接合体的制造方法与流程

文档序号:16040100发布日期:2018-11-24 10:24阅读:230来源:国知局

本发明涉及一种接合体的制造方法。

背景技术

以往,已知使用包含烧结性颗粒的接合材料来将两个被接合物接合的方法(例如参照专利文献1~3)。

在专利文献1中公开了如下方法:在一个被接合物(例如硅芯片)上涂布接合材料,接着,在接合材料面上配置另一个被接合物(例如无氧铜板)而制成层叠体,之后,不对层叠体加压地进行加热,将被接合物彼此接合。

在专利文献2中公开了如下方法:使两个被接合物之间夹杂接合用组合物后,在将被接合物在250℃下加热的同时,进行加压,将被接合物彼此接合。

在专利文献3中公开了以下内容:首先,在铜芯片的下部涂布接合材料而配置于铜基板上,之后,边将无氧铜基板和铜芯片在2.5mpa的压力下加压,边进行预焙烧工序(在大气气氛中且100℃下进行10分钟)和正式焙烧工序(在350℃下进行5分钟),形成接合体。另外还公开了在预焙烧工序与正式焙烧工序之间以3.0℃/s的升温速度进行升温。

现有技术文献

专利文献

专利文献1:国际公开第2013/108408号

专利文献2:日本特开2015-57291号公报

专利文献3:日本特开2011-080147号公报



技术实现要素:

发明要解决的问题

在专利文献1中,在无加压下进行接合。无加压接合是对被接合物(例如芯片)的损伤少的接合方法。然而,存在因接合材料中所含的有机成分、烧结性颗粒(例如金属颗粒)的被覆材料挥发而无法充分得到与被接合物的界面的接合的可能性。在专利文献1中公开了在-55℃~+150℃的温度范围进行1000个循环(高温低温各5分钟)的温度循环试验的结果,该试验是在200℃以下的试验,并不是评价在200℃以上的高温下的接合性的试验。

在专利文献2中,边加压边进行接合。然而,在250℃这样的高温下进行接合。因此,进行接合工序之前的层叠体被急剧地加热。由此,存在接合材料中所含的有机成分、烧结性颗粒的被覆材料急剧挥发的可能性。另外,利用有机成分来保持接合材料中的烧结性颗粒的分散。因此,担心因急剧的加热引起烧结性颗粒的聚集而无法得到致密的烧结结构。而且,存在因此而无法得到充分接合的可能性。

在专利文献1、专利文献3中,接合材料为糊状(液状)。因此,需要涂布工序、干燥工序,担心直至得到接合体为止的工序时间变长。

本发明是鉴于上述问题点而完成的发明,其目的在于提供一种接合体的制造方法,其能够抑制因挥发物而产生的接合材料与被接合物之间的剥离,并且能够得到在高温下的接合可靠性高的接合体。

用于解决问题的方案

本申请发明人等为了解决上述以往的问题点而对接合体的制造方法进行了研究。其结果发现:通过采用下述的构成,从而能够抑制因挥发物而产生的接合材料与被接合物之间的剥离,能够将烧结工序后的接合材料制成致密的烧结结构,并且能够得到在高温下的接合可靠性高的接合体,从而完成了本发明。

即,本发明的接合体的制造方法的特征在于,其具有:

工序a,准备将两个被接合物借助具有烧结前层的加热接合用片暂时粘接而成的层叠体;

工序b,将上述层叠体从下述定义的第1温度以下升温至第2温度;和

工序c,在上述工序b之后,将上述层叠体的温度保持在规定范围内,

在上述工序b的至少一部分期间及上述工序c的至少一部分期间,对上述层叠体进行加压。

第1温度:在进行上述烧结前层的热重量测定时上述烧结前层中所含的有机成分的重量减少10重量%时的温度。

当在大气下进行上述工序b及上述工序c时,上述热重量测定在大气下进行,当在氮气气氛下、还原气体气氛下或真空气氛下进行上述工序b及上述工序c时,上述热重量测定在氮气气氛下进行。

根据上述构成,将暂时粘接有两个被接合物的层叠体从第1温度以下升温至第2温度(工序b)。另外,在工序b的至少一部分期间,对上述层叠体进行加压。第1温度是:在进行上述烧结前层的热重量测定时上述烧结前层中所含的有机成分减少10重量%时的温度。即,上述第1温度是不会使烧结前层的有机成分(尤其是用于使烧结性颗粒分散的低沸点粘结剂)急剧挥发的温度。

由于将暂时粘接的层叠体从第1温度以下进行升温,因此不会成为急剧的加热。因此,能够抑制接合材料中所含的有机成分等急剧挥发,能够防止剥离。另外,在包含烧结性颗粒的情况下,能够防止其聚集。其结果为在工序c之后可以得到致密的烧结结构。进而,由于在该升温中的至少一部分期间对上述层叠体进行加压,因此能够抑制因微量产生的挥发物而阻碍接合。另外,能够抑制烧结层中的粗大孔隙的产生。

予以说明,当在大气下进行上述工序b及上述工序c时,上述热重量测定在大气下进行,当在氮气气氛下、还原气体气氛下或真空气氛下进行上述工序b及上述工序c的情况下,上述热重量测定在氮气气氛下进行。

