可适形反射膜的制作方法

文档序号:22438903发布日期:2020-10-02 10:35阅读:175来源:国知局
可适形反射膜的制作方法

背景技术
:彩色膜和图形膜用于多种应用,包括用于包裹个人或商用车辆、建筑物的表面以及其它内部表面和外部表面。当应用于车辆时,图形膜可为车辆的再喷漆提供高性价比的另选方案。另外,图形膜通常可被移除,从而允许与油漆相比时更暂时的颜色变化。金属化膜是一类流行的图形膜。具体地讲,金属化膜可提供比传统镀铬更简单且性价比更高的装饰性外观或镜面反射。然而,非常具有挑战性的是制造可适形金属化反射膜,使得其拉伸成三维表面的形状,具有视觉均匀性和反射,并且在施用于深通道中或尖锐半径周围时保持在适当位置。在加热或不加热的情况下拉伸金属化反射膜可导致起雾和晕彩。这可由金属本身的断裂或失取向引起,或由膜内的保护性阻挡层断裂引起。一些金属化反射膜具有刚性层(如pet),以便阻止导致起雾的拉伸或破裂,但这些类型的膜也难以施用于三维表面。它们也可能具有在施用后从复杂表面起皱或拉开的趋势。由于反射膜通常包含金属,因此腐蚀也可导致膜劣化。当膜暴露于水分时尤其如此,这在将膜施用于车辆时常见。仍然有机会得到改善的可适形反射膜。技术实现要素:本发明解决了在制造可适形反射膜时面临的挑战。在制造反射膜时面临的一些挑战包括:在膜被拉伸到各种长度时保持镜面反射率并且限制或消除起雾;提供可承受加热拉伸而不产生晕彩的膜;以及提供可容易拉伸并且停留在深通道中和表面的尖锐半径周围的膜。本发明的各种实施方案解决了这些挑战。本发明可提供可用于适形于车辆复杂表面的高度可拉伸的膜。本发明的一些实施方案可在引入最小雾度的同时进行拉伸。本发明的一些实施方案可应用于深通道中和尖锐半径周围,并且在24小时之后膜不会起皱。在一种情况下,本公开包括可拉伸反射膜,该可拉伸反射膜包括:透明聚合物层;连续金属层,该连续金属层包含锡或铟中的至少一者;非反应性粘合剂层;以及可拉伸膜层。根据镜面反射率测试方法,当该可拉伸反射膜被拉伸未拉伸长度的50%时具有至少30%的镜面反射率。在另一种情况下,本公开包括可拉伸反射膜,该可拉伸反射膜包括:透明聚合物层;连续金属层,该连续金属层包含锡或铟中的至少一者;非反应性粘合剂层;以及可拉伸膜层。根据漫反射率测试方法,该可拉伸反射膜在拉伸未拉伸长度的50%时具有不超过15%的漫反射。在另一种情况下,本公开包括可拉伸反射膜,该可拉伸反射膜包括:透明聚合物层;连续金属层,该连续金属层包含锡或铟中的至少一者;非反应性粘合剂层;以及可拉伸膜层。根据镜面反射率测试方法,当该可拉伸反射膜被拉伸50%时的镜面反射率与该可拉伸反射膜在未拉伸时的镜面反射率的比率大于50%。在一些情况下,金属层具有在30nm至90nm范围内的厚度。在一些情况下,其中金属层具有在50nm至70nm范围内的厚度。在一些情况下,非反应性粘合剂层是光学透明的粘合剂。在一些情况下,反射膜还包括与可拉伸膜层的与非反应性粘合剂层相背的主表面相邻的第二粘合剂层。在一些情况下,反射膜还包括与第二粘合剂层的与可拉伸膜层相被的主表面相邻的结构化衬片,其中结构化衬片包括在第二粘合剂层上形成通道的脊。在一些情况下,可拉伸膜层是非乙烯基膜。在一些情况下,根据漫反射率测试方法,当可拉伸反射膜被拉伸未拉伸长度的50%时具有不超过15%的漫反射。附图说明结合附图考虑以下具体实施方式可有助于更全面地理解本发明,其中:图1示出了符合本公开的可拉伸反射膜的横截面。图2示出了符合本公开的具有第二粘合剂和结构化衬片的可拉伸反射膜的横截面。在不脱离本发明的范围的情况下,可以利用本文所示和所述这些实施方案并且可以进行结构上的变化。图未必按照比例绘制。图中使用的相似数字指代相似的部件。然而,在给定附图中使用数字来表示组件并非意图限制标记有相同数字的另一个附图中的组件。