一种光束校准设备、投影设备及光束校准方法与流程

文档序号:25599094发布日期:2021-06-22 17:19阅读:93来源:国知局
一种光束校准设备、投影设备及光束校准方法与流程

本申请涉及投影技术领域,特别涉及一种光束校准设备、投影设备及光束校准方法。



背景技术:

在光学领域中,分光膜片、滤光膜片、偏振转换片等光学器件的功能通常是通过镀膜实现,而在膜片镀膜加工时由于设备、材料、人工、加工环境等各种因素的影响,导致光学器件的镀膜加工存在一定的工艺误差,进而导致光学器件在光路系统中的光学性能受到一定影响,导致光路系统的出射光的颜色、亮度等收到影响而无法达到预期的效果。



技术实现要素:

本申请提供一种光束校准设备、光束校准方法及投影设备,所述光束校准设备能够改善光束校准设备出射的光束的颜色出现偏差的问题。

为解决上述技术问题,本申请采用的一种光束校准设备,该光束校准设备包括依次设置的颜色校准组件、光束准直组件和分光组件:

颜色校准组件,用于接收光束并将所述光束引导至所述光束准直组件;

所述光束准直组件,用于将所述颜色校准组件出射的光束汇聚至所述分光组件;

所述分光组件用于接收所述光束并对所述光束进行分光;

其中,所述颜色校准组件与所述光束准直组件之间的相对位置可调,调节所述颜色校准组件出射的光束的光轴与所述光束准直组件的光轴之间的位移量,进而改善所述光束校准设备所出射的光束的颜色。

另一方面,本申请还提出一种投影设备,该投影设备包括光源组件、光束校准设备和空间光调制器;

所述光源组件提供用于照明光;

所述光束校准设备用于接收所述照明光,对所述照明光进行校准后引导至所述空间光调制器;

所述空间光调制器对所述照明光进行调制形成图像光投射至投影平面;

其中,所述光束校准设备为上述光束校准设备。

另一方面,本申请还提出一种光束校准方法,该方法包括:

提供颜色校准组件,以接收光束并将所述光束引导至光束准直组件;

利用所述光束准直组件将所述光束汇聚至分光组件进行分光;

调整所述颜色校准组件与所述光束准直组件之间的相对位置,以在垂直于所述光束准直组件的光轴的方向上,使所述颜色校准组件所出射的光束产生位移量,进而改善所述分光组件出射的光束的颜色。

本申请通过设置包含颜色校准组件、光束准直组件和分光组件的光束校准设备,令颜色校准组件与光束准直组件之间的相对位置可调,从而通过调节颜色校准组件与光束准直组件之间的相对位置来调节颜色校准组件出射的光束的光轴与光束准直组件的光轴之间的位移量,进而改变光束准直组件出射的光束入射分光组件的入射角,从而对分光组件的镀膜曲线进行校准,实现改善光束校准设备出射的光束颜色的目的。

附图说明

为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:

图1是分光膜片的镀膜区域与其入射角的关系示意图;

图2是本申请光束校准设备第一实施例的初始状态的结构示意图;

图3是图2中所示的分光组件的镀膜曲线示意图;

图4是本申请光束校准设备第一实施例的调节状态的结构示意图;

图5a和图5b是本征颜色调节的色域示图;

图6a是本申请光束校准设备第二实施例的初始状态的结构示意图;

图6b是本申请光束校准设备第二实施例的调节状态的结构示意图;

图7a是本申请光束校准设备第三实施例的初始状态的结构示意图;

图7b是本申请光束校准设备第三实施例的调节状态的结构示意图;

图8是本申请光束校准设备第四实施例的结构示意图;

图9是图8中所示分光组件对p光和s光的镀膜曲线示意图;

图10本申请光束校准设备第五实施例的结构示意图;

图11本申请投影设备实施例的结构示意图;

图12本申请光束校准方法实施例的流程示意图。

具体实施方式

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本申请保护的范围。

本申请中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。而术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,a和/或b,可以表示:单独存在a,同时存在a和b,单独存在b这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。

