输送”表示在片材p的长边沿第一输送正交方向延伸的姿势下输送片材p。“纵向输送”表示在片材p的长边沿第一输送方向延伸的姿势下输送片材p。

如图2所示,衬垫51b配置在定影带51a的内侧。衬垫51b隔着定影带51a与定影夹缝n相对。衬垫51b利用省略图示的弹簧等向定影带51a加压。衬垫51b具有与定影夹缝n的长度相同的长度。衬垫51b使定影夹缝n的夹缝宽度稳定化。

可以在衬垫51b与定影带51a的抵接面上实施耐热性的低摩擦涂层。

带导向件51c插入定影带51a的内侧。带导向件51c引导定影带51a的转动。带导向件51c将定影带51a的形状保持为大体圆筒状。作为带导向件51c的材料使用金属、陶瓷等,上述金属、陶瓷等与定影带51a的内周面的滑动特性良好,并且具有相对于定影温度的耐热性。

隔离导向件51d引导通过定影夹缝n的片材p脱离定影带51a。隔离导向件51d配置在定影带51a的外周部。隔离导向件51d的配置位置与定影带51a的转动方向的定影夹缝n相比是下游侧。隔离导向件51d的前端与定影带51a的外周面抵接。

在图2所示的例子中,加压部件52由弹性辊构成。加压部件52具有芯轴52a和弹性层52b。

芯轴52a是金属制的筒状部件。例如,芯轴52a可以由铝合金构成。

芯轴52a的两端部经由省略图示的轴承被定影装置50中的省略图示的支承部件支承。芯轴52a能够绕芯轴52a的中心轴线转动。

弹性层52b例如由耐热性的橡胶材料形成。弹性层52b例如可以由硅橡胶形成。

在弹性层52b的外周面形成有省略图示的脱模层。脱模层由相对于调色剂的脱模性良好的树脂材料形成。例如,脱模层可以由氟树脂等形成。

在芯轴52a轴向的端部(后侧的端部)设置有省略图示的齿轮。齿轮将转动驱动力向芯轴52a传递。齿轮传递的转动驱动力由驱动电动机59(参照图3)产生。由驱动电动机59产生的转动驱动力经由与驱动电动机59连结的传递机构59a(参照图3)向齿轮传递。

驱动电动机59的种类没有特别限定,只要能够改变转动速度即可。例如,作为驱动电动机59可以使用有刷电动机、无刷电动机和步进电动机等。作为驱动电动机59可以使用不能对转动轴的转动位置进行定位的电动机。

如果向与芯轴52a连接的齿轮传递转动驱动力,则加压部件52以芯轴52a的中心轴线为中心沿图2中的图示顺时针方向转动。

在定影装置50中,在定影部件51的外周部配置有温度检测单元54。温度检测单元54沿定影带51a的转动方向在加热部件53的下游侧且在定影夹缝n的上游侧的位置与定影带51a相对。在图2所示的例子中,温度检测单元54与定影带51a转动中心下侧的定影带51a的外表面相对。

在利用加热部件53对定影带51a进行加热后,温度检测单元54能够检测定影带51a到达定影夹缝n前的定影带51a的温度。

图2所示的温度检测单元54具有温度检测传感器55和移动机构56。

温度检测传感器55检测定影部件51中的定影带51a外表面的温度。例如,作为温度检测传感器55可以使用热敏电阻和热电堆等。

温度检测传感器55将检测到的温度向设置于控制器110的后述的定影控制器120送出。

如图3分解立体图所示,温度检测传感器55具有导向销55a(从动件)和滑块55b(卡合部、从动件)。

导向销55a向温度检测传感器55的下方突出。

如图4所示,滑块55b俯视观察的形状是长径×短径为d×w(其中,d>w)的长圆。滑块55b的高度是h。导向销55a长径方向的前端部是圆形。

滑块55b固定成能够绕导向销55a的中心轴线c转动。

如图3所示,移动机构56使温度检测传感器55在沿定影带51a的宽度方向延伸的扫描线l上移动。通过利用移动机构56移动,温度检测传感器55沿扫描线l对定影带51a外表面的区域进行扫描。

在本实施方式中,移动机构56使温度检测传感器55在扫描线l上反复进行往返移动。移动机构56的温度检测传感器55的移动范围是从靠近第一端部e1的点p1到靠近第二端部e2的点p6之间。点p1、p6是移动机构56的移动的返回位置(折返位置)。