具体实施方式图1示出了符合本公开的可拉伸反射膜100的横截面。膜100包括浇注衬片170、透明聚合物层160、连续金属层150、非反应性粘合剂层140以及可拉伸膜层130。浇注衬片170用作载体,膜的各个层沉积在该载体上。其还可在构造完全组装之后用作可适形反射膜100的保护层,但在膜的施用期间在拉伸之前移除(如图2所示)。任选的浇注衬片170通常为涂覆有剥离涂层的纸或聚合物衬片,以易于移除透明聚合物层160。在一些情况下,浇注衬片可具有非常均匀、平滑或有光泽的表面,以避免从连续金属层150反射的光产生任何视觉失真。在其它情况下,浇注衬片可具有通过诸如压印或印刷的方法产生的表面纹理,以赋予连续金属层150锤击或纹理化外观。浇注衬片170也可被称为涂覆预胶层衬片。浇注衬片170还可具有与面向透明聚合物层160的表面相对的粗糙表面。当浇注衬片170和透明聚合物层160卷绕在辊上时,该粗糙或纹理化表面可防止透明聚合物层160粘结或粘附到浇注衬片170的相对表面,从而避免在将连续金属层150涂覆到透明聚合物层160上之前损坏透明聚合物层160的表面。可使用各种涂覆方法将透明聚合物层160涂覆到浇注衬片170上。在一些情况下,透明聚合物层160可为挤出膜或压延膜。透明聚合物层160用于在膜100中的金属层150上方提供保护层。透明膜是基于astmd1003-11通过bykhazegard测得的具有低雾度值的膜。例如,透明膜可具有小于25%、小于20%、小于15%、小于10%或小于5%的雾度值。透明聚合物层160可由多种聚合物或聚合物共混物制成,包括例如聚氨酯、聚酯、聚酰胺、聚烯烃、聚苯乙烯、聚碳酸酯、聚丙烯酸酯、聚乙烯醇、聚乙烯醇缩丁醛和含氟聚合物。透明聚合物层160可具有约10um、15um、20um、25um、30um、40um、50um、60um、70um、80um、90um、100um、125um、150um、175um的厚度,或具有介于任两个前述厚度值之间的范围内的厚度。随后将连续金属层150沉积到透明聚合物层160上。连续金属层包括锡、铟或锡合金或铟合金中的至少一者。连续金属层150可包括单一类型的金属,或者可包括金属的组合。在一些情况下,连续金属层包含至少50%、60%、70%、80%、90%、95%或99%、99.5%、99.7%或99.9%的锡或铟。可使用本领域已知的任何技术将连续金属层150沉积在透明聚合物层160上,包括真空沉积,并且包括热蒸发或溅射。在真空沉积工艺中,源材料在允许蒸气粒子直接行进到聚合物层160的真空下蒸发。蒸气粒子冷凝到聚合物层上,并且彼此合并,以形成连续金属层150。由于制造差异,连续层可包括小的不连续区域。然而,在一些实施方案中,粘附到膜或涂覆在树脂层中的金属小滴、紧密间隔的金属粒子或区段或金属薄片的不连续阵列不构成连续金属层150。在一些实施方案中,连续金属层150是基本上不透明的。连续金属层150可具有一定厚度范围。例如,连续金属层可具有10nm、15nm、20nm、25nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、110nm或更大的厚度。连续金属层150可具有在任何前述厚度值之间的范围内的厚度。非反应性粘合剂层140与连续金属层150相邻。非反应性粘合剂是与金属层150接触后最小程度地改变金属层的电阻的粘合剂。非反应性粘合剂一般来讲本质上是中性或碱性的。换句话讲,粘合剂优选地不包含酸官能团或仅包含微量酸官能团。非反应性粘合剂层140可以卷绕法涂覆到或层合到连续金属层150。非反应性粘合剂层140可为压敏粘合剂、热活化粘合剂或现场固化粘合剂。非反应性粘合剂层140可为光学透明的,或者可为非光学透明的。