进行工序b、工序c时的气氛根据被接合物、加热接合用片的组成等来设定。因此,热重量测定需要设成与进行工序b及工序c时的气氛相同的条件来进行测定。因此,在本说明书中,规定“当在大气下进行上述工序b及上述工序c时,上述热重量测定在大气下进行,当在氮气气氛下、还原气体气氛下或真空气氛下进行上述工序b及上述工序c时,上述热重量测定在氮气气氛下进行。”。

例如,在被接合物为铜制的情况下,在高温下发生氧化。因此,工序b及工序c在氮气气氛下、还原气体气氛下或真空气氛下进行。此时,上述热重量测定在氮气气氛下进行。

另外,例如,在加热接合用片含有热解性粘结剂的情况下,有时因氧及氮的有无或其比率而使分解行为不同。由于因氧及氮的有无或比率而使分解行为不同,因此当在氮气气氛下进行工序b及工序c的情况下,上述热重量测定在氮气气氛下进行,当在大气下进行工序b及工序c时,上述热重量测定在大气下进行。例如,在使用丙烯酸类树脂作为热解性粘结剂的情况下,丙烯酸类树脂的分解行为与氧的有无有关。因此,工序b及工序c通常在大气下进行。此时,上述热重量测定在大气下进行。但是,在本说明书中,即使是使用丙烯酸类树脂作为热解性粘结剂的情况,只要能得到一定以上的接合,则也能在氮气气氛下进行工序b及工序c。此时,上述热重量测定在氮气气氛下进行。

另外,例如,在加热接合用片含有铜颗粒作为金属微粒的情况下,工序b及工序c在氮气气氛下、还原气体气氛下或真空气氛下(优选氮气气氛下或还原气体气氛下)进行。此时,上述热重量测定在氮气气氛下进行。

另外,根据上述构成,在上述工序b(升温工序)之后,将上述层叠体的温度保持在规定范围内(工序c)。在烧结前层包含烧结性颗粒的情况下,利用工序c,能够使烧结性颗粒烧结。由此得到牢固的接合。

在上述构成中,上述加压优选在5~40mpa的范围内。

若上述加压为5mpa以上,则得到更牢固地接合的接合体。另外,若上述加压为40mpa以下,则能够防止由载荷所致的被接合物(例如芯片)的破损。

在上述构成中,在上述工序c中保持的温度优选在200℃~400℃的范围内。

若在上述工序c中保持的温度为200℃以上,则良好地进行烧结,得到更牢固地接合的接合体。另外,若在上述工序c中保持的温度为400℃以下,则能够缩短工艺时间,并且能够减轻对芯片的由热所致的损伤。

上述加压优选利用倒装芯片接合机或平行平板压制机来进行。

若利用倒装芯片接合机或平行平板压制机来进行上述加压,则能够容易地进行在加压下的加热。

附图说明

图1为用于对本实施方式的接合体的制造方法进行说明的截面示意图。

图2为用于对本实施方式的接合体的制造方法进行说明的截面示意图。

图3为用于对本实施方式的接合体的制造方法进行说明的截面示意图。

图4为用于对本实施方式的接合体的制造方法进行说明的截面示意图。

图5为用于对本实施方式的接合体的制造方法进行说明的截面示意图。

图6为用于对本实施方式的接合体的制造方法进行说明的截面示意图。

图7为实施例3的加热接合用片的截面照片(中央部)。

图8为实施例3的加热接合用片的截面照片(与芯片的界面附近)。

图9为实施例7的加热接合用片的截面照片(中央部)。

图10为实施例7的加热接合用片的截面照片(与芯片的界面附近)。

具体实施方式

以下,参照附图对本实施方式的接合体的制造方法进行说明。图1~图6为用于对本实施方式的接合体的制造方法进行说明的截面示意图。

(接合体的制造方法)

本实施方式的接合体的制造方法至少具有:

工序a,准备将两个被接合物借助具有烧结前层的加热接合用片暂时粘接而成的层叠体;

工序b,将上述层叠体从下述定义的第1温度以下升温至第2温度;和

工序c,在上述工序b之后,将上述层叠体的温度保持在规定范围内,

在上述工序b的至少一部分期间及上述工序c的至少一部分期间,对上述层叠体进行加压。

第1温度:在进行上述烧结前层的热重量测定时上述烧结前层中所含的有机成分的重量减少10重量%时的温度。

当在大气下进行上述工序b及上述工序c时,上述热重量测定在大气下进行,当在氮气气氛下、还原气体气氛下或真空气氛下进行上述工序b及上述工序c时,上述热重量测定在氮气气氛下进行。

[工序a]

在本实施方式的接合体的制造方法中,首先,准备图1所示的层叠体10。层叠体10具有将基板50和半导体元件22借助加热接合用片40暂时粘接的构成。基板50及半导体元件22相当于本发明中的被接合物。以下,在本实施方式中对本发明中的被接合物为基板50及半导体元件22的情况进行说明,本发明中的被接合物只要是可以使用加热接合用片接合的被接合物,则并不限定于此例。

以下,对准备层叠体10的具体方法进行说明。

层叠体10能够利用以下的工序来得到。

工序a-1,准备基板50;

工序a-2,准备在一个面上层叠有加热接合用片40的半导体元件22;以及

工序a-3,将工序a-2中准备的半导体元件22借助加热接合用片40暂时粘接于基板50。

[工序a-1]