点p1和点p6之间的点p2、p3、p4、p5分别表示第一非加热区域n1和第一加热区域h1的边界点、第一加热区域h1和第二加热区域h2的边界点、第二加热区域h2和第三加热区域h3的边界点、以及第三加热区域h3和第二非加热区域n2的边界点。

在本实施方式中,点p1与点p2的距离比点p6与点p5的距离长。

移动机构56的具体构成没有特别限定,只要是上述方式的配置和能够进行移动动作即可。

在图3所示的例子中,移动机构56具有圆筒凸轮57(凸轮机构)和滑动导向件58(凸轮机构、直线导向件)。

圆筒凸轮57具有沿中心轴线o延伸的圆柱状的外形。圆筒凸轮57的长度比移动机构56的扫描范围的长度长。如图2所示,圆筒凸轮57隔着温度检测传感器55和滑动导向件58与定影部件51相对。

如图3所示,圆筒凸轮57的中心轴线o与扫描线l平行。以下,将在圆筒凸轮57中与定影部件51的第一端部e1相对的端部表示为第一端部e1。将圆筒凸轮57中与定影部件51的第二端部e2相对的端部表示为第二端部e2。

在圆筒凸轮57的第一端部e1中,转动轴57e与中心轴线o同轴延伸。转动轴57e能够转动地支承于温度检测单元54的省略图示的壳体。转动轴57e的前端与齿轮57f连结。

齿轮57f经由传递机构59b与驱动电动机59连结。

圆筒凸轮57经由传递机构59b将驱动电动机59的转动驱动力向齿轮57f传递。利用驱动电动机59驱动圆筒凸轮57绕中心轴线o转动。

圆筒凸轮57的转动方向和转动速度没有特别限定。其中,驱动电动机59也对加压部件52进行转动驱动。因此,圆筒凸轮57的转动速度与加压部件52和与其联动的定影部件51的转动速度保持固定的比例。圆筒凸轮57的转动速度只要根据后述的温度检测传感器55的移动所需要的速度来适当确定即可。

以下,作为一例以沿中心轴线o从第一端部e1朝向第二端部e2的方向观察时圆筒凸轮57的转动方向为向右转来进行说明。

在圆筒凸轮57的表面形成有作为凸轮槽的第一螺旋槽57a和第二螺旋槽57b。

沿中心轴线o从第一端部e1朝向第二端部e2的方向观察时,第一螺旋槽57a从第一端部e1朝向第二端部e2向右旋转。同样第二螺旋槽57b向左旋转。第一螺旋槽57a和第二螺旋槽57b的槽宽度彼此相等。

第一螺旋槽57a和第二螺旋槽57b在一个部位以上以x形交叉。在图3中,作为一例第一螺旋槽57a与第二螺旋槽57b在四个部位交叉。

第一螺旋槽57a和第二螺旋槽57b的槽宽度比滑块55b的短径w长、比长径d短。此外,第一螺旋槽57a和第二螺旋槽57b的交叉部中的开口宽度比滑块55b的长径d窄。

第一螺旋槽57a和第二螺旋槽57b中的第一端部e1侧的端部与第一连接部57c平缓连接。同样,第一螺旋槽57a和第二螺旋槽57b中的第二端部e2侧的端部与第二连接部57d平缓连接。第一连接部57c与点p1相对。第二连接部57d与点p6相对。

第一螺旋槽57a和第二螺旋槽57b形成在圆筒凸轮57轴向的两端部折返的环状路径。

滑动导向件58直线引导温度检测传感器55的移动。例如,滑动导向件58是沿定影部件51宽度方向延伸的板状部件。沿扫描线l平行延伸的导向孔58a沿板厚方向贯通滑动导向件58。导向孔58a的长度比从点p1到点p6的长度长。使导向销55a以能够沿导向孔58a的长边方向滑动的方式与导向孔58a嵌合。

虽然省略了图示,但是滑动导向件58设置有止转机构,该止转机构在温度检测传感器55的移动时限制导向销55a的绕中心轴线c的旋转。

如图4所示,在温度检测单元54中,滑块55b插入并组装于第一螺旋槽57a或第二螺旋槽57b(参照图示双点划线)。滑块55b能够沿其长径方向在第一螺旋槽57a或第二螺旋槽57b内滑动。

例如,在滑块55b与第一螺旋槽57a嵌合的情况下,通过圆筒凸轮57沿箭头r方向转动,滑块55b相对于圆筒凸轮57沿实线箭头m1方向相对移动。滑块55b的长径比第一螺旋槽57a和第二螺旋槽57b的槽宽度长。因此,滑块55b能够使第一螺旋槽57a和第二螺旋槽57b的交叉部沿滑块55b的长径方向顺畅地前进。