在一些情况下,可使用底漆帮助非反应性粘合剂层140与连续金属层150之间的粘附。非反应性粘合剂可包括范围广泛的粘合剂组合物,包括例如聚脲、聚酰胺、聚氨酯、聚酯、加成固化型有机硅以及它们的组合物。符合本公开的粘合剂更详细地描述于授予everaerts等人的美国专利公布2009/053337中。可拉伸膜层130可为范围广泛的浇注或压延的聚合物膜。可拉伸膜层130可为乙烯基膜或非乙烯基膜。符合本公开的膜的类型的示例包括由多种聚合物或聚合物共混物制成的膜,包括聚氨酯、聚酯、聚酰胺、聚烯烃、聚苯乙烯、聚碳酸酯、聚丙烯酸酯、聚乙烯醇、聚乙烯醇缩丁醛、聚氯乙烯和含氟聚合物。符合本公开的可商购获得的膜包括具有complytm粘合剂的180mc3mtmcontroltactm图形膜以及sv480mc3mtmenvisiontm印刷包装膜。可拉伸膜层130可为透明的、白色的或用特定颜色着色的。可拉伸膜层130可具有一定厚度范围。例如,可拉伸膜层130可具有约25um、50um、75um、100um、125um、150um、175um、200um的厚度,或可具有介于任两个前述厚度值之间的范围内的厚度。可拉伸膜层130可与可拉伸反射膜100的其它层层压在一起,或者可以其它方式通过其它方法固定到可拉伸反射膜100的其它层,在阅读本公开后,这些对于本领域的技术人员将显而易见。当从浇注衬片170移除时,可拉伸反射膜100可为可适形的,使得其可在施用到复杂或三维表面的过程中被拉伸。可适形膜可实质上或甚至完全呈现包含凸形特征部、凹形特征部或它们的组合的三维基材的形状。当然,膜是否为可适形的并不限于其实际施用到此类基材的情况,而只是其显示如上所述的能力。在一些实施方案中,采用此类形状是可能的,且不会不利地改变膜的结构完整性和/或美学外观。在这种意义上,可适形膜有别于非可适形膜,该非可适形膜能够施用到平坦表面和/或围绕具有足够大曲率半径(诸如大圆柱体)的表面弯曲,但在实践中不能令人满意地施用到更高要求的三维基材。可影响膜的适形能力的因素包括用于制备膜的材料的特性、此类材料的分子量、此类膜经受的条件(例如,温度、辐射暴露和湿度),以及添加剂在膜材料中的存在(例如,增塑剂含量、加强纤维、颜料、稳定剂(例如,uv稳定剂)和硬度增强粒子)。本发明提供的一些实施方案的一个优点是保持高水平的镜面反射率。镜面反射率通常为波(诸如光)从表面的镜像反射。镜面反射率通常测量与表面法线具有与入射光线相同角度的反射波的水平。根据镜面反射率测试方法,当拉伸未拉伸长度的50%(拉伸至初始长度的150%的总长度)时,符合本公开的可拉伸反射膜可具有至少15%、20%、25%、30%、35%、40%或50%的镜面反射率。观察可拉伸反射膜的镜面反射率的另一种方式是将膜在拉伸时的镜面反射率与膜在未拉伸时的镜面反射率进行比较。在一些情况下,符合本公开的可拉伸反射膜在拉伸50%时的镜面反射率与在未拉伸时的镜面反射率的比可大于50%、55%、60%、65%、70%、75%、80%或更大。本公开提供的一些实施方案的另一个优点是最小化可拉伸反射膜在拉伸时表现出的漫反射水平。漫反射通常测量波(诸如光)从表面的反射,使得入射光线以多个角度反射。符合本公开的可拉伸反射膜根据漫反射率测试方法当被拉伸未拉伸长度的50%时可具有不超过5%、10%、15%、20%或25%的漫反射。图2示出了具有第二粘合剂和衬片的可拉伸反射膜200的横截面。可拉伸反射膜200包括透明聚合物层260、连续金属层250、非反应性粘合剂层240以及可拉伸膜层230。这些层中的每一个可具有与参照图1所述的那些类似或相同的特性。图2另外示出了第二粘合剂层220和结构化衬片210。第二粘合剂层220可用于将可拉伸反射膜200施用并粘附到复杂表面,诸如车辆。可拉伸粘合剂层220可由多种压敏粘合剂制成。