分光膜片、偏振转换片等光学器件的功能通常是通过镀膜实现,常见的镀膜一般是针对角度镀膜,即对同一分光膜片而言,不同的入射角的光束对应的镀膜曲线不同。如图1所示,光束入射分光膜片的入射角分别为θa、θb和θc,三个入射角之间的大小关系为θa>θb>θc,从图1可看出随着入射角越大的光束,其对应的镀膜曲线向短波方向偏移,三个入射角对应的截至波长分别为580nm、600nm和620nm,即分光膜片的镀膜曲线随着入射角度的增加向短波方向偏移,相应的截至波长也向短波方向偏移。当分光膜片的镀膜存在偏差时,也会导致其镀膜曲线发生偏移时,其对入射光的分光比例会随之改变,进而导致出射的光束的颜色出现偏差。

本申请提出了一种光束校准设备,该光束校准设备包括颜色校准组件、光束准直组件和分光组件。颜色校准组件用于将接收到的光束引导至光束准直组件;光束准直组件用于将颜色校准组件出射的光束汇聚至分光组件;分光组件用于接收光束准直组件出射的光束并对该光束进行分光。其中,颜色校准组件与光束准直组件之间的相对位置可调,通过调节颜色校准组件与光束准直组件之间的相对位置以调节颜色校准组件出射的光束的光轴与光束准直组件的光轴之间的位移量,进而实现对光束校准设备出射的光束的颜色校准。

请参见图2,图2是本申请提出的光束校准设备第一实施例的结构示意图。如图2所示,本实施例的光束校准设备100可包括依次设置的颜色校准组件11、光束准直组件12和分光组件13;光源组件(图中未示出)出射的光束入射至颜色校准组件11,颜色校准组件11接收该光束并将光束引导至光束准直组件12,光束准直组件12进一步将颜色校准组件11出射的光束汇聚至分光组件13,分光组件13进而对光束进行分光,分别从分光组件13的两侧出射第一分光c1和第二分光c2,图中以贯穿光束校准设备的虚线示出光束准直组件12的光轴。其中,颜色校准组件11与光束准直组件12之间的相对位置可调,进而调节颜色校准组件11出射的光束的光轴与光轴准直组件的光轴之间的位移量,进而改善光束校准设备100出射的光束的颜色,即第一分光c1和第二分光c2的颜色。

进一步,本实施例中光束准直组件12为聚焦准直装置,在一实施例中可为由多个光学透镜构成的透镜组,其满足如下公式:h=f*tanα。其中,h是光束准直组件12的成像物高,f是光束准直组件12的焦距,α是光束准直组件12出射的光束相对其光轴的夹角。可以理解的,当宽度为d的光束入射光束准直组件12时,若光束的光轴与光束准直组件12的光轴重合,则对于光束准直组件12来说其成像物高即为d/2;当该光束的光轴相对光束准直组件12的光轴在垂直于光束准直组件12的光轴的方向上发生偏移时即相当于改变了光束准直组件12的成像物高h,而其焦距f为固定值,则可改变tanα的值,相应改变光束准直组件12出射的光束相对其光轴的夹角α,若分光组件13的位置不变,即可改变光束准直组件12出射的光束相对分光组件13的入射角θ。本实施例通过移动位置可调的颜色校准组件11和/或光束准直组件12来调节从颜色校准组件11出射的光束相对光束准直组件12的光轴在垂直于光束准直组件12的光轴的方向上的移动,即调节颜色校准组件11出射的光束的光轴与光束准直组件12的光轴之间位移量,进而调节光束准直组件12出射的光束相对分光组件13的入射角。根据上述对分光膜片的镀膜曲线的分析可知,改变入射分光组件13的光束的入射角即相当于对其镀膜曲线的偏移状态进行调节,进而对其镀膜曲线进行校准,从而达到实现改善光束校准设备100出射的光束的颜色的目的。

对本实施例的光束颜色校准做进一步说明:

令图2所示的光束校准设备100中颜色校准组件11和光束准直组件12分别位于各自的初始位置(本实施例以颜色校准组件11出射的光束的光轴与光束准直组件12的光轴重合时两者的位置为初始位置),此时,光束的光轴与光束准直组件12的光轴之间的位移量为零,分光组件13位于光束准直组件12之后且位置固定,光束沿图2中所示的+z方向传输,y方向为垂直光束准直组件12的光轴的竖直方向(平行于纸面),x方向为垂直光束准直组件12的水平方向(垂直于纸面)。若光束的宽度为d,则此时光束准直组件12的成像物高即为该光束的半高d/2;光束准直组件12将光束汇聚至分光组件13上,光束的光轴以入射角θ0入射至分光组件13,光束的边缘光线相对于分光组件13的入射角分别为θ1和θ2,光束在分光组件13处基于分光组件13的镀膜曲线被分为第一光束和第二光束。图3示出了本实施例的分光组件13的镀膜曲线,其中偏向长波方向的曲线为分光组件13的理论镀膜曲线(分光组件13的镀膜满足理论分光需求时的镀膜曲线),其对应的截至波长设为a;而在实际应用中分光组件13由于加工工艺、加工环境等影响存在镀膜误差使得其实际镀膜曲线相对理想镀膜曲线出现偏移,偏向短波方向的曲线为分光组件13的实际镀膜曲线(本实施例以实际镀膜曲线相对理想镀膜曲线向短波方向偏移为例),其对应的截至波长设为b。由此可知,截至波长的移动导致分光组件13分光得到第一光束和第二光束的分光比例出现偏差,进而使得分光后光束的颜色出现偏差。假设a为600nm,b为580nm;理论分光后的第一光束和第二光束分别为波长大于600nm的光和波长小于600nm的光;而当实际截至波长向短波偏移而变为580nm时,由于入射角未改变,而实际截至的波长为580nm,实际分光后的第一光束和第二光束分别是波长小于580nm的光和波长大于580nm的光,第一光束和第二光束的实际分光比例相较理论分光比例发生了偏移,由于光谱的改变也导致第一光束和第二光束的颜色与理论所需的颜色存在差异。

进一步参阅图4,基于本实施例的光束校准设备100,调节颜色校准组件11与光束准直组件12之间的相对位置,令颜色校准组件11出射的光束在垂直于光束准直组件12的方向上向+y方向移动,光束的光轴相对光束准直组件12的光轴产生+y方向上的位移量s。此时,对光束准直组件12来说其成像物高h变大,相应tanα的值也随之变大,光束准直组件12出射的光束相对其光轴的夹角α变大;根据角度关系可知光束准直组件12出射的光束相对其光轴的夹角与光束入射分光组件13的入射角之和等于分光组件13的法线相对光束准直组件12的光轴的夹角的,而本实施例中分光组件13的位置不变,其法线相对于光束准直组件12的光轴的夹角不变,当光束准直组件12出射的光束相对其光轴的夹角α变大时,即相当于令光束入射分光组件13的入射角变小。结合图4,即光束的主光轴入射分光组件13的入射角θ3相较于图2所示的入射角θ0减小,光束的边缘光线入射分光组件13的入射角θ4和θ5也相较于图2所示的入射角θ1和θ2减小。根据上述图1所示的分光膜片的镀膜曲线与光束的入射角的关系可知,当其入射角变小时,分光膜片的镀膜曲线向长波方向偏移。由此,即可如图3所示,通过减小分光组件13的光束的入射角使其实际镀膜曲线向理论镀膜曲线偏移;实现对分光组件13的实际镀膜曲线的校准,进而改善所述光束校准设备100所出射的光束的颜色。

此外,根据上述光束准直组件12所满足的公式可知,入射角的角度值的具体调节可通过光束的光轴相对光束准直组件12的光轴之间产生位移量s来控制,位移量s越大,入射角减小越多。

可以理解的是,本实施例中颜色校准组件11出射的光束也可在垂直于光束准直组件12的其他方向上移动,例如-y方向或x方向。需要说明的是,当颜色校准组件11出射的光束在垂直于光束准直组件12的-y方向上移动时,光束的光轴相对光束准直组件12的光轴之间产生位移量s为负值,此时对光束准直组件12来说其物高变小,相应tanα的值也随之变小,θ的值变大,此时,对分光组件13的镀膜曲线的校准为令分光组件13的实际镀膜曲线向短波方向偏移。颜色校准组件11出射的光束在垂直于光束准直组件12的其他方向上的移动与在y方向上的移动相似,此处不再赘述,其具体移动方向可根据实际光路设计和需求进行调整,本申请不做具体限制。

