在玻璃中进行快速激光钻孔的方法和由其制备的产品与流程

文档序号:19733090发布日期:2020-01-18 04:10阅读:888来源:国知局
在玻璃中进行快速激光钻孔的方法和由其制备的产品与流程

本发明专利申请是国际申请号为pct/us2014/070459,国际申请日为2014年12月16日,进入中国国家阶段的申请号为201480075631.8,发明名称为“在玻璃中进行快速激光钻孔的方法和由其制备的产品”的发明专利申请的分案申请。

相关申请

本申请根据35u.s.c.§120要求2014年11月07日提交的美国专利申请号14/535800的优先权,其要求2014年10月31日提交的美国临时专利申请号62/073191的优先权,该临时专利申请又要求2014年7月11日提交的美国临时专利申请号62/023429和2013年12月17日提交的美国临时专利申请号61/917179的优先权,以上各申请的全部内容通过引用纳入本文。

背景

当下人们对具有精确形成的孔以用于电子应用的薄玻璃兴趣浓厚。用导电材料填充孔,且用于将电信号从一个零件传到到另一个零件,这使得能够精确地连接中央处理单元、储存芯片、图象处理单元或其它电子组件。对于这种应用,里面具有金属化孔的基材通常称作“插入层”。与目前使用的插入层材料例如纤维增强的聚合物或硅相比,玻璃具有多种优势性质。可在无需抛光的情况下,将玻璃形成为薄而光滑的大片材,它比有机替代物具有更高的硬度和更大的尺寸稳定性,其是比硅好得多的电绝缘体,其具有比有机选项更好的尺寸(热和刚性)稳定性,且其可调节到不同的热膨胀系数,从而控制集成电路中的堆叠件翘曲。

可使用各种孔形成方法来在玻璃中形成孔,例如热压、可光学加工玻璃的光刻、电弧钻孔、粉末喷射和各种激光钻孔方法。使用这些技术中的任意一种时,挑战通常是围绕着以足够高的速率(孔/秒)形成足够高质量(低裂纹化、适当的尺寸或圆度)的孔,这最终影响成本。例如,玻璃的热压难以形成足够小(小于或等于约100微米)尺寸的孔,电弧钻孔可能难以进行紧密的孔节距(即,孔到孔的距离小于约50微米),使用束开孔的孔的激光钻孔可能较慢(例如,约1孔/秒),且激基激光加工和可光学加工的玻璃可具有较大的初始资金成本。

已表明使用uv纳秒激光的激光钻孔方法制备特别高质量的孔。通过使用多个(例如几百)激光脉冲/孔,利用激光来制备直径约10微米的导向孔,然后用酸蚀刻来放大孔,并获得目标尺寸。然后,对孔进行金属化,添加再分配层来扇出电气信号,并将零件切割成更小的块件来形成功能插入层。但是,激光钻孔可为耗时的过程,且使用冲击钻孔(即,在相同的位置一个脉冲接着一个脉冲),其可能需要几百个脉冲来将单独的孔钻到所需的深度。因为精确激光钻孔平台的资金成本可较高(接近100万美元/机器),孔形成速度是总体插入层制造成本中的关键参数。

因此,需要对材料例如玻璃进行激光钻孔的方法,其使得上述问题最小化或消除上述问题。

概述

本文所述的实施方式涉及以极端快的速率形成损坏痕迹(也称作导向孔)的方法。通过利用特殊的光学递送系统和皮秒脉冲激光,可在玻璃或其它透明材料中钻出损坏痕迹/导向孔,且形成每一损坏痕迹/导向孔需要少至单一激光脉冲。这个过程实现的损坏痕迹/导向孔钻孔速率容易地比如上所述的使用纳秒激光钻孔过程所能获得的钻孔速率快100倍。然而,初始损坏痕迹/导向孔通常太小以至于不能用导电材料进行填充,且常常不是连续的。因此,这种损坏痕迹/导向孔自身不适于插入层或电通孔。通过组合上述过程与后续酸蚀刻步骤,随后可在高度平行的过程中,将损坏痕迹或导向孔放大到可用于插入层的孔尺寸。这种组合的过程以比其它方法低得多的成本/零件在玻璃中产生孔,该孔具有用于插入层的适当的尺寸(小于20微米-几十微米的量级)、轮廓和质量。

在一种实施方式中,在基本上透明的材料中激光钻孔或形成通孔的方法包含将脉冲激光束聚焦成沿着束传播方向取向并引导进入材料的激光束聚焦线,激光束聚焦线在材料之内产生诱导吸收,诱导吸收在材料之内产生沿着激光束聚焦线的损坏痕迹,和使得材料和激光束相对于彼此平移,由此激光形成多个损坏痕迹。所述方法还包含在酸溶液中蚀刻材料,从而通过放大材料中的缺陷线条,来产生直径大于1微米的孔。蚀刻速率可为小于约10微米/分钟的速率,例如小于约5微米/分钟的速率,或小于约2微米/分钟的速率。蚀刻过程的蒂勒模数可为小于或等于2。

在一些实施方式中,脉冲持续时间可为大于约1皮秒-小于约100皮秒,例如大于约5皮秒且小于约20皮秒,重复率(repetitionrate)可为约1khz-4mhz,例如约10khz-650khz。除了在上述重复率下的单一脉冲以外,可以两个或更多个脉冲(例如3脉冲,4脉冲,5脉冲或更多)的脉冲群的形式来产生脉冲,所述两个或更多个脉冲相隔约1纳秒-约50纳秒(例如10-30纳秒、例如约20纳秒±2纳秒)的持续时间,且能量是至少40微焦耳/脉冲群,脉冲群重复频率可为约1khz-约200khz。脉冲激光束可具有选定的波长,从而材料在该波长下是基本上透明的。在材料处测量的平均激光能量/脉冲群可为大于40微焦耳/毫米材料厚度,例如40微焦耳/毫米-1000微焦耳/毫米,或100微焦耳/毫米-650微焦耳/毫米。脉冲激光束的脉冲群能量密度可为25微焦耳/毫米线状聚焦-125微焦耳/毫米线状聚焦。脉冲激光束可产生至少500损坏痕迹/秒,至少1,000损坏痕迹/秒,或至少5,000损坏痕迹/秒。可以非周期性图案制备损坏痕迹。

激光束聚焦线可通过使用bessel束或gauss-bessel束来形成。聚焦线可使用轴棱锥(axicon)来产生。激光束聚焦线的长度可为约0.1mm-约10mm,例如约1mm,约2mm,约3mm,约4mm,约5mm,约6mm,约7mm,约8mm,或约9mm,或长度是约0.1mm-约1mm,且平均光斑直径是约0.1微米-约5微米。通孔直径可分别为5微米-100微米。损坏痕迹的直径可分别小于或等于约5微米。在一些实施方式中,材料可为玻璃片的堆叠件。孔的间隔可为50微米-500微米,或10微米-50微米。使得材料和激光束相对于彼此平移可包含使用一系列线性平台平移玻璃片,或使用线性平台、共振扫描镜扫描仪、检流计(galvo(检流计))镜扫描仪、可压电调节的镜面或声光束偏转器来平移激光束。所述方法可还包含在通孔处用导体涂覆内部玻璃表面,以在通孔的顶部和底部之间产生电导率,或在通孔处涂覆内部玻璃表面以促进连接生物分子。材料可为对390nm-700nm中至少一个波长是透明的和/或可透射至少70%的390nm-700nm中的至少一个波长。所述材料可为玻璃,熔凝石英,或玻璃片的堆叠件。