通常基于将要粘着到的基材的类型来选择粘合剂。压敏粘合剂的类别包括丙烯酸类树脂、增粘橡胶、增粘的合成橡胶、乙烯-乙酸乙烯酯、有机硅等等。合适的丙烯酸类粘合剂公开于例如美国专利3,239,478、3,935,338、5,169,727、美国专利re24,906、美国专利4,952,650和4,181,752中。优选的压敏粘合剂的种类是至少丙烯酸烷基酯与至少一种加强共聚单体的反应产物。合适的丙烯酸烷基酯是具有低于约-10(度)℃的均聚物玻璃化转变温度的那些,并且包括例如丙烯酸正丁酯、丙烯酸-2-乙基己基酯、丙烯酸异辛酯、丙烯酸异壬酯、丙烯酸十八烷基酯等等。合适的加强单体是具有约-10(度)℃的均聚物玻璃化转变温度的那些,并且包括例如丙烯酸、衣康酸、丙烯酸异冰片酯、n,n-二甲基丙烯酰胺、n-乙烯基己内酰胺、n-乙烯基吡咯烷酮等等。粘合剂的厚度取决于若干因素,包括例如粘合剂组成、粘合剂是否包括微结构化表面、基材类型以及膜的厚度。本领域技术人员能够调节厚度以满足特定的应用因素。在制造过程中,可将可拉伸粘合剂层涂覆到结构化衬片210上,然后可将结构化衬片层压到可拉伸反射膜200构造的其余部分。移除结构化衬片210的目的是为了施用可拉伸反射膜200。当移除结构化衬片210时,粘合剂保持衬片的反转结构。虽然结构化衬片210可包括多种结构,但在许多情况下,结构用于降低膜对表面的初始粘着性,使得安装者可易于滑动并重新定位膜以使膜进入正确的位置。结构还可包括脊,该脊在第二粘合剂层220中形成通道以允许空气在膜施用过程中逸出,使得气泡不被捕集在膜的表面下方。各种柱和通道构型更详细地描述于以下专利中:授予mikami等人的美国专利6,524,675;以及授予calhoun等人的美国专利5,897,930,这两个专利均以引用方式并入本文。实施例制备基于可适形可拉伸反射膜的制品并用电中性或非反应性夹层粘合剂将该制品层合到基础基材。得到改变金属选择和厚度的构造。在加热和不加热的情况下,在拉伸之前和之后测试所得构造的镜面反射。这些实施例仅为了进行示意性的说明,并非意在限制所附权利要求书的范围。除非另外指明,否则实施例以及说明书的余下部分中的所有份数、百分数、比率等均按重量计。表1材料和来源。测试方法总反射率根据astm方法e1164的相关部分使用perkinelmerlambda1050wbuv/vis/nir型分光光度计(d/8)来获得反射光谱,以测量每个样品的总反射率(包括镜面)。总反射率定义为400nm至780nm之间以5nm为增量的总光谱响应(包括镜面)的算术平均值(平坦加权)。在测量之前,使用可追踪镜面参考样(序列号:omt-212046-01,购自荷兰埃因霍温的omtsolutions公司(omtsolutions,eindhoven,thenetherlands))在250nm至2500nm的em谱带范围内以1nm增量进行反射校准。漫反射率根据astm方法e1164的相关部分使用perkinelmerlambda1050wbuv/vis/nir型分光光度计(d/8)来测量每个样品的漫反射率(不包括镜面)。漫反射率定义为400nm至780nm之间以5nm为增量的漫射光谱响应(移除了镜面端口)的算术平均值(平坦加权)。在测量之前,使用可追踪镜面参考样(序列号:omt-212046-01,购自荷兰埃因霍温的omtsolutions公司(omtsolutions,eindhoven,thenetherlands))在250nm至2500nm的em谱带范围内以1nm增量进行反射校准。镜面反射率镜面反射率计算为平坦加权总反射率(包括镜面)与平坦加权漫反射率(不包括镜面)之间的差值。样品的制备聚氨酯膜通过量取40gu910(p1)并缓慢添加2.7gxl1(按p1固体的重量计9%活性成分)来制备溶液。