在工序a-1中,准备基板50(参照图1)。

基板50的材质并无特别限定。可列举例如具有电绝缘性的材质。具体而言,可列举:聚酯系树脂、环氧系树脂、氨酯系树脂、聚苯乙烯系树脂、聚乙烯系树脂、聚酰胺系树脂、聚酰亚胺系树脂、abs树脂、聚碳酸酯树脂、有机硅树脂等树脂;陶瓷等。其中,从耐热性的观点出发,优选聚酰亚胺系树脂、陶瓷。在使用聚酰亚胺系树脂等树脂的情况下,能够使基板50具有挠性。另外,在使用陶瓷的情况下,能够将基板50制成无法弯折的牢固的基板。

在基板50的表面的一部分可以形成电极(未图示)。作为上述电极的材质,可列举例如:金、银、铜、镍、钴等各种金属;或者以它们为主成分的各种合金。在如本实施方式那样在基板50上借助加热接合用片40接合半导体元件22的情况下,可以将半导体元件22与形成于基板50的上述电极接合。

[工序a-2]

在工序a-2中,准备在一个面上层叠有加热接合用片40的半导体元件22(图5)。

在此,对本实施方式中使用的加热接合用片40进行说明。

(加热接合用片)

本实施方式的加热接合用片40由1层烧结前层构成。烧结前层是指通过规定的加热而成为烧结层的层。

在本实施方式中,对加热接合用片由1层烧结前层构成的情况进行说明。然而,本发明的加热接合用片只要具有烧结前层,则并不限定于此例。烧结前层并不限定于1层,也可以由组成不同的多层形成。

另外,本发明的加热接合用片可以为例如由烧结前层和其他层的两层以上构成的片材。例如,本发明的加热接合用片可以是在一个面露出第1烧结前层、在另一个面露出第2烧结前层的片材。具体而言,可以为依次层叠有第1烧结前层、其他层、第2烧结前层的片材。例如,此时,第1烧结前层和第2烧结前层可以为同一组成,也可以不同。

加热接合用片40的厚度优选为30μm以上,更优选为40μm以上。另外,优选为100μm以下,更优选为70μm以下。通过使加热前的加热接合用片40的厚度为上述范围,从而能够维持片材形状。

上述烧结前层在大气气氛下、升温速度10℃/分钟的条件下进行从23℃到400℃的升温后的利用能量分散型x射线分析得到的碳浓度优选为15重量%以下,更优选为12重量%以下,进一步优选为10重量%以下。若上述碳浓度为15重量%以下,则上述烧结前层在升温至400℃后几乎不存在有机物。其结果为:在烧结工序后耐热性优异,即使在高温环境下也能得到高的可靠性、热特性。

上述烧结前层在大气气氛下、升温速度10℃/分钟的条件下从23℃到500℃进行差热分析时的峰优选存在于150~350℃,更优选存在于170~320℃,进一步优选存在于180~310℃。若上述峰存在于150~350℃,则可以说有机物(例如构成烧结前层的树脂成分)在该温度区域进行热解。其结果,烧结工序后的耐热性更优异。

上述烧结前层优选包含金属系化合物。作为上述金属系化合物,可列举au系、ag系、cu系的金属微粒等。

作为上述金属微粒,可列举烧结性金属颗粒。

作为上述烧结性金属颗粒,能够适合使用金属微粒的聚集体。作为金属微粒,可列举由金属构成的微粒等。作为上述金属,可列举金、银、铜、银的氧化物、铜的氧化物等。其中,优选为选自由银、铜、银的氧化物、铜的氧化物组成的组中的至少1种。上述金属微粒为选自由银、铜、银的氧化物、铜的氧化物组成的组中的至少1种时,能够更合适地进行加热接合。

上述烧结性金属颗粒的平均粒径优选为0.0005μm以上、更优选为0.001μm以上。作为平均粒径的下限,也可示例出0.01μm、0.05μm、0.1μm。另一方面,烧结性金属颗粒的平均粒径优选为30μm以下、更优选为25μm以下。作为平均粒径的上限,也可示例出20μm、15μm、10μm、5μm。

上述烧结性金属颗粒的平均粒径利用以下的方法进行测定。即,通过sem(扫描型电子显微镜)对上述烧结性金属颗粒进行观察,测量平均粒径。予以说明,sem观察优选:例如在烧结性金属颗粒为微米大小时,用5000倍进行观察,为亚微米大小时,用50000倍观察进行观察,为纳米大小时,用300000倍进行观察。

上述烧结性金属颗粒的形状并无特别限定,例如为球状、棒状、鳞片状、不规则形状。

上述烧结前层优选相对于整个上述烧结前层以60~98重量%的范围含有金属微粒。上述金属微粒的含量更优选在65~97重量%的范围内,进一步优选在70~95重量%的范围内。若在60~98重量%的范围内含有上述金属微粒,则能够使金属微粒烧结或熔融而使两个物体(例如半导体元件和基板)接合。

上述烧结前层优选含有低沸点粘结剂。为了容易进行上述金属微粒的处理而使用上述低沸点粘结剂。另外,为了调整任意的机械物性而使用上述低沸点粘结剂。具体而言,能够将上述金属微粒以分散于上述低沸点粘结剂的含金属微粒的糊剂的形式来使用。

上述低沸点粘结剂在23℃下为液状。在本说明书中,“液状”包括半液状。具体而言,是指:基于采用动态粘弹性测定装置(流变仪)的粘度测定得到的23℃下的粘度为100,000pa·s以下。

粘度测定的条件如下述所示。

流变仪:thermoscientfic公司制marsiii

夹具:平行板间隙100μm、剪切速度1/秒)