在一些实施方式中,多个通孔的直径是20微米或更小,相邻通孔之间的间隔是10微米或更大,所述多个通孔包含第一表面中的开口,第二表面中的开口,和位于第一表面中的开口和第二表面中的开口之间的腰部,腰部直径是第一表面中的开口或第二表面中的开口的直径的至少50%,且第一表面中的开口直径和第二表面中的开口直径之间的差异是3微米或更小。其它实施方式包含根据如上所述和在详细描述中所述的方法制备的玻璃制品。

在另一种实施方式中,玻璃制品包含具有多个损坏痕迹的基材,其中损坏痕迹的直径小于5微米,相邻孔之间的间隔是至少20微米,且长径比是20:1或更大。损坏痕迹直径可为小于1微米。

又在另一种实施方式中,玻璃制品包含玻璃基材的堆叠件,其具有通过所述堆叠件形成的多个孔,其中孔延伸通过每一个玻璃基材中,且其中孔的直径是约1微米-约100微米,孔到孔的间隔是约25-1000微米。玻璃制品可包含由大于10微米的空气间隙隔开的至少两个玻璃基材。

又在另一种实施方式中,基本上透明的制品包含对约200nm-约2000nm的波长是基本上透明的材料的多层堆叠件,所述多层堆叠件具有通过所述堆叠件的多个层形成的多个孔。孔的直径是1微米-100微米,且孔到孔间隔是25-1000微米。所述多层堆叠件可包含下述中的任意一种或多种:a)多个玻璃层和位于玻璃层之间的至少一个聚合物层,b)至少两个具有不同组成的玻璃层,或c)至少一个玻璃层和至少一个非玻璃无机层。

又在另一种实施方式中,在材料中形成通孔的方法包含通过将脉冲激光束聚焦成沿着束传播方向取向的激光束聚焦线并将激光束聚焦线引导进入材料,来在材料中形成多个损坏痕迹,其中损坏痕迹的直径是5微米或更小,以及在酸溶液中蚀刻材料来放大多个缺陷线条,以在材料中产生多个通孔,其中蚀刻的蒂勒模数小于或等于2。材料可对390nm-700nm中的至少一个波长是透明的和/或可透射至少70%的390nm-700nm中的至少一个波长。所述方法还可包含在蚀刻过程中机械搅拌酸溶液。酸溶液可包含表面活性剂。所述多个通孔的直径可为20微米或更小,且相邻通孔之间的间隔是至少10微米。所述多个通孔包含第一表面中的开口,第二表面中的开口,和位于第一表面中的开口和第二表面中的开口之间的腰部,腰部直径是第一表面中的开口或第二表面中的开口的直径的至少50%,且第一表面中的开口直径和第二表面中的开口直径之间的差异是是3微米或更小。

在一些实施方式中,制品包括基材,所述基材具有从基材第一表面连续地延伸到基材第二表面的多个通孔,其中基材对390nm-700nm中的至少一个波长是透明的,所述多个通孔的直径是20微米或更小,所述多个通孔包含第一表面中的开口、第二表面中的开口和位于第一表面中的开口和第二表面中的开口之间的腰部,所述腰部的直径是第一表面中的开口或第二表面中的开口的直径的至少50%,且第一表面中的开口直径和第二表面中的开口直径之间的差异是3微米或更小。所述多个通孔的直径可为大于5微米,15微米或更小,或10微米或更小。腰部直径是第一表面中开口或第二表面中的开口的直径的至少70%,至少75%,或至少80%。所述基材可为熔凝石英,玻璃,或化学强化的玻璃。所述基材的厚度可为1mm或更小,或厚度是20微米-200微米。通孔的密度可为5通孔/毫米2-50通孔/毫米2。通孔的长径比可为5:1到20:1。通孔可具有非周期性图案。通孔包含导电材料。

本文所述的实施方式提供许多优势,包含使用少到单一激光脉冲或单一脉冲群实现形成孔/损坏痕迹,这获得比传统的冲击钻孔激光方法快得多的钻孔或孔/损坏痕迹形成速率。本文所述的孔/损坏痕迹钻孔只受限于激光的重复率和激光束移动到下一钻孔位置的速度。容易获得几百孔/秒的钻孔速度,且取决于所用的平台和孔图案密度,能获得大于10,000孔/秒的钻孔速率。此外,这个过程可对多个零件同时(堆叠件)进行钻孔,这进一步增加系统通量。

因为线状聚焦光学器件,激光钻孔的孔/损坏痕迹的直径是极端小的(例如,约1微米),这比使用gaussian光学束所能得到的烧蚀的孔大小(通常大于约10微米)小得多。

使用酸蚀刻使得形成尺寸可用于金属化或其它化学涂覆的通孔。在平行的过程中,将所有导向孔/损坏痕迹平行地放大到目标直径,这比通过使用进一步的激光暴露来使用激光将孔钻成较大的孔快得多。

通过钝化由激光造成的任何微裂纹或损坏,与只使用激光相比,酸蚀刻形成强度更高的零件。

附图简要说明

根据下文对如在附图中所示的示例实施方式的更具体的描述,上述内容将变得显而易见,在附图中在全部不同的视图中相同的附图标记表示相同的部分。附图不必按比例绘制,相反重点是显示实施方式。

图1示意性地显示用于激光钻孔的光学组装件的一实施方式。

图2a显示根据一种实施方式的用于激光加工的光学组装件。

图2b-1到2b-4显示通过相对于基材不同地设置激光束聚焦线来加工基材的各种可能性。

图3显示用于激光加工的光学组装件的第二实施方式。

图4a和4b显示用于激光加工的光学组装件的第三实施方式。

图5的图显示示例性皮秒激光的激光发射(强度)随时间的变化。

图6a和6b是用激光钻孔形成的特征的扫描电子显微图片,在一块玻璃中制得。

图7是典型损坏痕迹、穿孔或缺陷线条(本文中这三个术语可互换使用)的显微图象,其是没有进行蚀刻的侧视图。穿过玻璃制备的痕迹通常没有完全打开-即,除去了区域材料,但不必形成完全的通孔。

图8是是没有酸蚀刻的损坏痕迹或穿孔的显微侧视图,其放大倍数大于图7所示的显微图。

图9是没有进行酸蚀刻的典型损坏痕迹或孔的俯视图的显微图象。

图10是使用下述加工条件制备的孔的扫描电子显微图片,通过使用形成更短聚焦线(~0.5mm)并因此在缺陷线条中形成高能量密度的更短焦距物镜(f=30mm),该加工条件形成显著的微裂纹化。

