如本领域的技术人员所熟知,渗氮/氮碳共渗是(例如,通过淬火和回火)将氮扩散入通常已经经过预处理的金属工件的表面。氮嵌入并与钢合金元素形成氮化物会引起表面硬化,从而获得期望的性质,例如,对大多数钢而言,表面硬度可达到750至1100HV维氏硬度(HV)的范围。
可使用各种方法来执行渗氮操作本身,其中可能包括气体渗氮、低压渗氮、盐浴渗氮和离子渗氮,以及其他方法。通过由等离子体解离的活性气体的受控气流在真空炉中执行离子渗氮。
基本上,氮化层(至少在其表面上)具有“组合层”或“白层”,氮可以以硬度很高的氮化铁的形式结合到“组合层”或“白层”上,以在促进摩擦的同时增加耐磨性和抗咬合性。在厚度可在大约5微米(μm)至25μm之间的组合层下方是具有疲劳强度并提升了耐磨性的扩散层。该层的组成及厚度取决于所考虑的钢的等级和处理参数。
渗氮尤其广泛应用于提高钢制工件对疲劳、磨损和咬合的抗性。然而,测试表明,由于表面层会具有一定的孔隙率和气孔缺陷,氮尤其不利于焊接。因此,通过对预先经受了渗氮操作的XC 48工件进行钨极惰性气体保护(TIG)焊接和激光焊接(LBW)来执行测试,结果表明无论是使用哪种方法,渗氮对焊接操作都有强烈影响。所得的焊接珠缘不均匀且出现了大量大气孔。
因此,为了让氮化或氮碳共渗工件能在良好条件下焊接,将工件上要形成焊接点部分的表面层进行转化就变得十分重要了。
已知有多种溶液,特别是中止溶液或抗蚀溶液,可用于在待氮化的工件上形成焊接点。
例如,已经提出执行通常分两个阶段进行的机械掩蔽法,其中一个阶段在渗氮/氮碳共渗处理的上游执行并且涉及掩模定位,另一个阶段在所述处理过程的下游执行,包括移除所述掩模。但这样的方法在形状复杂的工件上难以实行。掩模的磨损和成本,以及上游安装和下游移除操作的成本也都非常高。
也已经提出,还是针对氮化和碳氮共渗,采用铜基涂料提供掩模,所述铜基涂料可构成能够有效阻隔氮或碳组分的屏障。然而这种方法成本较高,且鉴于前期处理和后期移除涂料时所需的干燥时间,该方法花费的时间相对较长。并且还观察到,该方法会产生残留应力并导致变形。还应注意,这种类型的溶液只可用于气体渗氮和/或离子渗氮,不可用于盐浴渗氮。
可以设想在待转化的组合层区域上执行车削和铣削类型的加工操作。然而,这类操作难以适用于复杂的区域或多个区域。
另外还观察到,仅通过机械方法移除组合层不会改变扩散区域中氮的浓度,因此也不能确保良好的焊接质量。
还可参考WO 2013/050855文件的教导内容,该文件涉及使用高能热源的清洁系统,以用于从基质上移除涂层以执行焊接操作。
该文件不涉及处理氮化工件,也未提及转化组合层的至少一部分以改变工件的结构的问题。
本发明的目的是用简单、安全、高效且合理的方法纠正这些缺点。
本发明所提出的要解决的问题是,通过任何已知且合适的方法,在表面层上将要进行焊接操作的区域,通过改变工件结构的方法,使得能够轻易地使待制的氮化/氮碳共渗工件的任何部分都兼容焊接。
在下列描述中,术语“表面层”是指至少全部或部分的组合层,并且还可能全部或部分地包括扩散层。
为了解决这个问题,本发明提供了一种处理氮化/氮碳共渗工件的方法,该方法包括使所述工件的至少一部分经受第一步骤,其中至少一束激光束在所述部分上方的至少一条通路中移动,直到所考虑部分的表面层被部分或全部转化,并且直到扩散区域中氮浓度的分布发生改变为止。
从这些特性得出,该处理方法使得可以在第一步骤中转化表面层并改变扩散区域中氮浓度的分布,而该第一步骤足以使处理过的区域适于焊接。
如果所述第一步骤中多条通路之间形成0.01毫米(mm)至0.05mm范围内的线内间距,就会获得有利的结果。有利的是,所述线内间距为0.02mm。
有利的是,为了解决转化表面层和改变扩散层中氮浓度分布的问题,使用20瓦特(W)的光纤和脉冲激光器,该激光被设置为约20千赫兹(kHz)和50%的功率,离焦5mm并以每秒300毫米(mm/s)的速度前进。
从这一基本特性开始,已经看出,还可以使扩散层中的氮浓度发生显著的变化。具体而言,为了这一目的,使被激光处理并转化过表面层的部分经受第二步骤,在该步骤中,使至少一束或多束所述激光束在所述部分上方的至少一条通路中移动,从而使得下方扩散层中的氮浓度降低。
为了解决改变氮浓度分布同时降低扩散层中氮含量的问题,在该第二步骤中,将20W的光纤和脉冲激光器设置为约200kHz和100%的功率,离焦5mm并以1mm/s至10mm/s范围内的速度前进。
由这些特征得出,本发明还提供了一种焊接氮化/氮碳共渗工件的方法,该方法包括:
-使所述工件的至少一部分经受第一步骤,其中至少一束激光束在所述部分上方的至少一条通路中移动,直到所考虑部分的表面层被部分或全部转化,并且直到扩散区域中氮浓度的分布发生改变为止;以及