作为上述低沸点粘结剂的具体例,可列举例如:戊醇、己醇、庚醇、辛醇、1-癸醇、乙二醇、二乙二醇、丙二醇、丁二醇、α-萜品醇、1,6-己二醇、异冰片基环己醇(mtph)等一元醇及多元醇类;乙二醇丁基醚、乙二醇苯基醚、二乙二醇甲基醚、二乙二醇乙基醚、二乙二醇丁基醚、二乙二醇异丁基醚、二乙二醇己基醚、三乙二醇甲基醚、二乙二醇二甲醚、二乙二醇二乙基醚、二乙二醇二丁基醚、二乙二醇丁基甲基醚、二乙二醇异丙基甲基醚、三乙二醇二甲醚、三乙二醇丁基甲基醚、丙二醇丙基醚、二丙二醇甲基醚、二丙二醇乙基醚、二丙二醇丙基醚、二丙二醇丁基醚、二丙二醇二甲醚、三丙二醇甲基醚、三丙二醇二甲醚等醚类;乙二醇乙基醚乙酸酯、乙二醇丁基醚乙酸酯、二乙二醇乙基醚乙酸酯、二乙二醇丁基醚乙酸酯、二丙二醇甲基醚乙酸酯(dpma)等。它们可以组合使用两种以上。其中,优选组合使用沸点不同的两种粘结剂。若使用沸点不同的两种粘结剂,则在维持片材形状这一点上是优异的。

上述烧结前层优选含有在23℃下为固态的热解性粘结剂。若含有上述热解性粘结剂,则烧结工序前容易维持片材形状。另外,在烧结工序时容易使其热解。

在本说明书中,“固态”具体是指:基于采用上述流变仪的粘度测定得到的23℃下的粘度大于100,000pa·s。

在本说明书中,“热解性粘结剂”是指在烧结工序中能够热解的粘结剂。上述热解性粘结剂优选在烧结工序后几乎不残留于烧结层(加热后的烧结前层)。作为上述热解性粘结剂,可列举例如如下的材料:即使含有在烧结前层中,在大气气氛下、升温速度10℃/分钟的条件下进行从23℃到400℃的升温后的通过能量分散型x射线分析得到的碳浓度也为15重量%以下的材料。例如,作为热解性粘结剂,若采用更易热解的材料,则即使含量较多,也能够在烧结工序后几乎不残留在烧结层(加热后的烧结前层)中。

作为上述热解性粘结剂,可列举聚碳酸酯、丙烯酸类树脂、乙基纤维素、聚乙烯醇等。这些材料可以单独使用或混合两种以上来使用。其中,从热解性高的观点出发,优选聚碳酸酯。

作为上述聚碳酸酯,只要是能够在烧结工序中热解的聚碳酸酯,则并无特别限定,可列举在主链的碳酸酯基(-o-co-o-)间不含芳香族化合物(例如苯环等)且包含脂肪族链的脂肪族聚碳酸酯、在主链的碳酸酯基(-o-co-o-)间包含芳香族化合物的芳香族聚碳酸酯。其中,优选脂肪族聚碳酸酯。

作为上述脂肪族聚碳酸酯,可列举聚碳酸亚乙酯、聚碳酸亚丙酯等。其中,从用于形成片材的清漆制作中对有机溶剂的溶解性的观点出发,优选聚碳酸亚丙酯。

作为上述芳香族聚碳酸酯,可列举在主链包含双酚a结构的芳香族聚碳酸酯等。

上述聚碳酸酯树脂的重均分子量在10,000~1,000,000的范围内是适合的。予以说明,重均分子量是通过gpc(凝胶渗透色谱法)进行测定并通过聚苯乙烯换算算出的值。

作为上述丙烯酸类树脂,在能够在烧结工序中热解的范围内,可列举:将具有碳数30以下、特别是碳数4~18的直链或支链的烷基的丙烯酸或甲基丙烯酸的酯的1种或2种以上作为成分的聚合物(丙烯酸类共聚物)等。作为上述烷基,可列举例如甲基、乙基、丙基、异丙基、正丁基、叔丁基、异丁基、戊基、异戊基、己基、庚基、环己基、2-乙基己基、辛基、异辛基、壬基、异壬基、癸基、异癸基、十一烷基、月桂基、十三烷基、十四烷基、硬脂基、十八烷基或十二烷基等。

另外,作为形成聚合物(丙烯酸类共聚物)的其他单体,并无特别限定,可列举例如:如丙烯酸、甲基丙烯酸、丙烯酸羧基乙酯、丙烯酸羧基戊酯、衣康酸、马来酸、富马酸或巴豆酸等那样的含羧基单体;如马来酸酐或衣康酸酐等那样的酸酐单体;如(甲基)丙烯酸-2-羟基乙酯、(甲基)丙烯酸-2-羟基丙酯、(甲基)丙烯酸-4-羟基丁酯、(甲基)丙烯酸-6-羟基己酯、(甲基)丙烯酸-8-羟基辛酯、(甲基)丙烯酸-10-羟基癸酯、(甲基)丙烯酸-12-羟基月桂酯或丙烯酸(4-羟基甲基环己基)甲酯等那样的含羟基单体;如苯乙烯磺酸、烯丙磺酸、2-(甲基)丙烯酰胺基-2-甲基丙磺酸、(甲基)丙烯酰胺丙磺酸、(甲基)丙烯酸磺丙酯或(甲基)丙烯酰氧基萘磺酸等那样的含磺酸基单体;或者如2-羟基乙基丙烯酰基磷酸酯等那样的含磷酸基单体。