图11是孔的扫描电子显微图片,其没有穿透零件的全部厚度,其可用于制备盲孔。

图12a和12b分别是蚀刻之后的入口孔(激光入射侧)和酸蚀刻之后的出口孔(激光离开侧)的扫描电子显微图片。

图13是微裂纹化影响的蚀刻之后的图象。微裂纹已酸蚀刻成细长的特征。

图14的光学照片显示酸蚀刻之后的孔的侧视图。样品切成小片来显示横截面。明亮的区域是玻璃,深色的区域是孔。

图15的光学照片显示酸蚀刻之后孔的侧视图,但放大倍数高于图14所示的光学照片。

图16a-16c的图显示在顶部(图16a)、底部(图16b),和在腰部(图16c)处的孔数目随直径的变化,其显示在蚀刻之后对约10,000孔进行的孔径统计。

图17a-17c的图显示在顶部(17a)、底部(17b)和在腰部(17c)处的孔数目随直径的变化,其显示蚀刻之后的圆度统计。圆度=给定孔的最大直径-最小直径。数据表明所有的孔都没有显著的裂纹/缺口,其将蚀刻成显著非圆化形状。

图18a-18c是蚀刻之前的径向裂纹的光学照片(图18a),和更大放大倍数的入口孔阵列(图18b和18c)。

图19a-19c是蚀刻之前的孔的光学照片,其显示俯视图(图18a),仰视图(图18b),和侧视图(图18c)。

图20a-20e是在55%激光功率(图20a),65%激光功率(图20b),75%激光功率(图20c),85%激光功率(图20d),和100%激光功率(图20e)下,于酸蚀刻之后的孔的俯视图的光学照片。

图21a-21e是在55%激光功率(图21a),65%激光功率(图21b),75%激光功率(图21c),85%激光功率(图21d),和100%激光功率(图21e)下,于酸蚀刻之后的孔的仰视图的光学照片。

图22a-22c是酸蚀刻之后孔的俯视图的光学照片-图22a:150x150阵列的100微米孔,节距200微米;图22b和22c:300x300阵列的50微米孔,节距100微米,其显示(图22c)一些裂纹化的孔和有缺口的孔。

图23a-23c的图显示具有100x100孔阵列的样品的孔数目随直径的变化,其显示用于样品的顶部(图23a)、底部(图23b)和腰部(图23c)的结果。

图24a-24c的图显示具有100x100孔阵列的样品的孔数目随圆度的变化,其显示用于样品的顶部(图24a)、底部(图24b)和腰部(图24c)的结果。

图25a-25c的图显示具有100x100孔阵列的样品的孔数目随直径的变化,其显示用于第二样品的顶部(图25a)、底部(图25b)和腰部(图25c)的结果。

图26a-26c的图显示具有100x100孔阵列的样品的孔数目随圆度的变化,其显示用于第二样品的顶部(图26a)、底部(图26b)和腰部(图26c)的结果。

图27a-27c和28a-28c分别是使用100%激光功率制备的30微米和50微米孔在酸蚀刻之后的光学照片,其显示俯视图(图27a,28a)侧视图(图27b,28b),和仰视图(图27c,28c)。

图29a-29c和30a-30c分别是使用100%激光功率制备的75微米和100微米孔在酸蚀刻之后的光学照片,其显示俯视图(图29a,30a)侧视图(图29b,30b),和仰视图(图29c,30c)。

图31a-31c和32a-32c分别是使用85%激光功率制备的30微米和50微米孔在酸蚀刻之后的光学照片,其显示俯视图(图31a,32a)侧视图(图31b,32b),和仰视图(图31c,32c)。

图33a-33c和34a-34c分别是使用85%激光功率制备的75微米和100微米孔在酸蚀刻之后的光学照片,其显示俯视图(图33a,34a)、侧视图(图33b,34b),和仰视图(图33c,34c)。

图35a-35c和36a-36c分别是使用75%激光功率制备的30微米和50微米孔在酸蚀刻之后的光学照片,其显示俯视图(图35a,36a)、侧视图(图35b,36b),和仰视图(图35c,36c)。

图37a-37c和38a-38c分别是使用75%激光功率制备的75微米和100微米孔在酸蚀刻之后的光学照片,其显示俯视图(图37a,38a)、侧视图(图37b,38b),和仰视图(图37c,38c)。

图39a-39c和40a-40c分别是使用65%激光功率制备的30微米和50微米孔在酸蚀刻之后的光学照片,其显示俯视图(图39a,40a)、侧视图(图39b,40b),和仰视图(图39c,40c)。

图41a-41c和42a-42c分别是使用65%激光功率制备的75微米和100微米孔在酸蚀刻之后的光学照片,其显示俯视图(图41a,42a)、侧视图(图41b,42b),和仰视图(图41c,42c)。

图43a-43c和44a-44c分别是使用55%激光功率制备的30微米和50微米孔在酸蚀刻之后的光学照片,其显示俯视图(图43a,44a)侧视图(图43b,44b),和仰视图(图43c,44c)。

图45a-45c和46a-46c分别是使用55%激光功率制备的75微米和100微米孔在酸蚀刻之后的光学照片,其显示俯视图(图45a,46a)、侧视图(图45b,46b),和仰视图(图45c,46c)。

图47显示延伸穿过3重堆叠的150微米玻璃片的聚焦线。

图48是酸蚀刻之前的光学照片,其显示钻有损坏痕迹的两片300微米厚exg玻璃的堆叠件的侧视图。

图49是酸蚀刻之后光学照片,其显示在酸蚀刻之后,与图48所示相同的堆叠件的侧视图。

图50是酸蚀刻之后光学照片,其显示在酸蚀刻之后,与图48所示相同的堆叠件的俯视图。

图51a和51b分别显示在激光钻孔之后和在酸蚀刻之后的基材1000。

图52显示蚀刻系统的蒂勒(thiele)模数和预期的腰部直径相对于顶部和底部开口直径的百分比的关系。

图53是蚀刻系统的蒂勒模数随损坏痕迹的半径变化的作图。

图54是蚀刻系统的蒂勒模数随玻璃基材的半厚度变化的作图。

图55是蚀刻系统的蒂勒模数随有效扩散系数(d有效)变化的作图。

图56是蚀刻系统的蒂勒模数随以体积%表示的酸浓度变化的作图,并显示改变有效扩散系数和酸浓度对蒂勒模数的组合的影响。

图57是酸蚀刻之后的玻璃零件侧视图的光学照片。

具体描述

下面将描述示例实施方式。

下面的实施方式利用具有光学系统的较短(例如,10-10-10-15秒)脉冲激光,其形成线状聚焦系统,从而在一块材料中形成缺陷线条、损坏痕迹或孔,该材料对于激光波长是基本上透明的,例如玻璃、熔凝石英、合成石英、玻璃陶瓷、陶瓷、晶体材料例如蓝宝石,或这种材料的层叠的层(例如,涂覆的玻璃)。产生线状聚焦可通过使gaussian激光束发射进入轴棱锥透镜来进行,在这种情况下,形成具有称作gauss-bessel束的束轮廓。与gaussian束相比,这种束衍射得慢得多(例如,与gaussian束的几十微米或更小的范围相对,其可在几百微米或毫米的范围中保持单一微米光斑尺寸)。因此,与仅使用gaussian束相比,与材料的强烈相互作用的聚焦深度或长度将大得多。还可使用其它形式的或缓慢衍射的或非衍射的束,例如airy束。当在激光波长下,吸收小于约10%,优选地小于约1%/毫米材料深度时,材料或制品对激光波长是基本上透明。在一些实施方式中,材料还可对在约390nm-约700nm中的至少一个波长是透明的。使用高强度激光和线状聚焦使得每一激光脉冲同时损坏、烧蚀或以其它方式改变(例如100-1000微米)玻璃中的痕迹。这种痕迹可容易地延伸通过玻璃零件的整个厚度。因此,甚至单一脉冲或脉冲群(burst)也可形成完全的“导向孔”或剧烈的损坏痕迹,且无需冲击钻孔。