进一步,本实施例的光束校准设备100可基于其对分光后光束的颜色校准实现对三基色成像中三基色的本征颜色的校准,其中,本征颜色指出射的色光自身的颜色,若该光束校准设备100用于投影光机中,即指投影光机自身出射的光束颜色。若入射颜色校准组件11的光束为包括红光、绿光和蓝光的三基色光,光束校准设备100的结构同样如图2所示,图3示出了其包含的分光组件13的镀膜曲线,其中偏向长波方向的曲线为分光组件13的理论镀膜曲线,其对应的截至波长设为600nm;偏向短波方向的曲线为分光组件13的实际镀膜曲线,其对应的截至波长设为580nm。

根据分光组件13的理论镀膜曲线,分光组件13分成的第一光束和第二光束分别为波长大于600nm的红光,以及波长小于600nm的蓝光和绿光的混合光,理论色域可如图5a所示的实线三角形所构成的理论色域。当分光组件13的实际镀膜曲线向短波方向偏移时,分光组件13分成的第一光束和第二光束分别为波长大于580nm的红光和波长小于580nm的蓝光和绿光的混合光,对蓝光而言,其波长始终小于截至波长,因此对蓝光的分光影响较小,而对分出的绿光而言相对于理论的绿光缺少了580nm至600nm范围的光,对分出的红光而言相对于理论的红光增加了580nm至600nm范围的光,而导致实际的绿光和实际的红光的色坐标均产生了偏移,本实施例以分光的红光和绿光分别为红荧光和绿荧光为例,此时如图5a所示,红荧光和绿荧光的色坐标均位于理论色域(实线三角形)内,换言之,此时分光得到红荧光、绿荧光和蓝激光所构成的色域无法覆盖理论色域。在一实施方式中,可通过在光路系统中增加相应颜色的补充激光来调整红光和绿光的色坐标,即分别增加绿激光和红激光以利用绿激光和绿荧光混合得到本征绿光,利用红激光和红荧光混合得到本征红光,由此本征红光、本征绿光和本征蓝光所构成的实际色域(粗点三角形)则能够覆盖理论色轮,但增加额外的补充激光会导致成本升高,且需要校色软件对该实际色域进行调制以得到理论色域,该调制过程会导致光损耗,令整体亮度下降;此外由于补充激光的增加还会增加光路系统的热量,不利于光路结构的散热,特别是图像调制器件(如空间光调制器等)的散热。此外,若分光组件13的镀膜曲线相对理论镀膜曲线偏移量较大,此时即使补充相应颜色的补充激光,也无法令本征红光和/或本征绿光的色坐标被校准至理论色域之外,如图5b所示,在补充了红激光的情况下本征红光的色坐标仍在理论色域的范围内,无法覆盖理论色域。

在本申请中,基于本实施例的光束校准设备100,可调整颜色校准组件11与光束准直组件12之间的相对位置,令颜色校准组件11出射的光束在垂直于光束准直组件12的方向上向+y方向移动,光束的光轴相对光束准直组件12的光轴之间产生位移量s,令光束准直组件12的成像物高变大,进而其出射的光束入射分光组件13时的入射角θ的值变小,令其实际镀膜曲线向理论镀膜曲线偏移,进而调节分光组件13的对红光和绿光的分光比例,令红光和绿光的分光比例尽量满足理论分光比例,进而调制本征红光和本征绿光的色坐标,实现对三基色成像中三基色的本征颜色的校准。

进一步如图2和图4所示,在一实施例方式中,颜色校准组件11可为包括至少一个透镜的透镜组,光源组件的光束入射颜色校准组件11后以平行光的形式出射光束。此时可通过在垂直于光束准直组件12的光轴的方向上移动颜色校准组件11,即实现颜色校准组件11与光束准直组件12之间的相对位置的调节,进而改变颜色校准组件11出射的光束的光轴与光束准直组件12的光轴之间的相对位移。

本实施例中可对颜色校准组件11设置用于调节其位置的调节支架,该调节支架可包括x方向和y方向的调节杆、调节电机、调节齿轮、调节滑轨等多个调节机构中的一种,或多种调节机构的组合机构。