另一方面,利用导向孔58a沿导向孔58a的长边方向限定导向销55a的移动方向。因此,导向销55a和与其连结的温度检测传感器55(省略图示)沿实线箭头m1的方向移动。

相反,如果滑块55b与第二螺旋槽57b嵌合,则第二螺旋槽57b相对于圆筒凸轮57沿虚线箭头m2方向相对移动。因此,导向销55a和与其连结的温度检测传感器55(省略图示)沿虚线箭头m2的方向移动。

由此,利用移动机构56,通过使滑块55b与第一螺旋槽57a和第二螺旋槽57b中的任意一个嵌合,温度检测传感器55的前进方向变化。利用圆筒凸轮57的向箭头m方向的连续转动,温度检测传感器55在扫描线l上的点p1和点p6之间往返移动。

在此,对以上说明的定影装置50的构成要素和控制器110的关系进行说明。

图5是第一实施方式的定影装置的控制系统的框图。

如图5所示,控制器110具有系统控制部111和定影控制器120。

系统控制部111控制图像形成系统100的整体动作。系统控制部111与显示部114、操作部115、adf102、扫描部101、图像形成部30、输送部40、后述的定影控制器120和存储部113连接成能够通信。

系统控制部111基于来自操作部115的操作输入或来自由通信线路连接的省略图示的外部设备的控制信号,对图像形成系统100的动作进行控制。

定影控制器120具有:温度控制部121、驱动控制部127和存储部113。定影控制器120与系统控制部111、温度检测传感器55、加热部件53和驱动电动机59连接成能够通信。定影控制器120基于来自系统控制部111的控制信号,对上述定影装置50的动作进行控制。

定影控制器120由控制器110中的cpu和定影控制电路等的组合构成。

温度控制部121具有:计时器126、温度获取部122、移动时间计算部123、移动位置计算部124和加热控制部125。

计时器126对时间t进行计测。

温度获取部122与温度检测传感器55和计时器126连接成能够通信。温度获取部122获取温度检测传感器55检测的温度信息。此外,温度获取部122获取从计时器126获取温度信息的时间t。

温度获取部122获取的温度信息和时间作为t(t)向移动时间计算部123和移动位置计算部124送出。此外,t(t)存储于存储部113。

移动时间计算部123基于伴随温度检测传感器55的移动而由温度检测传感器55检测的温度变化,求出移动机构56到扫描范围的第一端部e1和第二端部e2的到达时间。此外,移动时间计算部123计算温度检测传感器55在第一端部e1和第二端部e2之间移动的移动时间ts(第一移动时间)。此外,移动时间计算部123从第一端部e1或第二端部e2移动到温度检测传感器55的移动位置的时间t(第二移动时间)。

移动位置计算部124根据时间t相对于移动时间ts的比例,计算温度检测传感器55的移动位置。

加热控制部125与系统控制部111、移动位置计算部124和加热部件53连接成能够通信。

加热控制部125基于来自系统控制部111的控制信号,控制定影部件51的加热的开始或结束。加热控制部125控制加热部件53的输出,使定影部件51中的扫描线l上的温度分布成为预先确定的容许范围。

例如,从系统控制部111接收到改变定影温度的控制信号时,加热控制部125根据来自系统控制部111的控制信号,将定影部件51的目标温度改变为预先确定的温度。

驱动控制部127与系统控制部111和驱动电动机59连接成能够通信。驱动控制部127基于来自系统控制部111的控制信号,对驱动电动机59进行驱动。

例如,从系统控制部111接收到改变加压部件52的线速度的控制信号时,驱动控制部127改变驱动电动机59的线速度来进行驱动。例如在设定厚纸作为片材p通过的厚纸模式时进行这种线速度变更。

存储部113存储定影控制器120进行的控制所需要的控制数据。存储部113由rom、ram和其他存储介质等构成。

定影控制器120的更详细的控制动作与图像形成系统100的动作说明一起在后面说明。

接着,以定影装置50的动作为中心,对图像形成系统100的动作进行说明。

图6是示出第一实施方式的定影装置的温度检测传感器的输出例的曲线图。图7、图8是表示第一实施方式的定影装置的定影部件的稳定状态的温度分布例的曲线图。在图6-图8中,横轴表示时间,纵轴表示定影带51a的温度。