导向孔/损坏痕迹的横截面尺寸非常小(单一微米或更小),但相当长-即,它们具有高长径比。然后,对零件进行酸蚀刻来获得最终孔尺寸—例如约30微米或更小,约25微米或更小,约20微米或更小,约15微米或更小,约10微米或更小,约5-约10微米,约5-约15微米,约5-约20微米,约5-约25微米,约5-约30微米,或最高达几十微米的直径,这取决于预期应用的要求。在一些实施方式中,可实施蚀刻,从而蚀刻过程的蒂勒模数是约3或更小,约2.5或更小,约2或更小,约1.5或更小,约1或更小,或约0.5或更小。在蚀刻之后,玻璃表面由蚀刻过程中的不完美均匀性稍微纹理化–同时蚀刻的孔的内部是多少光滑的,且可具有某些超细颗粒纹理,这在显微镜或扫描电子显微镜下是可见的。在一些实施方式中,基材可具有从基材第一表面连续地延伸到基材第二表面的多个通孔,其中基材对390nm-700nm中的至少一个波长是透明,所述多个通孔的直径是20微米或更小,所述多个通孔包含第一表面中的开口、第二表面中的开口和位于第一表面中的开口和第二表面中的开口之间的腰部,所述腰部的直径是第一表面中的开口或第二表面中的开口直径的至少50%,且第一表面中的开口直径和第二表面中的开口直径之间的差异是3微米或更小。

然后,可用导电材料涂覆和/或填充孔(例如通过金属化),从而形成由透明材料制成的插入零件。金属或导电材料可为例如铜、铝、金、银、铅、锡、氧化铟锡或其组合或其合金。用于孔内部金属化的工艺可为例如电镀、化学镀、物理气相沉积或其它蒸气涂覆方法。还可用催化材料涂覆孔,例如铂、钯、二氧化钛或促进孔之内的化学反应的其它材料。或者,可用其它化学功能化涂覆孔,从而改变表面润湿性质或实现连接生物分子和用于生化分析。这种化学功能化可为孔的玻璃表面的硅烷化和/或额外的连接具体的蛋白质、抗体或其它生物特异性分子,其设计来促进连接用于所需应用的生物分子。

在一种实施方式中,一种对材料进行激光钻孔的方法包含将脉冲激光束聚焦成沿着束传播方向取向并引导进入材料的激光束聚焦线,所述激光束在材料处测量的平均激光脉冲群能量大于约50微焦耳/毫米被加工材料的厚度,所述激光束的脉冲群能量密度是约25微焦耳/毫米线状聚焦-约125微焦耳/毫米线状聚焦,所述激光束的脉冲持续时间小于约100皮秒且重复频率是约1khz-约4mhz。线状聚焦的长度可通过下述来测定:在光学轴上强度是最大强度一半处的两点之间的距离。激光束聚焦线在材料之内产生诱导吸收,诱导吸收在材料之内沿着激光束聚焦线形成孔。所述方法还包含使得材料和激光束相对于彼此平移,由此以下述速率在材料之内激光钻出多个孔(或损坏痕迹):大于约50孔/秒,大于约100孔/秒,大于约500孔/秒,大于约1,000孔/秒,大于约2,000孔/秒,大于约3,000孔/秒,大于约4,000孔/秒,大于约5,000孔/秒,大于约6,000孔/秒,大于约7,000孔/秒,大于约8,000孔/秒,大于约9,000孔/秒,大于约10,000孔/秒,大于约25,000孔/秒,大于约50,000孔/秒,大于约75,000孔/秒,或大于约100,000孔/秒,这取决于所需的孔/损坏痕迹的图案。所述方法还包含以小于约5微米/分钟的速率,例如以约2微米/分钟的速率在酸溶液中蚀刻材料,由此放大材料中的孔。

在一些实施方式中,脉冲持续时间可为大于约5皮秒-小于约100皮秒,重复率可为约1khz-4mhz。脉冲可以至少两个脉冲的脉冲群的形式产生,该至少两个脉冲相隔的持续时间是约1纳秒-约50纳秒,例如10-30纳秒,例如约20纳秒±2纳秒,脉冲群重复频率可为约1khz-约4mhz。脉冲激光束可具有选定的波长,从而材料在该波长下是基本上透明的。这个波长可为例如,1064,532,355或266纳米。在一些实施方式中,脉冲群重复频率可为约1khz-约4mhz,约10khz-约650khz,约10khz或更大,或约100khz或更大。

激光束聚焦线的长度可为约0.1mm-约10mm,或长度可为约0.1mm-约1mm,且平均光斑直径是约0.1微米-约5微米。bessel束的光斑直径d可写成d=(2.4048λ)/(2πb),其中λ是激光束波长,b是束的锥角的函数。

激光和光学系统:

为了切割透明基材特别是玻璃,开发了一种方法,所述方法使用1064nm皮秒激光以及形成线状聚焦束的光学器件,从而在基材中形成损坏线或损坏痕迹。这将在下文详细描述,且参见2013年1月15日提交的美国专利申请号61/752,489,该申请是2014年1月14日提交的美国专利申请号14/154,525(美国专利申请公开号2014/0199519)的优先权申请,以上各文的全部内容通过引用纳入本文。在本文中,由激光形成的损坏痕迹可互换表示孔、导向孔、缺陷线条或穿孔。切割透明基材的方法也可应用来形成损坏痕迹,其后续地通过蚀刻过程来放大,如下所述。

图1提供了概念的一个版本的示意图,其中使用轴棱锥光学元件10和其它透镜11和12将来自激光器3(未显示)的光射线聚焦成具有线性形状的图案2b,其平行于系统的光学轴。设置基材1,从而它在线状聚焦之内。借助约1mm范围的线状聚焦和在100khz重复率下产生大于或等于约20w的输出功率的皮秒激光(在材料处测量的约200微焦耳/脉冲群),随后线状区域2b中的光学强度可容易地高到足以在材料中形成非线性吸收。在材料处测量的脉冲激光束的平均激光脉冲群能量可大于40微焦耳/毫米材料厚度。所用的平均激光脉冲群能量可高至2500微焦耳/毫米材料厚度,例如100-2000微焦耳/毫米,且200-1750微焦耳/毫米是优选的,500-1500微焦耳/毫米是更优选的。这种“平均激光能量”还可称作平均、每脉冲群、线性能量密度或每激光脉冲群平均能量/毫米材料厚度。在一些实施方式中,脉冲群能量密度可为约25微焦耳/毫米线状聚焦-约125微焦耳/毫米线状聚焦,或约75微焦耳/毫米线状聚焦-约125微焦耳/毫米线状聚焦。形成损坏的、烧蚀的、蒸发的或以其它方式改变的材料的区域,其近似遵循高强度的线性区域。