进一步,如图6a和图6b所示,在其他实施例中,颜色校准组件11还可为反射镜组件14,本实施例以两个反射镜组成的反射镜对为例,光源组件出射的光束入射至第一反射镜141,被第一反射镜141反射至第二反射镜142,进一步被第二反射镜142反射至颜色校准组件11。如图6a所示,第一反射镜141、第二反射镜142和光束准直组件12分别位于各自的初始位置,此时,第二反射镜142反射的光束的光轴与光束准直组件12的光轴重合,此时颜色校准组件11后方的光路结构与图2所示的光路结构相同,此处不再赘述。

本实施例中,可通过偏转第一反射镜141和第二反射镜142来调整第二反射镜142出射的光束的光轴与光束准直组件12的光轴之间的位移量。如图6b所示,第一反射镜141和第二反射镜142同时向-y方向偏转,此时光源组件入射第一反射镜141和第二反射镜142的光路出现偏移,最终从第二反射镜142出射的光束向+y方向移动,即在y方向上调节了第二反射镜142出射的光束的光轴与光束准直组件12的光轴之间的位移量,由此改善光束校准设备200所出射的光束的颜色,本实施例中实现光束校准设备200所出射的光束的颜色的改善过程与上述对图2至图4所示的实施例的改善过程相同,此处不再赘述。

进一步,本实施例中第一反射镜141和第二反射镜142之间的夹角保持不变,即在转动第一反射镜141和第二反射镜142时两者是同步进行转动的。在一实施方式中,第一反射镜141和第二反射镜142之间的夹角保持90°,即第一反射镜141和第二反射镜142始终保持垂直。

在其他实施方式中反射镜组14也可包括更多个反射镜,通过设计反射镜之间的相对位置关系实现光束以平行光入射光束准直组件12即可,本申请不做具体限制。

进一步,请参阅图7a和图7b,在又一实施例中,颜色校准组件11还可为直角棱镜15,该直角棱镜15的两个直角面为两个反射面151、152,光源组件出射的光束从直角棱镜15的斜面153入射至直角棱镜15内,在第一反射面151上被反射至第二反射面152,进一步被第二反射面152反射后从其斜面153出射。如图7a所示,直角棱镜15和光束准直组件12分别位于各自的初始位置,此时,直角棱镜15出射的光束的光轴与光束准直组件12的光轴重合,此时颜色校准组件11后方的光路结构与图2所示的光路结构相同,此处不再赘述。

本实施例中,可通过偏转直角棱镜15来调整其出射的光束的光轴与光束准直组件12的光轴之间的位移量。如图7b所示,直角棱镜15向-y方向偏转,此时光源系统入射光束在直角棱镜15的第一反射面和第二反射面之间的光路出现偏移,最终从直角棱镜15出射的光束向+y方向移动,即在y方向上调节了直角棱镜15出射的光束的光轴与光束准直组件12的光轴之间的位移量,由此改善光束校准设备300所出射的光束的颜色,本实施例中实现光束校准设备300所出射的光束的颜色的改善过程与上述对图2至图4所示的实施例的改善过程相同,此处不再赘述。

图6和图7所示的光束校准设备中,可对反射镜组件14和直角棱镜15设置用于调节其旋转角度的调节支架,该调节支架可包括旋转齿轮、调节电机、调节滑轨等多个调节机构中的一种,或多种调节机构的组合机构。

在又一实施例中,也可通过在垂直于光束准直组件12的光轴的方向上移动光束准直组件12的位置调节以调整颜色校准组件11与光束准直组件12之间的相对位置,进而改变颜色校准组件11出射的光束的光轴与光束准直组件12的光轴之间的相对位移,由此改善光束校准设备100所出射的光束的颜色,本实施例中实现光束校准设备100所出射的光束的颜色的改善过程与上述对图2至图4所示的实施例的改善过程相同,此处不再赘述。此外,若光源组件的结构简单,也可通过移动光源的位置来调整颜色校准组件11出射的光束的光轴与光束准直组件12的光轴之间的相对位移。如图6a和图7a,在垂直于光束准直组件12的光轴的方向上移动光源组件,同样可调整颜色校准组件11出射的光束的光轴与光束准直组件12的光轴之间的位移,改善光束校准设备200、300所出射的光束的颜色。