图1所示的本实施方式的图像形成系统100根据操作者对操作部的操作或来自与图像形成系统100连接的外部设备的动作指令,在片材p上进行图像形成。

如果从供纸部104或手动供纸部106输送片材p,则利用由图像形成部30进行的公知的电子照相工艺,在片材p上形成调色剂像。片材p的调色剂像利用定影装置50定影于片材p。定影有调色剂像的片材p利用排扺辊60向排扺台103a排出,或者是向翻转部105输送并进行双面印刷。

在定影装置50中,直到片材p进入定影夹缝n为止进行定影部件51的温度控制。通过该温度控制,定影部件51的温度分布根据片材p的尺寸或相对于片材p的定影模式而成为预先确定的分布。

如果根据来自系统控制部111的控制信号而开始定影温度控制,则定影控制器120通过驱动控制部127,使驱动电动机59的驱动开始。此外,定影控制器120通过加热控制部125,使加热部件53的加热开始。

如果驱动电动机59进行驱动,则通过加压部件52转动,定影带51a转动。此外,温度检测单元54中的圆筒凸轮57绕中心轴线o转动。利用圆筒凸轮57的转动,温度检测传感器55在扫描线l上进行往返扫描。如果圆筒凸轮57的转动速度固定,则温度检测传感器55的扫描速度固定。温度检测传感器55将逐次检测的温度信息向定影控制器120送出。

在定影控制器120中,温度获取部122获取温度检测传感器55的温度信息。温度获取部122以预先设定的适当的采样间隔来获取温度信息。

图6示出了基于温度获取部122获取的温度信息的定影带51a的温度变化的曲线图的一例。时间轴的原点与驱动电动机59的驱动开始时间对应。温度t1是定影带51a的目标定影温度。图6的情况示出了如下例子:第一加热区域h1、第二加热区域h2和第三加热区域h3的目标定影温度相互相等的情况。以下,在指第一加热区域h1、第二加热区域h2和第三加热区域h3的整体的情况下、或者是不相互区分它们的情况下,有时仅称为“加热区域h”。同样,在不区分第一非加热区域n1和第二非加热区域n2的情况下,有时仅称为“非加热区域n”。

伴随加热部件53的加热不断进展,定影带51a的温度如曲线301所示从初始温度t0增大至温度t1。但是,在定影带51a的非加热区域n中,未由加热部件53进行加热。在曲线图上出现u形的温度下降部302等。

但是,在非加热区域n中,温度因来自相邻的加热区域h的热传导而逐渐上升。因此,例如,像出现在温度下降部302、303、304中的那样,伴随时间经过,各温度下降部的极小值上升。如果加热区域h的温度成为温度t1(参照曲线310),则如温度下降部305、306所示,各温度下降部的极小值稳定。

在本实施方式中,曲线图上的各温度下降部中的温度的极小值表示点p1或点p6的温度。各温度下降部的上端的弯曲点与点p2或点p5的温度对应。

在本实施方式中,在扫描线l上,由于点p1与点p2的距离比点p6与点p5的距离长,所以路径p2p1或路径p1p2的移动所需要的时间te1比路径p5p6或路径p6p5的移动所需要的时间te2长。

因此,在曲线图上,与通过点p1的温度下降部302、304、306的宽度相比,通过点p2的温度下降部303、305的宽度更窄。

通过利用这种特性,在本实施方式中,求出通过点p1或点p6的返回位置通过时间。此外,判定通过的点是点p1还是点p6。详细的动作例将在后面说明。

在图7所示的定影部件51的稳定状态中的其他温度分布的例子中,第二加热区域h2温度控制成温度t1,第一加热区域h1和第三加热区域h3温度控制成温度t2(其中,t2<t1)。有时例如在片材p的宽度尺寸小时进行这种温度控制。

温度t2设定成与非加热区域n的温度相比足够高。这是因为在使第一加热区域h1和第三加热区域h3的加热停止的情况下,宽度尺寸切换成通过大的片材p时,在加热区域h中容易产生温度不均。

因此,在温度t2以下的曲线图中出现与图6中的温度下降部305、306大体相同的温度下降部315、316。

图8所示的定影部件51的稳定状态下的其他温度分布的例子示出了因连续通过小尺寸的片材p而产生的定影温度下降。

在这种情况下,各加热区域h中的目标定影温度与图6的情况同样是t1。但是,由于连续通过比加热区域h的全部宽度窄的宽度尺寸的片材p,所以纸通过宽度的温度t3(其中,t3<t1)下降。点pl、pr分别与片材p的宽度方向的两端部的位置对应。