在丙烯酸类树脂中,更优选重均分子量为1万~100万的丙烯酸类树脂,进一步优选重均分子量为3万~70万的丙烯酸类树脂。这是由于:若为上述数值范围内,则烧结工序前的粘接性及烧结工序时的热解性优异。予以说明,重均分子量是利用gpc(凝胶渗透色谱法)进行测定并通过聚苯乙烯换算算出的值。

另外,在丙烯酸类树脂中,优选在200℃~400℃下热解的丙烯酸类树脂。

予以说明,在上述烧结前层中除上述成分以外还可以适当含有例如增塑剂等。

加热接合用片40可利用通常的方法制造。例如,制作含有用于形成上述烧结前层的上述各成分的清漆,以成为规定厚度的方式将清漆涂布在基材隔离体上而形成涂布膜,然后使该涂布膜干燥,由此能够制造加热接合用片40。

作为用于清漆的溶剂,并无特别限定,优选能够将上述各成分均匀地溶解、混炼或分散的有机溶剂、醇溶剂。作为上述有机溶剂,可列举例如:二甲基甲酰胺、二甲基乙酰胺、n-甲基吡咯烷酮、丙酮、甲乙酮、环己酮等酮系溶剂;甲苯、二甲苯等。另外,作为上述醇溶剂,可列举乙二醇、二乙二醇、1,2-丙二醇、1,3-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、2-丁烯-1,4-二醇、1,2,6-己三醇、甘油、辛二醇、2-甲基-2,4-戊二醇、萜品醇。

涂布方法并无特别限定。作为溶剂涂覆的方法,可列举例如:模涂机、凹版涂布机、辊涂机、逆转式涂布机、逗点涂布机、管刀涂布机(pipedoctorcoater)、丝网印刷等。其中,从使涂布厚度的均匀性高这样的方面出发,优选模涂机。另外,涂布膜的干燥条件并无特别限定,例如能够在干燥温度70~160℃、干燥时间1~5分钟下进行。予以说明,即使在使涂布膜干燥后,根据溶剂的种类的不同,也存在溶剂未全部气化而残留在涂膜中的情况。

在上述烧结前层含有上述低沸点粘结剂的情况下,根据上述干燥条件的不同而存在上述低沸点粘结剂的一部分挥发的情况。因此,根据上述干燥条件的不同,构成上述烧结前层的各成分的比率会发生变化。例如,即使是由同一清漆形成的烧结前层,干燥温度越高,并且干燥时间越长,金属微粒在整个烧结前层中所占的含量、热解性粘结剂的含量也会越多。因此,优选以使烧结前层中的金属微粒、热解性粘结剂的含量达到所期望的量的方式来设定上述干燥条件。

作为基材隔离体,能够使用聚对苯二甲酸乙二醇酯(pet)、聚乙烯、聚丙烯、利用氟系剥离剂、长链烷基丙烯酸酯系剥离剂等剥离剂进行了表面涂布的塑料薄膜、纸等。

作为加热接合用片40的制造方法,例如利用混合机混合用于形成上述烧结前层的上述各成分、并对所得的混合物进行压制成形而制造加热接合用片40的方法等也是适合的。作为混合机,可列举行星式混合机等。

加热接合用片40优选为夹持于两片隔离体的带双面隔离体的加热接合用片40。即,优选为依次层叠有隔离体40a、加热接合用片40及隔离体40b的带双面隔离体的加热接合用片40(参照图3)。作为隔离体40a及隔离体40b,能够使用与上述基材隔离体相同的隔离体。

以上,对加热接合用片40进行了说明。

在工序a-2中,如上述所示,准备在一个面层叠有加热接合用片40的半导体元件22(参照图5)。

在一个面层叠有加热接合用片40的半导体元件22可以通过下述工序x及工序y来得到。

工序x,在半导体晶圆20的一个面形成加热接合用片40;

工序y,将在上述工序x中所得的、形成有加热接合用片40的半导体晶圆20单片化。

[工序x]

在工序x中,如图2所示,在半导体晶圆20的一个面形成加热接合用片40。在该工序中,将加热接合用片40贴附于半导体晶圆20。

加热接合用片40通常以在双面贴附有隔离体的状态来准备。在图3中示出在加热接合用片40的双面贴附有隔离体(隔离体40a、隔离体40b)的状态。

在将加热接合用片40贴附于半导体晶圆20时,剥离一个隔离体后,进行贴附。

更具体而言,如图4所示,首先,在剥离一个隔离体40a后的加热接合用片40上载置半导体晶圆20。之后,进行加压而进行贴附。贴附例如可以利用层压机、平板压制来进行。作为贴附压力,优选在0.01~10mpa的范围内。另外,贴附时的贴附温度并无特别限定,但优选在例如23~90℃的范围内。

[工序y]

在工序y中,如图5所示,将上述工序x中所得的、形成有加热接合用片40的半导体晶圆20单片化。

具体而言,从加热接合用片40剥离隔离体40b而贴附于切割带(未图示)上。之后,进行切割而将其单片化。

予以说明,作为切割带,能够采用以往公知的切割带,因此省略在此的说明。另外,作为切割方法,也能使用以往公知的切割装置并采用以往公知的方法,因此省略在此的说明。可列举例如使用了切割刀的方法、在激光照射后进行割断的方法等。