激光加工材料的方法包含将脉冲激光束2聚焦成沿着束传播方向取向的激光束聚焦线2b。如图2a所示,激光器3(未显示)发射激光束2,其具有入射到光学组装件6的部分2a。在输出侧上,沿着束方向在限定的膨胀范围上(聚焦线的长度l),光学组装件6将入射激光束转变成延伸的(extensive)激光束聚焦线2b。平坦基材1设置在束路径中,从而至少部分地与激光束2的激光束聚焦线2b重叠。因此,将激光束聚焦线引导进入基材。分别地,附图标记1a表示朝向光学组装件6或激光的平坦基材的表面,附图标记1b表示基材1的逆向表面。基材或材料厚度(在该实施方式中,垂直于平面1a和1b,即垂直于基材平面测量)用d标记。例如,基材或材料可为对激光束2的波长是基本上透明的玻璃制品。

基材1(或材料或玻璃制品)垂直于纵向束轴对齐,因此在由光学组装件6产生的相同的聚焦线2b后面(基材垂直于附图平面)。聚焦线沿着束方向取向或对齐,相对于聚焦线2b设置基材使得聚焦线2b从基材的表面1a之前开始并在基材的表面1b之前结束,即聚焦线2b在基材之内终止且不延伸超出表面1b。在激光束聚焦线2b与基材1的重叠区域中,即在被聚焦线2b覆盖的基材材料中,延伸的激光束聚焦线2b产生(假设沿着激光束聚焦线2b形成合适的激光强度,该强度通过激光束2在长度l部分上的聚焦即长度l的线状聚焦来确保)延伸部分2c(沿着纵向束方向对齐),且沿着延续部分2c在基材材料中产生诱导吸收。诱导吸收沿着部分2c在基材材料中形成缺陷线条。缺陷线条是在基本上透明材料、基材或工件中的微观的(直径例如,>100nm且<0.5微米)细长“孔”(也称作穿孔,损坏痕迹,或缺陷线条),其通过使用单一高能脉冲群脉冲来产生。例如,单个穿孔可以几百千赫(几十万个穿孔/秒)的速率来形成。借助源与材料之间的相对移动,可将这些穿孔邻近彼此设置(空间间距根据需要从亚微米变化到许多微米)。可选定这种空间间距(节距),以促进材料或工件的分离。在一些实施方式中,缺陷线条/损坏痕迹是“通孔”,其是基本上从透明材料的顶部延伸到底部的孔或开口通道。在其它实施方式中,损坏痕迹不是真正的“通孔”,因为存在堵塞损坏痕迹路径的材料颗粒。因此,虽然损坏痕迹可从材料的顶部表面延伸到底部表面,但在一些实施方式中,它不是连续的孔或通道,因为材料颗粒堵塞路径。缺陷线条/损坏痕迹形成不是局部的,而是在诱导吸收的延伸部分2c的全部长度上。部分2c的长度(其对应于激光束聚焦线2b与基材1重叠的长度)用附图标记l标记。诱导吸收2c的部分(或基材1材料中经历形成缺陷线条的部分)的平均直径或范围或附图标记d标记。这种平均范围d基本上对应于激光束聚焦线2b的平均直径δ,即约0.1微米-约5微米的平均光斑直径。

因此,能使用单一高能脉冲群脉冲在透明材料中形成微观(即,直径<2微米且>100nm,和在一些实施方式中<0.5微米且>100nm)细长的“孔”(也称作穿孔,损坏痕迹,或缺陷线条,如上所述)。这些单个穿孔可以几百千赫(例如几十万个穿孔/秒)的速率来形成。因此,借助源和材料之间的相对移动,这些穿孔可设置在工件之内的任何所需的位置。在一些实施方式中,缺陷线条/损坏痕迹是“通孔”,其是从透明材料的顶部延伸到底部的孔或开口通道。在一些实施方式中,缺陷线条/损坏痕迹可以不是连续的通道,且可被固体材料(例如,玻璃)的部分或分段堵塞或部分地堵塞。如本文所定义,缺陷线条/损坏痕迹的内部直径是开口通道或气孔的内部直径。例如,在本文所述的实施方式中,缺陷线条/损坏痕迹的内部直径是<500nm,例如≤400nm,或≤300nm。在本文所述的实施方式中,环绕孔的材料的打乱的或改变的区域(例如实密化的、熔融的或以其它方式改变的)优选地具有<50微米(例如,<10微米)的直径。

因为沿着聚焦线2b的诱导吸收,加热基材材料(对激光束2的波长λ是透明的),其源自与聚焦线2b之内的激光束的高强度相关的非线性效应。显示加热的基材材料最终发生膨胀,从而相应的诱导张力导致形成微裂纹,且在表面1a处张力最大。

基于在透明材料中形成多光子吸收(mpa)的能力来预测激光源的选择。mpa是同时吸收两个或更多个相同或不同频率的光子,从而将分子从一个态(通常是基态)激发到更高能量电子态(可能导致离子化)。涉及的分子的较低和较高态之间的能量差可等于所述两个或更多个光子的能量之和。mpa也称作诱导吸收,其可为二级、三级或更高级数的过程,例如其比线性吸收弱几个量级。mpa与线性吸收不同之处在于例如诱导吸收的强度可与光强度的平方、立方或更高的幂(power)成正比,而不是与光强度本身成正比。因此,mpa是一种非线性光学过程。

下面描述了可用来产生聚焦线2b的代表性光学组装件6,以及其中可应用这些光学组装件的代表性光学装置。所有组装件或装置基于上述,从而相同的附图标记用于相同的组件或特征或功能上等同的那些。因此,下面只描述不同之处。

为了确保高质量的钻孔(涉及获得高破碎强度、几何精确性、形成用于蚀刻剂的较强路径、孔内部形貌和避免微裂纹化),在基材表面上设置的单个聚焦线应使用如下所述的光学组装件来产生(下文中,光学组装件也替代地称作激光光学器件)。在激光3(与基材1材料相互作用)的给定波长λ的情况下,为了获得例如0.5微米-2微米的较小的光斑尺寸,通常必须对激光光学器件6的数值孔径施加某些要求。

另一方面,为了获得所需的数值孔径,光学器件必需设置成需要用于给定焦距的开口,根据已知的abbé公式(n.a.=nsin(θ),n:被加工的玻璃或其它材料的折射率,θ:孔径角的一半;且θ=arctan(d/2f);d:孔径,f:焦距)。另一方面,激光束必须照射最高达所需的孔径的光学器件,这通常通过在激光和聚焦光学器件之间使用宽化望远镜的束扩展来实现。

为了沿着聚焦线的均匀的相互作用,光斑尺寸变化不应太大。例如,这可通过下述来确保(参见下文的实施方式):只在较小的圆形区域照射聚焦光学器件,从而束开口和因此数值孔径的百分比只稍微发生变化。