在这种情况下,由于持续进行加热部件53的温度控制,所以温度t3不会从温度t1显著下降。因此,在曲线图上出现与图6同样的温度下降部305、306。

如上所述可以看出,在定影装置50中,即使切换目标定影温度,或者因温度控制能力下降而产生了温度分布不均,温度检测传感器55也检测非加热区域n的通过时显著的温度下降部。

接着,说明利用这种特性进行的本实施方式的定影温度控制方法的一例。

图9是示出第一实施方式的定影温度控制方法流程的例子的流程图。图10是示出第一实施方式的定影温度控制方法中的端部判定流程的例子的流程图。图11是示出第一实施方式的定影温度控制方法中的温度控制流程的例子的流程图。

本实施方式的定影温度控制方法的一例按照图9的流程进行图9所示的流程图的act1~act18。

在act1中,驱动电动机59的转动开始。

如上所述,如果基于来自系统控制部111的控制信号,定影温度控制开始,则定影控制器120通过驱动控制部127使驱动电动机59的驱动开始。

在act1后进行act2。在act2中定影部件51的加热开始。

具体地说,定影控制器120通过加热控制部125使加热部件53的加热开始。以下,为了便于说明,以各加热区域h的目标定影温度为t1的情况为例进行说明。

在act2后进行act3。在act3中对移动时间ts进行初始化。

具体地说,温度控制部121将表示移动时间的变量ts(以下作为“移动时间ts”)设定为ts=0。

在act3后进行act4。在act4中计时器126复位。

具体地说,温度控制部121使内置的计时器126计测的时间t复位为0。

在act4后进行act5。在act5中存储温度t(t)。

具体地说,温度控制部121使温度获取部122从温度检测传感器55获取温度检测传感器55检测的温度信息。温度获取部122从温度检测传感器55获取温度信息。此外,温度获取部122从计时器126获取时间t。温度获取部122将时间t和时间t的温度t(t)向移动时间计算部123和移动位置计算部124送出。此外,温度获取部122将时间t和温度t(t)存储于存储部113。

以上,act5结束。

在act5后进行act6。在act6中判定温度检测传感器55是否通过返回位置。

具体地说,移动时间计算部123根据从温度获取部122送出的t(t)的变化来判定是否通过返回位置。在此,返回位置具有点p1、点p6两种。在任意一种的情况下均为温度t(t)的曲线图上成为温度下降部的极小值的位置。

返回位置的通过判定方法没有特别限定,只要能够判定是否超过这种极小值即可。

在本实施方式中,作为一例以如下方式进行判定。

移动时间计算部123通过对依次送出的温度t(t)进行峰值保持来保持最高温度tp(tp)。在来自最新的温度t(t)的tp(tp)的温度下降量超过第一阈值δt1的情况下,移动时间计算部123判定为进入了曲线图上的温度下降部。此后,移动时间计算部123通过对依次送出的温度t(t)进行峰谷保持来保持最低温度tb(tb)。

在来自最新的温度t(t)的tb(tb)的温度上升量超过了第二阈值δt2的情况下,移动时间计算部123判定为超过了极小值。

在此,第一阈值δt1设定为大于能够由加热区域h的温度控制产生的温度下降量、例如图7中的|t1-t2|等的值。此外,第二阈值δt2以不能检测到测量噪声的程度设定为大的值。

例如,移动时间计算部123将进行峰谷保持的最低温度tb(tb)推定为温度下降部的极小值。移动时间计算部123将得到最低温度tb(tb)的时间tb作为返回位置通过时间tr并存储于存储部113。

但是,在采样时间长的情况下,为了进一步精度良好地检测返回位置,可以适当地对最低温度tb(tb)附近的温度t(t)的数据列进行插值。在这种情况下,基于插值曲线的极小值来推定温度下降部的极小值和成为极小值的返回位置通过时间tr。

在判定为温度检测传感器55通过了返回位置的情况下(act6:是)进行act7。

在判定为温度检测传感器55未通过返回位置的情况下(act6:否)进行act5。

act6结束后进行act7。在act7中计时器126复位。计时器126复位成返回位置通过时间tr为0。

如果act6结束,则移动时间计算部123计算最近的返回位置通过时间tr。移动时间计算部123计算当前的时间t与最近的返回位置通过时间tr的差。移动时间计算部123将计时器126复位为t=t-tr。