进一步,请参阅图8,图8是本申请光束校准设备又一实施例的结构示意图。如图8所示,本实施例的光束校准设备400在图2所示的光束校准设备100的基础上,还可包括偏振转换器16,偏振转换器16设置在颜色校准组件11和光束准直组件12之间,用于接收颜色校准组件11出射的光束,并将光束的偏振态进行调制,将光束转换为单一偏振态的光束出射。光束准直组件12和分光组件13与图1至图7所示的实施例中的光束准直组件12和分光组件13相同,此处不再赘述。

本实施例中,偏振转换器16的功能是通过镀膜实现的,与分光组件13相似,同样会存在一定镀膜误差,导致偏振转换器16无法将入射的光束完全转换为单一偏振态的光束,此时由于分光组件13对p偏振态的p光和s偏振态的s光的镀膜曲线存在一定差异,如图9所示,当入射的光既有p光和s光时,分光组件13对光束的实际镀膜曲线位于p光镀膜曲线和s光镀膜曲线之间。若所需的为s光,则实际镀膜曲线相对s光镀膜曲线向短波方向偏移;若所需的为p光,则实际镀膜曲线相对p光镀膜曲线向长波方向偏移。此时,可通过改变颜色校准组件11与光束准直组件12之间的相对位置,调节颜色校准组件11出射的光束的光轴与光束准直组件12的光轴之间的位移量,进而令实际镀膜曲线向理论镀膜曲线进行校准,,改善光束校准设备400所出射的光束的颜色。

进一步,请参阅图10,图10是本申请光束校准设备再一实施例的结构示意图。如图10所示,本实施例的光束校准设备500在图8所示的光束校准设备400的基础上,还可包括匀光组件17,匀光组件17设置在颜色校准组件11和光束准直组件12之间,用于接收颜色校准组件11出射的光束并对该光束进行匀化处理,以使入射光束准直组件12的光束为面分布均匀的光束。本实施例中,匀光组件17可为复眼透镜对,包括第一复眼透镜171和第二复眼透镜172,其中,第一复眼透镜171位于第二复眼透镜172的有效焦距上,此时第一复眼透镜171上的光束面分布会成像在无穷远处。

在其他实施方式中匀光组件17也可为匀光棒等其他匀光器件,本申请不做具体限制。

可以理解的是,图9所示的偏振转换器16和/或图10中匀光组件17也可设置在图6至图7所示的光束校准设备100中。

进一步如图11所示,本申请还提出一种投影设备,该投影设备600包括光源组件110、光束校准设备120和空间光调制器130;光源组件110提供用于照明光;光束校准设备120用于接收照明光,对照明光进行校准后引导至空间光调制器130;空间光调制器130对照明光进行调制形成图像光投射至投影平面。

本实施例中,光束校准设备120可为上述图2至图10所示的任意一实施例的光束校准设备。

光源组件110可为荧光光源和激光光源组成的混合光源,荧光光源用于提供宽谱荧光,以在光束校准设备的分光组件处被分为波长范围不同的包含基色光谱的两种基色荧光,激光光源则用于提供第三种基色光。三种基色光分别被引导至空间光调制器130进行图像光调制形成图像光。

在一实施方式中,分光组件如图2至图10所示将光束分为第一光束c1和第二光束c2,则对应空间光调制器130可设置为双空间光调制器,两个空间光调制器分别对第一光束c1和第二光束c2进行调制。在另一实施方式中,可对蓝光和绿光的混合光进一步分光,相应的空间光调制器130可设置为三空间光调制器,三个空间光调制器分别对三种基色光进行调制。

本实施例的投影设备600可利用光束校准设备120对分光后入射至空间光调制器130的光束的本征颜色进行校准,进而校准光束的实际色域;此外,可避免软件调制时造成的光损耗,提高图像亮度。同时,可减弱投影设备对补充激光的依赖性,更利于投影设备散热,且降低成本。

进一步,如图12所示,本申请还提出一种光束校准方法,该方法包括:

在步骤s1中,提供颜色校准组件,以接收光束并将光束引导至光束准直组件;

在步骤s2中,利用光束准直组件将光束汇聚至分光组件进行分光;

在步骤s3中,调整颜色校准组件与光束准直组件之间的相对位置,以在垂直于光束准直组件的光轴的方向上,使颜色校准组件所出射的光束产生位移量,进而改善分光组件出射的光束的颜色。

本实施例的光束校准方法可应用于图2至图10所示的光束校准设备,或应用于图11所示的投影设备。

以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1