根据图2a(垂直于基材平面且在激光辐射2的激光束簇中的中央束处的截面;这里,激光束2也垂直地入射到基材平面,即入射角是0°,从而聚焦线2b或诱导吸收2c的延伸部分平行于基材法向),由激光器3发射的激光辐射2a首先引导至圆形光圈(aperture)8上,其对所用的激光辐射是完全不透明的。使光圈8取向成垂直于纵向束轴并在所示束簇2a的中央束上居中。选定光圈8的直径,使得靠近束簇2a的中心的束簇或中央束(这里用2az标记)冲击光圈,并被其完全吸收。因为与束直径相比光圈尺寸下降,所以只有在束簇2a外周范围的束(边际射线,这里用2ar标记)没有被吸收,而是从侧边通过光圈8并冲击光学组装件6的聚焦光学元件的边际区域,在该实施方式中,所述光学组装件6的聚焦光学元件设计成球形切割的、双凸透镜7。

如图2a所示,激光束聚焦线2b不是激光束的单一焦点,而是用于激光束中不同射线的一系列焦点。所述系列焦点形成具有限定长度(在图2a中显示为激光束聚焦线2b的长度l)的细长聚焦线。透镜7在中央束上居中,且设计成常用球形切割透镜形式的非校准的双凸聚焦透镜。这种透镜的球形偏差可为优选的。作为替代,还可使用偏离理想的校准系统的非球形或多透镜系统,其不形成理想的焦点而是形成具有限定长度的不同的细长聚焦线(即,没有单一焦点的透镜或系统)。透镜的区域因此沿着聚焦线2b聚焦,受制于与透镜中心的距离。越过束方向的光圈8的直径约为束簇直径的90%(由束强度降低到最大强度的1/e2所需的距离来限定)且约为光学组装件6的透镜直径的75%。因此,使用通过在中央阻断束簇而产生的非色差校准球形透镜7的聚焦线2b。图2a显示通过中央束的平面中的截面,且当所示的束绕着聚焦线2b旋转时,可看见完整的三维簇。

这类聚焦线的一个潜在不足在于条件(光斑尺寸、激光强度)可沿聚焦线变化(并沿着材料中所需的深度变化),因此所需类型的相互作用(无熔融、诱导吸收、直至裂纹形成的热塑性变形)可能只在聚焦线的选定部分中发生。这进而意味着可能只有一部分的入射激光由基材材料以所需的方式吸收。这样,可能会降低该工艺的效率(用于所需分离速度的所需的平均激光功率),且激光还可能会传输进入不需要的区域(粘合到基材的零件或层或者固定基材的固定件),并以不利的方式(例如,加热、扩散、吸收、不想要的改性)与它们相互作用。

图2b-1-4表明(不仅用于图2a中的光学组装件,而且基本上用于任何其它可应用的光学组装件6)可通过下述来控制激光束聚焦线2b的位置:合适地相对于基材1设置和/或对齐光学组装件6以及合适地选定光学组装件6的参数。如图2b-1所示,可调节聚焦线2b的长度l,使得它超出基材厚度d(这里是2倍)。如果将基材1设置成(沿纵向束方向观察)居中于聚焦线2b,那么在全部基材厚度上产生诱导吸收2c的延续部分。例如,激光束聚焦线2b的长度l可为约0.01mm-约100mm或约0.1mm-约10mm。例如,各种实施方式可构造成包括约0.1mm,0.2mm,0.3mm,0.4mm,0.5mm,0.7mm,1mm,2mm,3mm或5mm的长度l。

在图2b-2所示的情况中,产生长度l的聚焦线2b,其或多或少对应于基材厚度d。因为以线条2b在基材以外的点处开始的方式来相对于线条2b设置基材1,诱导吸收2c的延伸部分(其从基片表面延伸到限定的基材深度但没有到达逆向表面1b)的长度l小于聚焦线2b的长度l。图2b-3显示其中基材1(沿着垂直于束方向的方向观察)设置在聚焦线2b的起始点上方的情况,从而类似于图2b-2,线条2b的长度l大于基材1中诱导吸收2c的部分的长度l。因此,聚焦线在基材之内开始,并延伸超出逆向表面1b。图2b-4显示其中聚焦线长度l小于基材厚度d的情况,从而-在相对于聚焦线居中地设置基材且沿入射方向观察的情况下-聚焦线在表面1a附近从基材之内开始并在表面1b附近在基材之内结束(例如l=0.75·d)。

以下述方式来设置聚焦线2b是特别优选的:表面1a,1b中的至少一个被聚焦线覆盖,从而诱导吸收2c的部分从基材的至少一个表面上开始。这样,能获得实质上理想的切割或形成损坏痕迹同时避免在表面处烧蚀、羽化和颗粒化。

图3显示另一可用的光学组装件6。基础构造与图2a所示相同,所以下面只描述不同之处。所示的光学组装件基于使用非球形自由表面的光学器件,从而产生聚焦线2b,其成形为形成具有限定长度l的聚焦线。为此,可将非球面用作光学组装件6的光学元件。例如,在图3中使用了所谓的锥形棱柱,其也称作轴棱锥。轴棱锥是特殊的、锥形切割的透镜,其在沿着光学轴的线上形成光斑源(或者将激光束转换成环)。这种轴棱锥的布置是本技术领域所公知的;在实施例中的锥角是10°。这里用附图标记9标记的轴棱锥的顶点朝向入射方向,并在束中央上居中。因为由轴棱锥9产生的聚焦线2b在其内部之内开始,可将基材1(这里与主束轴垂直对齐)设置在束路径中且直接在轴棱锥9后面。如图3所示,因为轴棱锥的光学特征,还可沿着束方向移动基材1,同时仍然在聚焦线2b的范围之内。因此,在基材1的材料中的诱导吸收2c的部分在全部基材深度d上延伸。

但是,所示的布局受到下述限制:因为由轴棱锥9形成的聚焦线2b的区域从轴棱锥9之内开始,当在轴棱锥9和基材或玻璃复合材料工件材料之间存在间隔时,显著部分的激光能量没有聚焦进入位于材料之内的聚焦线2b的诱导吸收2c的部分。此外,通过轴棱锥9的折射率和锥角,使聚焦线2b的长度l与束直径相关。这是在较薄材料(在这种情况下几个毫米)的情况下,总聚焦线比基材或玻璃复合材料工件厚度长得多的原因,其具有使大多数的激光能量不聚焦进入材料的影响。

为此,可能需要使用同时包含轴棱锥和聚焦透镜的光学组装件6。图4a显示这种光学组装件6,其中将含设计成形成延伸激光束聚焦线2b的非球形自由表面的第一光学元件设置在激光3的束路径中。在图4a所示的情况中,这个第一光学元件是锥角为5°的轴棱锥10,其垂直于束方向设置并在激光束3上居中。轴棱锥的顶点朝着束方向取向。第二聚焦光学元件(这里是平面-凸透镜11(其弯曲部分朝向轴棱锥取向))沿束方向设置,并与轴棱锥10相距距离z1。在这种情况下,距离z1是约300mm,其以下述方式来选定:使由轴棱锥10形成的激光辐射在透镜11的外部径向部分上以圆形的方式入射。在限定长度(在这种情况下是1.5mm)的聚焦线2b上,透镜11在距离z2(在这种情况下,与透镜11相距约20mm)处在输出侧上聚焦该圆形辐射。在该实施方式中,透镜11的有效焦距是25毫米。通过轴棱锥10对激光束进行的圆形变换用附图标记sr标记。