以上,act7结束。

在act7后进行act8。在act8中进行与act5同样的动作。

在act8后进行act9。在act9中进行与act6同样的动作。

但是,在act9中,在判定为温度检测传感器55通过了返回位置的情况下(act9:是)进行act10。在判定为温度检测传感器55未通过返回位置的情况下(act9:否)进行act8。

在act9结束后进行act10。在act10中,判定在最近的返回位置通过时间tr通过的返回位置是点p1还是点p6(以下称为端部判定)。以下,将第一端部e1侧的点p1称为第一返回位置,将第二端部e2侧的点p6称为第二返回位置。

该端部判定只要使用利用上述温度下降部中的时间te1、te2的不同等的适当算法即可。

在本实施方式中,作为一例按照图10的流程来进行图10所示的act21~act23。

在act21中,由移动时间计算部123判定最近的返回位置通过时间tr的温度t(tr)和追溯了预先确定的δt(其中,0<δt<te1,0<δt<te2)的时间tr-δt的温度t(tr-δt)是否在判定阈值te以下。移动时间计算部123计算δt=t(tr-δt)-t(tr)。

如图6所示,例如在时间t5通过第一返回位置的情况下,δt=δt1。相对于此,在时间t6通过第二返回位置的情况下,δt=δt2。此时,由于δt1<δt2,所以只要预先将判定阈值te设定为δt1≤te<δt2的值,就能够判定是第一返回位置还是第二返回位置。图6中的其他返回位置的端部判定也同样。

在δt≤te的情况下(act21:是)进行act22。

在δt>te的情况下(act21:否)进行act23。

在act22中,移动时间计算部123判定为温度检测传感器55在最近的返回位置通过时间tr通过第一返回位置。判定结果向移动位置计算部124送出。

以上,端部判定结束。在act22后进行图9中的act11。

在act23中,移动时间计算部123判定为温度检测传感器55在最近的返回位置通过时间tr通过第二返回位置。判定结果向移动位置计算部124送出。

以上,端部判定结束。在act23后进行图9中的act11。

在图9所示的act11中,最近的返回位置通过时间tr设定为移动时间ts。

具体地说,移动时间计算部123将最近的返回位置通过时间tr存储于存储部113中的返回位置间的移动时间ts的存储场所。

由此,在从温度检测传感器55移动开始到追加了两个返回位置之后计算移动时间ts。移动时间计算部123将移动时间ts向移动位置计算部124送出。

从上述act5到act11在检测到两个返回位置的通过之后,进行求出返回位置间的移动时间ts的动作。在此期间不进行定影部件51的温度控制。这是因为如后所述能够基于移动时间ts的实测值来确定温度检测传感器55的移动位置。

在act11后进行act12。在act12中进行与act7同样的动作。

在act12后进行act13。在act13中进行与act8同样的动作。

在act13后进行act14。在act14中进行与act9同样的动作。

但是,在act13中,在判定为温度检测传感器55通过了返回位置的情况下(act13:是)进行act10。在判定为温度检测传感器55未通过返回位置的情况下(act14:否)进行act15。

在act15中,基于移动时间ts来计算移动位置p(t)。

具体地说,移动位置计算部124将第一返回位置作为原点,基于以下式(1)或(2)来计算移动位置p(t)。

p(t)=ls·t/ts…(1)

p(t)=ls·(ts-t)/ts…(2)

在此,ls是从点p1到点p6的扫描宽度。

其中,式(1)用于最近的返回位置是第一返回位置的情况。式(2)用于最近的返回位置是第二返回位置的情况。

在act15后进行act16。在act16中判定移动位置p(t)是否是加热区域h。

具体地说,移动位置计算部124基于预先存储于存储部113的加热区域h的位置信息,判定移动位置p(t)是否是加热区域h。如本实施方式那样,在加热区域h分为多个的情况下,移动位置计算部124还确定加热区域h是第一加热区域h1、第二加热区域h2和第三加热区域h3中的哪一个。