用搅拌棒混合溶液,然后在滚动床上混合溶液至少15分钟。使用购自gardcopauln.gardner公司(gardcopauln.gardnercompany,incorporated,pompanobeach,florida)的28号迈耶棒,将溶液涂覆到l1的光泽面上。以此方式制备若干样品,然后在烘箱中固化样品,在75℃下固化90秒,接着在120℃下固化45秒,并在177℃下固化90秒。所得膜具有约25μm(1密耳)的涂层厚度。金属化在由新泽西州莫里斯敦的丹顿真空设备公司(dentonvacuum,moorestown,newjersey)提供的integritycoater中进行各种金属的物理气相沉积。该系统是用于金属和镜片薄膜涂层的5行星光学涂覆系统。在氧气气氛中使用6"(15.24cm)圆网kaufman型离子源以100ma的功率对样品进行离子束预处理。预处理期间的压力为约5毫托。预处理的持续时间为10分钟。使用temescal270度电子束枪(sfih-270)加热并蒸发金属。经由inficon沉积速率控制器和石英晶体监测器控制沉积,具体细节示于下表2中。表2金属化在涂覆之前,将室抽气至压力小于2.0×10-5托。在膜被蒸发涂布之后,得到完整的构造。用于实施例的构造与图2所示的层一致。根据表3改变选择的金属和金属厚度。表3:得到的全构造样品实施例编号金属金属厚度(nm)实施例1sn30实施例2sn60实施例3sn70实施例4sn90实施例5sn110比较例6ni60比较例7al60比较例8cr60实施例9in60层间粘合剂和层的层合用oca粘合剂制备样品,oca粘合剂可以转印膜形式获得。将oca转印膜层合至sv480基膜,然后层合至金属化聚氨酯。层合不包括热,使用178牛顿(40磅)的辊隙压力。构造完成后,移除衬片l1,然后再进行测量。未拉伸的样品将表3中每种构造的样品(1英寸(2.54cm)宽×6英寸(15.24cm)长)施用于铝板(以q-panel编号ed-2.75x11nh购自俄亥俄州韦斯特莱克的q-lab公司(q-labcorp.,westlake,oh),使用5052h38裸铝,0.025"×2.75"×11"(0.64mm×1.08cm×27.94cm),etch&desmut板),并且包裹端部,以形成1"×2.75"(2.54cm×6.99cm)暴露的样品。获得每个样品的总反射值和漫反射值,并且使用上述方法计算镜面反射。拉伸的样品使用具有系统idemsysu4242的instron59cp将样品(1英寸(2.54cm)宽×6英寸(15.24cm)长)拉伸至相对于初始3英寸(7.62cm)膜间隙的不同拉伸量(10%、20%、30%、40%和50%)。对于表3中得到的构造中的每一种,在75℉和75%湿度的室内以12英寸/分钟(30.48cm/分钟)的拉伸速率完成拉伸。在拉伸的膜样品仍夹持在instron中时,将铝板(以q-panel编号ed-2.75x11nh购自俄亥俄州韦斯特莱克的q-lab公司(q-labcorp.,westlake,oh),使用5052h38裸铝,0.025"×2.75"×11"(0.64mm×1.08cm×27.94cm),etch&desmut板)定位在样品下方的拉伸区域的中心。然后将拉伸的膜样品施用到测试面板上,确保其施用时在膜下方无任何气泡。此外,在包封instron59cp的instron环境室系统id3119-609/0006391内,将表3中每种构造的一个样品(1英寸(2.54cm)宽×6英寸(15.24cm)长)相对于初始3英寸(7.62cm)膜间隙在150℉的温度下拉伸30%。