图4b详细显示根据图4a在基材1材料中形成聚焦线2b或诱导吸收2c。以下述方式选定两元件10,11的光学特征以及它们的设置:在束方向上的聚焦线2b的长度l与基材1的厚度d精确地相同。结果,需要沿着束方向精确地设置基材1,从而聚焦线2b的位置精确地在基材1的两个表面1a和1b之间,如图4b所示。

因此,如果在离开激光光学器件一定距离形成聚焦线,以及如果将更大部分的激光辐射聚焦到所需的聚焦线端部,将是优选的。如本文所述,这可通过下述来实现:仅仅在特定的外部径向区域上以圆形(环形)的方式照射主要聚焦元件11(透镜),这一方面用于获得所要求的数值孔径和因此获得所要求的光斑尺寸,然而另一方面,在所需的聚焦线2b之后,在光斑中心中非常短的距离上,扩散的圆的强度下降,因为形成基本上圆形的光斑。通过这样的方式,在所要求的基材深度的较短距离之内停止缺陷线条/损坏痕迹形成。轴棱锥10和聚焦透镜11的组合满足这个要求。轴棱锥以两种不同方式起作用:因为轴棱锥10,以环的形式将通常为圆形的激光光斑发射到聚焦透镜11,且轴棱锥10的非球形具有下述效果:超过透镜的焦平面形成聚焦线,而不是在焦平面内的焦点上形成聚焦线。可通过轴棱锥上的束直径来调节聚焦线2b的长度l。另一方面,可通过轴棱锥-透镜距离z1和通过轴棱锥的锥角,来调节沿着聚焦线的数值孔径。这样,可在聚焦线中浓缩全部激光能量。

如果希望缺陷线条/损坏痕迹的形成继续到基材背面,圆形(环形)照射仍然具有下述优势:(1)最佳地使用激光功率,因为大多数的激光仍然在聚焦线的所要求的长度中浓缩和(2)能获得沿着聚焦线的均匀的光斑尺寸-和因此获得沿着聚焦线的零件与基材的均匀分离–这是由环形照明的区域以及通过其它光学作用设定的所需色差带来的。

与图4a所示的平面-凸透镜不同,还可使用聚焦半月形透镜或另外的较高程度校准的聚焦透镜(非球形的、多透镜系统)。

为了仅使用图4a所示的轴棱锥和透镜11的组合来产生非常短的聚焦线2b,必需选定非常小的在轴棱锥上入射的激光束的束直径。这具有实际的不足:将束居中到轴棱锥的顶点上必须非常精确,结果对激光的方向变化(束漂移稳定性)非常敏感。此外,严格准直的激光束非常分散的,即因为光挠曲,束簇在短距离上变得模糊。通过在光学组装件6中包括另一透镜(准直透镜12),可避免这两种效应。额外的正像(positive)准直透镜12用于非常紧密地调节聚焦透镜11的圆形照射。以下述方式选定准直透镜12的焦距f’:所需的圆形直径dr来自整体件与准直透镜12的距离z1a,其等于f’。可通过距离z1b(准直透镜12到聚焦透镜11)来调节环的所需宽度br。作为纯几何学的温度,较小的圆形照射的宽度导致较短的聚焦线。在距离f’处可获得极小值。

因此,在图4a中描述的光学组装件6基于图1所示的光学组装件,因此下文只描述不同之处。准直透镜12在本文中也设计成平面-凸透镜(其弯曲部分朝向束方向),将其额外地居中设置在一侧上的轴棱锥10(其顶点朝向束方向)和在另一侧上的平面-凸透镜11之间的束路径上。将准直透镜12与轴棱锥10的距离称作z1a,聚焦透镜11与准直透镜12的距离称作z1b,和将聚焦线2b与聚焦透镜11的距离称作z2(总是沿束方向观察)。

还如图4a所示,由轴棱锥10形成的圆形辐射sr在准直透镜12上发散地入射并具有圆直径dr,可沿着距离z1b将其调节到所要求的圆形宽度br,使得至少在聚焦透镜11处形成近似恒定的圆直径dr。在所示的情况中,预期产生非常短的聚焦线2b,从而因为透镜12的聚焦性质(在该实施例中,圆直径dr是22mm),将透镜12处约4mm的圆宽度br降低到透镜11处的约0.5mm。

在所示实施例中,能获得小于0.5mm的聚焦线长度l,其使用2mm的典型激光束直径,聚焦透镜11的焦距f=25mm,准直透镜的焦距f‘=150mm,和选定距离z1a=z1b=140mm和z2=15mm。

应指出,这种皮秒激光的典型操作形成脉冲的“脉冲群”,有时也称作“脉冲群脉冲”。脉冲群是一种激光操作,其中脉冲发射不是均匀和稳定的流,而是脉冲的紧密簇。这显示于图5中。每一个“脉冲群”610可包含具有非常短的持续时间的多个脉冲620(例如至少2脉冲,至少3脉冲,至少4脉冲,至少5脉冲,至少10脉冲,至少15脉冲,至少20脉冲,或更多脉冲)。即,脉冲群是脉冲“包(pocket)”,且脉冲群相互之间通过比每一脉冲群之内的单独的相邻脉冲之间更长的持续时间来分离。脉冲610的脉冲持续时间td可为约0.1皮秒-约100皮秒(例如,0.1皮秒,5皮秒,10皮秒,15皮秒,18皮秒,20皮秒,22皮秒,25皮秒,30皮秒,50皮秒,75皮秒,或在它们之间的时间)。在一些实施方式中,脉冲持续时间可为大于约1皮秒且小于约100皮秒或大于约5皮秒且小于约20皮秒。单一脉冲群610之内的这些单独脉冲620也可称作“子脉冲”,其只是表示它们在出现在脉冲的单一脉冲群之内的事实。脉冲群610之内每一激光脉冲620的能量或强度可不等于该脉冲群之内的其它脉冲的能量或强度,且脉冲群610之内多个脉冲的强度分布常常遵循随时间的指数衰减,其由激光设计控制。在一些实施方式中,脉冲群610之内的每一脉冲620在时间上相隔持续时间tp,其为约1纳秒-约50纳秒,(例如10-50纳秒,或10-50纳秒,或10-30纳秒),且时间常常由激光腔体设计控制。对于给定激光,脉冲群610之内每一脉冲之间的时间间隔tp(脉冲到脉冲间隔)是较均匀的(±10%)。例如,在一些实施方式中,tp是约20纳秒(50mhz)。此外例如,对于产生约20纳秒脉冲到脉冲间隔tp的激光,将脉冲群之内的脉冲到脉冲间隔tp保持在约±10%之内,或是约±2纳秒。脉冲620的每一“脉冲群”610之间的时间(即,脉冲群之间的时间间隔tb)将大得多,(例如,0.25≤tb≤1000微秒,例如1-10微秒,或3-8微秒)。在一些示例性实施方式中,对于约100khz的激光重复频率,tb是约10微秒。在本文所述的激光的一些示例性实施方式中,对于约200khz的激光重复率或重复频率,tb可为约5微秒。例如,对于~200khz的激光重复频率,每一“脉冲群”之间的时间也可为约5微秒。在本文中,激光重复率也称作脉冲群重复频率,且定义为脉冲群中第一脉冲到后续的脉冲群中第一脉冲之间的时间。在其它实施方式中,脉冲群重复率是约1khz-约4mhz。更优选地,激光重复率可为约10khz-650khz。在一些实施方式中,激光重复率可为约10khz或更大,或者约100khz或更大。在每一脉冲群中的第一脉冲到后续脉冲群中第一脉冲之间的时间tb可为0.25微秒(4mhz重复率)-1000微秒(1khz重复率),例如0.5微秒(2mhz重复率)-40微秒(25khz重复率),或2微秒(500khz重复率)-20微秒(50khz重复率)。确切的时机、脉冲持续时间和重复率可根据激光设计而改变,但已显示具有高强度的较短脉冲(td<20皮秒,优选地td≤15皮秒)特别良好地凑效。在一些实施方式中5皮秒≤td≤15皮秒。