根据以上内容,得到在一个面层叠有加热接合用片40的半导体元件22。

予以说明,在上述的实施方式中,对在切割前剥离隔离体40b的情况进行了说明。然而,剥离隔离体40b的时机并不限定于此例。例如也可以在切割后剥离隔离体40b。但是,当在切割前剥离隔离体40b时,能够在单片化之前一并剥离隔离体40b,在这一点上是优异的。另外,当在切割后剥离隔离体40b时,能够保护加热接合用片40直至即将暂时粘接之前,在这一点上是优异的。

[工序a-3]

在工序a-3中,将工序a-2中准备的半导体元件22借助加热接合用片40暂时粘接于基板50(参照图1)。在该工序中,使用贴片机等将多个半导体元件22暂时粘接于基板50上。作为暂时粘接条件,优选在压力0.01mpa~5mpa下暂时粘接。另外,暂时粘接时的温度并无特别限定,但优选为例如23~150℃的范围内。另外,加压时间优选为0.01~5秒。

以上,对得到层叠体10的方法(工序a)进行了说明。

以上,对准备层叠体的工序a的一个实施方式进行了说明。但是,准备本发明的层叠体的工序a只要能够准备层叠体,则并不限定于上述的实施方式。例如,层叠体可以利用以下的工序来准备。

工序a-11,准备在一个面层叠有加热接合用片的第1被接合物(例如基板);

工序a-12,准备第2被接合物(例如半导体元件);以及

工序a-13,将工序a-12中准备的第2被接合物借助加热接合用片暂时粘接于上述第1被接合物。

工序a-21,准备第1被接合物(例如基板);

工序a-22,准备第2被接合物(例如半导体元件);以及

工序a-23,在工序a-21中准备的第1被接合物和工序a-22中准备的第2被接合物之间配置加热接合用片而将第1被接合物和第2被接合物暂时粘接(同时将第1被接合物和第2被接合物暂时粘接于加热接合用片)。

[工序b]

在工序a后,将层叠体10从下述定义的第1温度以下升温至第2温度。

第1温度:在进行上述烧结前层的热重量测定时上述烧结前层中所含的有机成分减少10重量%时的温度。

当在大气下进行上述工序b及上述工序c时,上述热重量测定在大气下进行,当在氮气气氛下、还原气体气氛下或真空气氛下进行上述工序b及上述工序c时,上述热重量测定在氮气气氛下进行。

在本实施方式中,如图6所示,对使用具备下侧加热加压板60和上侧加热加压板62的平行平板压制机进行工序b及后述的工序c的情况进行说明。下侧加热加压板60及上侧加热加压板62是在内部安装有加热器的加压板。如本实施方式那样,在加压装置(下侧加热加压板60、上侧加热加压板62)也具有加热功能的情况下,将层叠体从第1温度以下升温至第2温度是指:将作为加压装置的下侧加热加压板60、上侧加热加压板62的至少一者的温度从第1温度以下升温至第2温度。

上述第1温度是:在进行上述烧结前层的热重量测定时上述烧结前层中所含的有机成分的重量减少10重量%时的温度。即,是将烧结前层中所含的有机成分整体设为100重量%时减少10重量%时的温度。例如是指:如果烧结前层中所含的有机成分为烧结前层整体的5重量%,则5重量%中的10重量%减少的温度(相对于烧结前层整体为0.5重量%)。

“烧结前层中所含的有机成分”包含上述热解性粘结剂、上述低沸点粘结剂。不含上述金属微粒(例如烧结性金属颗粒)。上述第1温度是主要以防止上述低沸点粘结剂的急剧挥发为目的而设定的温度。予以说明,上述第1温度是被推测为上述热解性粘结剂几乎不会分解的温度。

上述热重量测定使用烧结前层来测定。并不是仅抽取有机成分来进行测定。使用烧结前层进行测定的原因在于:通过有机成分与金属微粒的混合,有时低沸点粘结剂的沸点、热解性粘结剂的分解温度与单独地测定的情况相比有所不同。

上述第1温度根据上述烧结前层的组成而不同,可列举例如50℃、80℃、100℃等。

在该工序b(升温工序)中,预先将下侧加热加压板60及上侧加热加压板62预热至上述第1温度后,用下侧加热加压板60及上侧加热加压板62夹持层叠体10,之后,以规定的升温速度升温至第2温度。但是,在本发明中,可以不预热至第1温度而从第1温度以下的状态升温至第2温度。例如也可以在不预热下侧加热加压板60及上侧加热加压板62的状态下(温度为第1温度以下的状态下)夹持层叠体10,之后以规定的升温速度升温至第2温度。

作为上述升温速度,优选为0.1℃/s以上,更优选为0.5℃/s以上,进一步优选为1℃/s以上。另外,作为上述升温速度,优选为5℃/s以下,更优选为3℃/s以下,进一步优选为2℃/s以下。若上述升温速度为2℃/s以下,则能够进一步抑制急剧的加热。另一方面,若上述升温速度为0.1℃/s以上,则能够将工艺短期化。

上述第2温度是在开始工序c(烧结工序)的时刻的温度,其是实质上开始烧结的温度。

上述第2温度根据上述烧结前层的组成而不同,可列举例如200℃、250℃、300℃等。

在本实施方式中,在从第1温度以下升温至第2温度的期间,一直对层叠体10进行加压。作为上述加压,优选在5~40mpa的范围内,更优选在5~15mpa的范围内。若上述加压为5mpa以上,则得到更牢固接合的接合体。另外,若上述加压为40mpa以下,则能够减轻对芯片的载荷负荷。上述加压可以是采用恒定压力的加压,也可以是边在一定的范围内使压力发生变动边进行的加压。