在移动位置p(t)是加热区域h的情况下(act16:是),移动位置计算部124将移动位置p(t)的信息向加热控制部125送出。此后,进行act17。

在移动位置p(t)不是加热区域h的情况下(act16:否)进行act18。

在act17中进行定影部件51的温度控制。

具体地说,按照图11所示的流程进行图11所示的act31~act34。

在act31中,加热控制部125从存储部113读出移动位置p(t)的设定温度tf(p(t))。

在act31后进行act32。在act32中,加热控制部125判定t(t)是否在tf(p(t))以上。

在t(t)≥tf(p(t))的情况下(act32:是)进行act33。

在t(t)<tf(p(t))的情况下(act32:否)进行act34。

在act33中,加热控制部125使加热部件53的加热停止。

以上,温度控制动作结束。流程转移至图9中的act18。

在act34中,加热控制部125使加热部件53的加热继续。

以上,温度控制动作结束。流程转移至图9中的act18。

在act18中,加热控制部125判定是否从系统控制部111接收到定影关闭信号。定影关闭信号是停止定影装置50的控制信号。

在接收到定影关闭信号的情况下(act18:是)进行act19。

在未接收到定影关闭信号的情况下(act18:否)进行act13。在这种情况下,与上述同样,通过进行act13~act18,在温度检测传感器55对加热区域h进行扫描的期间,基于移动位置p(t)的定影设定温度tf(p(t))来进行定影部件51的温度控制。

在act19中,加热控制部125使加热部件53的加热停止。此外,驱动控制部127使驱动电动机59停止。

以上,本实施方式的定影温度控制方法结束。

本实施方式的定影装置、图像形成系统和定影温度控制方法通过移动机构56使温度检测传感器55移动,检测定影部件51的宽度方向的移动位置p(t)的温度t(t)。温度t(t)用于定影部件51的温度控制。在定影装置50和图像形成系统100中,即使使用一个温度检测传感器55,也能够基于遍布定影部件51宽度方向的作为各位置的目标温度的设定温度tf(p(t))来进行温度控制。由于不使用多个温度检测传感器,所以定影装置50的构成简单。同样,降低了定影装置50的元件成本。

此外,在本实施方式中,基于温度检测传感器55检测的温度变化来进行温度检测传感器55的位置检测。由于可以不设置检测温度检测传感器55的位置的位置检测传感器,所以定影装置50的构成简单。同样,降低了定影装置50的元件成本。

另外,在本实施方式中,基于最近的移动时间ts的实测值来确定温度检测传感器55的移动位置p(t)。因此,即使进行了改变定影线速度的模式切换等,也能够以一次扫描以下的延迟进行准确的位置的温度控制。

此外,在本实施方式中,通过驱动加压部件52的驱动电动机59来驱动移动机构56。温度检测传感器55的扫描速度与定影线速度联动。即使定影线速度变化,各移动位置的温度控制时机也不会相对变化。因此,防止了因定影线速度变化而使温度控制间隔过大或过小。

(第二实施方式)

接着,对第二实施方式的定影装置和图像形成系统进行说明。

图12是示出第二实施方式的定影装置的主要部分的构成例的主视示意图。图13是示出第二实施方式的定影装置的主要部分的构成例的俯视示意图。

如图1所示,本实施方式的图像形成系统200代替第一实施方式的图像形成系统100的定影装置50而具有定影装置80。定影装置80代替第一实施方式的定影装置50的温度检测单元54而具有温度检测单元84。

以下,以与第一实施方式不同点为中心进行说明。

图12、13示出了定影装置80的主要部分的构成,温度检测单元84代替上述第一实施方式的移动机构56而具有移动机构86。

本实施方式中的温度检测传感器55通过支承臂85a配置在扫描线l上。支承臂85a经由固定部85b固定于移动机构86。

移动机构86具有支承板86i、转动轴86d、86f和轴承部86g。

支承板86i将转动轴86d支承成能够绕其中心轴线转动。支承板86i将轴承部86g保持成其中心轴线能够相对于转动轴86d的中心轴线平行移动。利用弹簧86h对轴承部86g施力。转动轴86f插入轴承部86g。

在转动轴86d的两端部设置有驱动轮86b和齿轮86e。

例如,同步带等带86a卷绕于驱动轮86b。

齿轮86e经由省略图示的传递机构与省略图示的驱动电动机59连接。齿轮86e通过驱动电动机59受理转动驱动力。

在转动轴86f中,在与轴承部86g相反一侧的端部设置有从动轮86c。

带86a卷绕于从动轮86c。带86a提供张力,该张力由作用于轴承部86g的弹簧86h的作用力产生。

驱动轮86b和从动轮86c的节圆彼此相等。带86b架设成绕转动轴86d、86f周向转动的长圆状。

在带86a的外周面固定有固定部85b。如图13所示,支承臂85a朝向带86a的内侧突出。支承臂85a与带86a的转动位置无关,形成为温度检测传感器55的中心位于连接转动轴86d、86f的中心轴线的线段上。