-在所述工件经处理的部分处形成焊接点。
在另一实施方法中,该焊接方法包括:
-使所述工件的至少一部分经受第一步骤,其中至少一束激光束在所述部分上方的至少一条通路中移动,直到所考虑部分的表面层被部分或全部转化,并且直到扩散区域中氮浓度的分布发生改变为止;
-使至少被激光处理并转化过表面层的部分经受第二步骤,在该步骤中,使至少一束激光束在所述部分上方的至少一条通路中移动,从而使得下方扩散层中的氮浓度降低;以及
-在所述工件经处理的部分处形成焊接点。
下文将结合附图更详细地描述本发明,其中:
-图1示出了一个工件的样品,该工件具有氮化顶面,并且具有通过实施本发明的方法的第一步骤来处理的区域A以及通过实施本方法的第一和第二步骤来处理的区域B;
-图2、图2A和图2B给出的曲线示出了在以下区域中含氮百分比与深度的关系:工件氮化区域(图2)、通过实施第一步骤来处理的区域A(图2A),以及通过实施本方法的两个步骤来处理的区域B(图2B);
-图3和图4示出了TIG焊接点的外观,其一为氮化表面(图3),另一个则是具有通过实施本方法第一步骤来处理的区域的氮化表面(图4);
-图5和图6是示出了TIG焊接点的内镜视图,其一为氮化表面(图5),另一个则是具有通过实施本方法第一步骤来处理的区域的氮化表面(图6);并且
-图7和图8是示出了激光焊接点的内镜视图,其一为氮化表面(图7),另一个则是具有通过实施本方法第一步骤来处理的区域的氮化表面(图8)。
图1总体上示出了由参考文献1特指、并且具有氮化面1a的工件的非限制性示例。在氮化面1a上,区域A通过实施本发明方法的第一步骤来处理,区域B通过实施本处理方法的第一步骤和第二步骤来处理。在氮化区1a和通过实施本发明方法的一个或两个步骤来处理的区域(分别由区域A和区域B表征)处,都会沿着工件1的整个长度方向上形成焊接珠缘2。
这样就能满足本发明的目的,即通过转化表面层来改变工件1的结构,以便能够在以这种方式处理过的区域处进行任何类型的焊接。
因此,区域A经受第一步骤,其中至少一束激光束在至少一条通路中移动,直到表面层从氮化面1a的所述区域被完全移除。当通道之间的线内间距为0.01mm至0.05mm的范围内,优选地以0.02mm的线内间距形成多条通路时,获得有利的结果。该方法通过20W光纤和脉冲激光器来实施,该激光机被设置为约20kHz和50%的功率,散焦5mm,并以大约300mm/s的速度前进。
对于TIG焊接,参考图2、图2A和图2B的曲线以及图5和图6的金相剖面。图6示出了在通过实施本处理方法的第一步来处理的区域A处的TIG焊接点,与图5示出的在未处理的氮化表面上的TIG焊接点形成对比。
对于激光焊接,参考图2、图2A和图2B的曲线以及图7和图8的金相剖面。图8示出了在通过实施本处理方法的第一步来处理的区域A处的激光焊接点,与图7示出的在未处理的氮化表面上的激光焊接点形成对比。
工件1的区域B通过实施如上所述的本发明方法的第一步骤进行预处理。
然后对该区域进行第二步骤,其中激光束在至少一条通路中移动,以便可以改变在下方扩散层中所述区域处氮浓度的分布。对于第二步骤,使用相同的20W光纤和脉冲激光器,并采用不同的设置。
因此,该激光器设置在约200kHz,功率100%且离焦5mm,并以在1mm/s至10mm/s范围内的速度前进。该第二步骤在单一通路内执行。
参考图2B中的曲线,示出了在本方法的两个步骤之间氮含量的额外减少量。所述第一步骤的设置难以实现这样显著的氮流失。
这些各种测试表明,氮化表面上的焊接点产生具有表面孔(图3)的不均匀混乱外观,所述表面孔为贯穿的气孔(图5)。
这些金相剖面显示,本发明为TIG焊接提供了良好的性能结果,并且在更小的程度上为激光焊接提供了良好的性能结果。
通过将第二步与该方法结合,还观察到氮浓度的分布发生了改变。这种改变表现为下方扩散层中氮含量的减少。
由本发明方法的特性得出,该处理过程通过转化表面层来改变工件的结构,并且因此能够焊接氮化的工件。
该激光操作相对便宜,因为单次操作即可达到目的,并且可以以非常高的精度处理所有类型的工件,包括特定区域或复杂形状。
总之,考虑到渗氮与焊接操作不相容的事实,本处理方法使得可以在第一步骤中转化表面层并且改变扩散区域中氮浓度的分布。不仅TIG焊接获得了良好的性能结果,激光焊接也是如此。所述第一步骤足以使得该区域兼容焊接。
在本处理方法的第二步骤中,可以在改变氮浓度分布的同时降低扩散层中的氮含量。令人惊讶且出人意料的是,扩散区中氮浓度的降低似乎给出了相反的结果,即焊接质量更差。扩散层中氮含量的这种减少对于某些应用非常重要,例如,降低工件的脆性。