予以说明,在本实施方式中,对于在从第1温度以下升温至第2温度的期间一直对层叠体10进行加压的情况进行了说明,本发明并不限定于此例,只要在工序b的至少一部分期间进行加压即可。这是由于:如果在至少一部分期间进行加压,则接合变得更良好。例如也可以不加压地从第1温度以下开始升温、并且在经过一定的期间后且达到第2温度之前开始加压。

[工序c]

在上述工序b之后,将层叠体10的温度保持在规定范围内。

在该接合工序c(接合工序)中,通过加热将加热接合用片40中的金属微粒进行烧结,并且根据需要使热解性粘结剂热解。另外,通过制造加热接合用片40时的干燥工序而使未挥发尽的残留低沸点粘结剂挥发。

接着工序b,边将层叠体10用下侧加热加压板60及上侧加热加压板62加压,边进行工序c。

作为上述温度(在工序c中保持的温度),优选与上述第2温度相同或为其以上。具体而言,优选在200℃~400℃的范围内,更优选在250℃~300℃的范围内。若在上述工序c中保持的温度为200℃以上,则烧结良好地进行,得到更牢固地接合的接合体。另外,若在上述工序c中保持的温度为400℃以下,则能够缩短工艺时间,并且能够减轻对芯片的因热所致的损伤。

在本实施方式中,在工序c的期间,一直对层叠体10进行加压。作为上述加压,优选在5~40mpa的范围内,更优选在5~15mpa的范围内。若上述加压为5mpa以上,则得到更牢固地接合的接合体。另外,若上述加压为40mpa以下,则能够减轻对芯片的载荷负荷。上述加压可以是采用恒定压力的加压,也可以是边在一定的范围内(例如上述数值范围内)使压力发生变动边进行的加压。

予以说明,在本实施方式中,对在工序c的期间一直对层叠体10进行加压的情况进行了说明,但是,本发明并不限定于此例,只要在工序c的至少一部分期间进行加压即可。这是由于:如果在至少一部分期间进行加压,则进一步使接合更为合适。例如也可以从工序c刚开始后进行加压、在经过一定的期间后且结束工序c之前(在将温度保持在规定范围内的状态下)停止加压。

作为进行工序c的期间,可列举30秒以上且600秒以下、优选90秒以上且480秒以下、进一步优选150秒以上且300秒以下。若在上述数值范围内进行工序c,则得到适合的接合体。

在本实施方式中,对在工序b之后连续地进行工序c的情况进行了说明。然而,本发明并不限定于此例,也可以在工序b之后且工序c之前具有其他的工序。例如也可以在工序b之后暂时冷却至第2温度以下,之后再次进行加热等,之后进行工序c。然而,优选在工序b之后连续地进行工序c。

在本实施方式中,对利用平行平板压制机进行工序b及工序c的加压的情况进行了说明。然而,本发明并不限定于此例,也可以利用如倒装芯片接合机那样的能同时进行加热和加压的装置来进行加压。另外,可以通过在耐压性容器内配置层叠体,并在容器内填充气、氮气等而成为高压力,由此来进行加压。此时,上述第1温度、上述第2温度是指耐压性容器内的温度。

[冷却工序]

之后,可以根据需要进行冷却工序。冷却工序可列举例如空气冷却、水冷等。它们可以仅进行一种,也可以进行两者。通过适当地进行冷却工序,从而能够缩短制造时间。在本实施方式中,在工序c(烧结工序)后直至达到第3温度之前进行空气冷却,之后进行水冷。上述第3温度是比上述第2温度低的温度,例如能够在125~200℃的范围内进行适当设定。如果先进行空气冷却、之后进行水冷,则能够有效地进行冷却。水冷可列举例如如下方法:在将层叠体直接保持于加热加压板的状态下,使水在加热加压板内循环,对加热加压板进行冷却,由此来冷却层叠体。由此,能够冷却至常温(例如23℃)。但是,冷却工序并不限定于此例,也可以自与第2温度相同的温度进行水冷。

根据以上方式,得到接合体。

以上,对本实施方式的接合体的制造方法进行了说明。

在上述的实施方式中,对以个体的形式提供加热接合用片的情况进行了说明。然而,本发明的加热接合用片并不限定于此例。例如可以以层叠于切割片上的、带切割带的加热接合用片的形式来提供。

实施例

以下,使用实施例对本发明进行详细说明,本发明只要不超出其主旨,则并不受以下的实施例的限定。

对实施例中使用的成分进行说明。

含金属微粒的糊剂a:适当调整应用纳米颗粒研究所制的anp-1(将纳米大小的银微粒分散于低沸点粘结剂而成的糊剂)中所含的低沸点粘结剂的量而得到的糊剂。

热解性粘结剂a(聚碳酸亚丙酯树脂):empower公司制的qpac40、在23℃下为固态

有机溶剂a:甲乙酮(mek)

[加热接合用片的制作]

配混100重量份的含金属微粒的糊剂a、1重量份的热解性粘结剂a、70重量份的有机溶剂a。接着,使用自转·公转混合机(shinkey制、are-310),以2000rpm搅拌8分钟,制作成清漆。