俯视观察,移动机构86配置成连接转动轴86d、86f的中心轴线的线段与扫描线l重合。此外,移动机构86配置成温度检测传感器55与定影部件51的外表面相对的位置关系。

由于定影装置80具有温度检测单元84,所以驱动轮86b利用驱动电动机59的转动而转动。带86a利用驱动轮86b的转动而转动。例如,带86a沿图13中的图示逆时针方向连续转动。

固定部85b、支承臂85a和温度检测传感器55也与带86a一起移动。温度检测传感器55在扫描线l上反复进行往返移动。

在定影装置80中,温度检测传感器55利用移动机构56与第一实施方式同样移动。因此,能够进行与第一实施方式同样的定影温度控制方法。

因此,在本实施方式的定影装置80和图像形成系统200中,即使使用一个温度检测传感器55,也能够基于遍布定影部件51的宽度方向的各位置的设定温度tf(p(t))来进行温度控制。由于不使用多个温度检测传感器,所以定影装置80的构成简单。同样,降低了定影装置80的元件成本。

此外,在本实施方式中,由于未设置检测温度检测传感器55的位置的位置检测传感器,所以定影装置80的构成简单。同样,降低了定影装置80的元件成本。

以下,对上述实施方式的变形例进行说明。

在上述实施方式中,对加热部件53配置于定影带51a内侧的例子进行说明。但是,加热部件的位置没有特别限定,只要能够对定影部件进行加热即可。例如,加热部件可以配置于定影部件51的内侧。

在上述实施方式中,对加热区域h是三个的情况的例子进行了说明。但是,加热区域h可以由一个或两个构成,也可以由四个以上构成。在设置有多个加热区域h的情况下,分割的方式没有特别限定。例如,加热区域h的分割的方式可以是等分,也可以是等分以外的分割。加热区域h的分割的方式可以是相对于定影部件宽度方向的加热区域整体的中心轴线线对称,也可以是非对称。

在上述实施方式中,说明了根据温度检测传感器55检测的温度变化来进行端部判定的例子。但是,可以在第一返回位置或第二返回位置的附近设置温度检测传感器55的通过检测传感器。在这种情况下,能够根据通过检测传感器的检测的有无,判定返回位置是第一返回位置还是第二返回位置。

在设置有这种通过检测传感器的情况下,通过检测传感器可以用于移动机构的原始位置检测。在这种情况下,图像形成系统100的启动时和定影动作的结束动作时(图9的act9),可以进行使温度检测传感器55恢复为原始位置的动作。由此,由于确定了温度检测传感器55的移动开始位置,所以端部判定能够简化图9的几个动作。例如,可以省略act5至act7。

在上述实施方式中,说明了每当温度检测传感器55通过返回位置时进行端部判定的例子。在该端部判定中,每次判定是第一返回位置还是第二返回位置。但是,如果至少在最初的端部判定中判定了是哪一个返回位置,则此后返回位置设为交替而可以计算移动位置。

在上述实施方式中说明了如下例子:为了使点p1到点p2的距离比从点p5到点p6的距离长,使第一非加热区域n1的宽度d1比第二非加热区域n2的宽度d5宽。但是,如果能够使从点p1到点p2的距离比从点p5到点p6的距离长,则可以是d1=d5、或d1<d5。

但是,即便使从点p1到点p2的距离比从点p5到点p6的距离短,也能够进行实施方式的定影温度控制方法。

按照以上说明的至少一种实施方式,定影装置具有:定影部件、温度检测传感器、移动机构、移动时间计算部、移动位置计算部和温度控制部。由于移动机构沿定影部件的宽度方向对非加热区域和加热区域进行扫描,所以移动时间计算部能够基于温度检测传感器检测的温度变化,求出移动机构到扫描范围的第一端部和第二端部的到达时间。移动位置计算部能够根据温度检测传感器在第一端部和第二端部之间移动的时间和移动到温度检测传感器的移动位置的时间的比例,计算定影部件上的移动位置。

按照实施方式,即使是不具备温度检测传感器的位置检测传感器的简单且价格低的构成,也能够检测温度检测传感器的每个移动位置的温度。

虽然说明了几个实施方式,但这些实施方式只是作为示例而提出的,并非旨在限定发明的范围。这些实施方式能够以其他各种方式进行实施,能够在不脱离发明的宗旨的范围内进行各种省略、替换、变更。这些实施方式及其变形被包括在发明的范围和宗旨中,同样地被包括在权利要求书所记载的发明及其均等的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1