在拉伸的膜样品仍夹持在instron中时,将铝板(以q-panel编号ed-2.75x11nh购自俄亥俄州韦斯特莱克的q-lab公司(q-labcorp.,westlake,oh),使用5052h38裸铝,0.025"×2.75"×11"(0.64mm×1.08cm×27.94cm),etch&desmut板)定位在样品下方的拉伸区域的中心。然后将拉伸的膜样品施用到测试面板上,确保其施用时在膜下方无任何气泡。获得每个样品的总反射值和漫反射值,并且使用上述方法计算镜面反射。金属选择对拉伸后的漫反射和镜面反射的影响如表3所示,制备具有60nm涂层的五个不同金属(al、ni、sn、in和cr)的样品,并且如上所述进行测试。表4示出了当从0%(未拉伸)拉伸至50%时每种金属的所得镜面反射。如表4所示,al具有最高初始反射率,但从20%拉伸开始下降至低于in或sn的反射率,并且在50%拉伸下继续下降至低于30%的镜面反射。ni和cr的初始镜面反射低于sn和in,并且在拉伸后镜面反射下降。表5示出了随着每个样品从10%拉伸至50%镜面反射的损失百分比(与初始未拉伸的样品相比),并且表6示出了拉伸镜面反射率与未拉伸镜面反射率的比率,其中拉伸水平在10%至50%的范围内。虽然镜面反射随样品拉伸而降低,但漫反射趋于随着金属断裂由于膜起雾而增加。表7示出了当从0%(未拉伸)拉伸至50%时每种金属的所得漫反射。cr、ni和al的漫反射率均随着金属拉伸由于金属断裂造成膜起雾而增加。另一方面,sn(e2)和in(e9)显示出较少的断裂和起雾,并且在拉伸至50%时保持低于15%的漫反射。表4.涂覆至60nm的不同金属的镜面反射率百分比与拉伸百分比。样品编号金属0%拉伸10%拉伸20%拉伸30%拉伸40%拉伸50%拉伸实施例2sn64.0%57.5%51.3%43.5%39.9%36.7%比较例8cr24.4%17.6%13.9%10.6%9.0%7.8%实施例9in59.1%55.1%47.4%43.5%39.8%36.1%比较例6ni52.6%36.9%26.4%22.6%11.5%8.9%比较例7al84.0%74.0%49.3%43.7%34.2%28.1%表5.涂覆至60nm的不同金属的镜面反射率损失百分比与拉伸百分比。表6.涂覆至60nm的不同金属的拉伸镜面反射率与未拉伸镜面反射率的比率。样品编号金属10%拉伸20%拉伸30%拉伸40%拉伸50%拉伸实施例2sn0.90.80.70.60.6比较例8cr0.70.60.40.40.3实施例9in0.90.80.70.70.6比较例6ni0.70.50.40.20.2比较例7al0.90.60.50.40.3表7.涂覆至60nm的不同金属的漫反射率百分比与拉伸百分比。样品编号金属0%拉伸10%拉伸20%拉伸30%拉伸40%拉伸50%拉伸实施例2sn1.0%2.0%4.0%6.3%8.0%10.3%比较例8cr1.3%7.7%10.9%14.0%15.4%16.9%实施例9in2.0%2.7%4.6%5.8%7.0%9.0%比较例6ni0.3%13.0%20.2%23.0%30.1%32.6%比较例7al0.5%8.4%26.5%30.4%37.7%38.7%金属厚度使用sn通过多个样品探究金属化层厚度的影响。表8示出了多个样品在不同金属厚度和拉伸水平下的镜面反射。表8.拉伸和sn金属化厚度对镜面反射百分比的影响。虽然本公开提供了实施方案的若干具体示例,但在阅读本公开后,本发明范围内的这些实施方案的变型对于本领域的技术人员将显而易见。例如,可使用宽泛范围的粘合剂来构造可拉伸反射膜。可使用除本文明确描述的那些方法之外的其它方法来制造可拉伸反射膜。在阅读本公开后,其它变型对于本领域的技术人员将显而易见。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1