将所得的清漆涂布于脱模处理薄膜(三菱树脂(株)制的mra38)上并使其干燥。涂布使用涂抹器并以使干燥后的涂膜达到45μm的方式来进行。干燥用防爆干燥机来进行。干燥条件为在110℃下3分钟。由此,得到厚度45μm的加热接合用片。

[基于热重分析法(tg-dta)得到的有机成分的10%重量减少温度的测定]

在基于热重分析法得到的有机成分的10%重量减少温度的测定中使用rigaku制的tg8120。将加热接合用片(烧结前层)10mg加入到铝制的容器中,在大气气氛下、升温速度10℃/min、温度范围25℃~500℃的条件下进行测定,并测定了试样的重量变化。其结果为:有机成分的10%重量减少温度为125℃。

[可靠性评价]

准备在背面依次形成有ti层(厚度50nm)和ag层(厚度100nm)的硅芯片(硅芯片的厚度350μm、纵5mm、横5mm)。在所准备的硅芯片的ag层面重叠所准备的加热接合用片。在该状态下通过层压机。层压机的条件设为温度70℃、压力0.3mpa、速度10mm/秒。

准备整体被ag层(厚度5μm)覆盖的铜板(铜板的厚度3mm)。在所准备的铜板上暂时粘接带硅芯片的加热接合用片(上述制成的加热接合用片)。暂时粘接时的压力为0.1mpa。另外,在暂时粘接时将铜板预先加热至70℃。

将加热条件(加压的压力、升温起始温度、升温时间、烧结温度、烧结时间)设为表1中记载的条件来进行接合。将它们作为实施例1~7、比较例1~2。予以说明,各实施例、各比较例使用同样的铜板及同样的带硅芯片的加热接合用片,仅使加热条件不同。予以说明,加压利用平板压制机来进行,在升温工序及烧结工序的期间一直进行加压。另外,升温及烧结时的气氛设为大气气氛。

加热后(烧结工序结束后),空气冷却至170℃,之后,水冷至80℃。予以说明,水冷是采用附设于加压板内的水冷式冷却板来进行的。由此,得到评价用样品。在接合中使用烧结装置(伯东公司制、htm-3000)。

接着,将评价用样品投入冷热冲击试验机(espec公司制的tse-103es)中,实施100个循环的-40℃~200℃的冷热冲击。予以说明,此时,在-40℃和200℃分别保持15分钟。

100个循环后,为了确认硅芯片和铜板在烧结层接合的部分,使用超声波断层扫描摄影装置[sat](hitachi-kenkifinetech制的finesatii)进行拍摄。所使用的换能器(探针)为pq-50-13:wd[频率50mhz]。拍摄模式为“反射”。

使用图像解析软件imagej,求得在所得的图像中残留接合的部分的面积(残留面积),计算出残留面积相对于整体面积的比例(残留接合面积率)。

将残留接合面积率为60%以上的情况评价为○,将低于60%的情况评价为×。结果如表1所示。予以说明,在采用超声波断层扫描摄影装置得到的图像中,硅芯片和基板发生剥离的部分看起来为白色,接合残留的部分看起来为灰色。

【表1】

[截面的观察]

如下拍摄实施例3及实施例7的评价样品的截面的sem图像。

首先,将评价样品包埋于环氧树脂(scandia公司的固化树脂(双组分型、scandiplexa、scandiplexb))中。

<包埋条件>

scandiplexa:scandiplexb=9:4(体积比)

在45℃下放置1~2小时

在包埋后,利用机械研磨法使硅芯片的对角线上的截面露出。机械研磨在进行粗研磨后进行精密研磨。粗研磨的研磨装置使用struers制、rotopol-31。另外,精密研磨的研磨装置使用allied制、精密研磨装置multiprep。粗研磨条件及精密研磨条件如下所示。

<粗研磨条件>

耐水研磨纸:struers公司、sicfoil#220

圆盘转速:150rpm

<精密研磨条件>

耐水研磨纸:struers公司、sicfoil#220,#1000

圆盘转速:100rpm

载荷:200~500g

之后,对露出面的中央附近进行离子抛光。装置使用jeol公司制的截面抛光机(crosssectionpolisher)sm-09010,离子抛光的条件如下所示。

<离子抛光条件>

加速电压5~6kv

加工时间8~10小时

从遮蔽板的飞出量25~50μm

使用场发射型扫描电子显微镜(hitachihigh-technologies公司制的su8020),拍摄离子抛光后的截面的sem像(采用扫描型电子显微镜得到的图像)。拍摄条件设为加速电压5kv、倍率5000倍、10000倍。

图7、图8为实施例3的加热接合用片的截面照片。图7为加热接合用片的中央部的截面照片,图8为加热接合用片的与芯片的界面附近的截面照片。图8中,上部的黑色部分为芯片。

由图7、图8可知,在实施例3中,在也包含与芯片的界面附近在内的几乎全部范围进行了烧结。因此,加热接合用片与芯片充分接合。

图9、图10为实施例7的加热接合用片的截面照片。图9为加热接合用片的中央部的截面照片,图10为加热接合用片的与芯片的界面附近的截面照片。图10中,上部的黑色部分为芯片。

由图9、图10可知,在实施例7中,虽然一部分中存在烧结性金属颗粒不烧结而残留的部分,但是规定程度以上地发生了烧结。因此,在实施例7中,加热接合用片与芯片充分接合。

附图标记说明

10层叠体

40加热接合用片

20半导体晶圆

22半导体元件

50基板

40a、40b隔离体

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1