改变材料所要求的能量可通过脉冲群能量–在脉冲群之内包含的能量(每一脉冲群610包含一系列脉冲620)来描述,或通过在单一激光脉冲之内包含的能量(其中的许多可包含脉冲群)来描述。对于这些应用,能量/脉冲群可为25微焦耳-750微焦耳,更优选地40微焦耳-750微焦耳,50微焦耳-500微焦耳,50-250微焦耳,或100-250微焦耳。脉冲群之内的单独脉冲的能量可更小,且确切的单独激光脉冲能量将取决于脉冲群之内的脉冲的数目以及激光脉冲随时间的衰减速率(例如指数衰减),如图5所示。例如,对于恒定的能量/脉冲群,如果脉冲群包含10个单独激光脉冲,那么每一个单独激光脉冲的能量将小于如果相同的脉冲群只包含2个单独激光脉冲时的单独激光脉冲的能量。

对于这种加工而言,使用能产生这种脉冲群的激光是优选的。与使用在时间上通过激光重复率隔开的单一脉冲相反,与使用单一脉冲激光所能形成的相比,使用在子脉冲(其构成脉冲群)快速序列上铺展激光能量的脉冲群序列使得实现在更长的时间尺度上与材料的高强度相互作用。虽然单一脉冲可在时间上扩展,但这样做时脉冲之内的强度必然下降,且下降倍数大约与脉冲宽度增加倍数相同。因此,如果将10皮秒脉冲扩展到10纳秒脉冲,强度将下降大约3个数量级。这种下降可将光学强度下降到其中非线性吸收不再显著的程度,且光材料相互作用不再强烈到足以实现材料改性。相反,使用脉冲群脉冲激光时,在每一子脉冲中的强度可仍然非常高-例如3个10皮秒脉冲在时间上相隔约10纳秒时仍然使得每一脉冲之内的强度约为单一10皮秒脉冲的约3倍之内,同时现在使得激光与材料相互作用的时间尺度是之前的三个数量级。因此,在脉冲群之内的多个脉冲的这种调节实现以下述方式操控激光-材料相互作用的时间尺度:所述方式可促进更多或更少的与预先存在的等离子体羽流(plume)的光相互作用,更多或更少的光-材料相互作用且材料的原子和分子已通过初始的或之前的激光脉冲进行预激发。

当脉冲的单一脉冲群冲击材料上基本上相同位置时,在材料中形成损坏痕迹或孔。即,单一脉冲群之内的多个激光脉冲对应于材料中的单一缺陷线条或孔位置。当然,因为材料进行平移(例如通过恒定的移动台)或束相对于材料移动,所以脉冲群之内的单独脉冲不能精确地在材料上相同的空间位置处。然而,脉冲肯定在另一脉冲的1微米之内,从而它们在基本上相同的位置处冲击材料。例如,脉冲可在彼此相距间隔sp处冲击材料,其中0<sp≤500纳米。例如,当材料上的位置用20个脉冲的脉冲群冲击时,脉冲群之内的单独脉冲在彼此的250纳米之内冲击玻璃。因此,在一些实施方式中,间隔sp是约1nm-约250nm或约1nm-约100nm。

形成线状聚焦的光学方法可具有多种形式,使用圆环状激光束和球形透镜,轴棱锥透镜,衍射元件,或其它方法来形成高强度的线性区域,如上所述。激光的类型(皮秒,飞秒等)和波长(ir,绿色,uv等)也可改变,只要达到足够的光学强度来分解基材材料。

孔或损坏痕迹形成:

用上述激光方法形成的损坏痕迹通常具有孔的形式,其内部大小是约0.1微米-2微米,例如0.1-1.5微米。优选地,用激光形成的孔的大小非常小(一微米或更小)-即,它们较窄。在一些实施方式中,这些孔的直径是0.2-0.7微米。如上所述,在一些实施方式中,损坏痕迹不是连续孔或通道。损坏痕迹的直径可为5微米或更小,4微米或更小,3微米或更小,2微米或更小,或1微米或更小。在一些实施方式中,损坏痕迹的直径可为大于100nm-小于2微米,或大于100nm-小于0.5微米。这种特征的扫描电子显微图片参见图6a和6b。这些孔是未蚀刻的孔(即,它们尚未通过蚀刻步骤来拓宽)。

孔或缺陷线条/损坏痕迹可穿过材料的全部厚度,且可为连续的在材料的全部深度上的开口,或者不是连续的在材料的全部深度上的开口。图7显示穿过150微米厚玻璃基材工件全部厚度的这种痕迹或缺陷线条的示例。通过解离边缘的侧面观察穿孔或损坏痕迹。通过材料的痕迹不必然是通孔。常常存在堵塞孔的玻璃的区域,但玻璃尺寸通常较小,例如在微米量级。

图8显示相似孔或损坏痕迹的更大放大倍数的图象,其中可更清楚地看见孔径,且还存在孔被剩余玻璃堵塞的区域。通过玻璃制备的痕迹的直径是约1微米。所述痕迹没有完全打开-即,除去了区域材料,但不必形成完全的通孔。

还可在在堆叠的玻璃片或其它基本上透明材料的堆叠件中穿孔或形成孔/损坏痕迹。在这种情况下,聚焦线长度需要长于堆叠件高度。例如,使用3重堆叠的150微米玻璃片进行了测试,通过全部3片制备完全穿孔,且穿孔或缺陷线条/损坏痕迹(内部直径是约1微米)从上部片的顶部表面一直延伸穿过底部片的底部表面。构造用于通过单一基材的完全穿孔的聚焦线的示例参见图2b-1,同时在下文中结合图47描述通过3重堆叠片材的完全穿孔。如本文所定义,缺陷线条或穿孔的内部直径是开口通道或气孔的内部直径。环绕孔的材料的打乱的或改变的区域(例如密实化的、熔融、或以其它方式改变的)的直径可大于开放通道或气孔的内部直径。堆叠件中的穿孔可进行酸蚀刻来形成多个通孔,其延伸通过构成堆叠件的所有玻璃片,或者玻璃片可进行分离,然后独立地在片中的每一片中对孔进行酸蚀刻。例如,这种方法可得到玻璃,该玻璃含具有下述直径的蚀刻的孔:1-100微米,例如,10-75微米,10-50微米,2-25微米,2-20微米,2-15微米,2-10微米,且孔可具有例如25-1000微米的间隔。

这种过程还可用来在不同于玻璃的透明材料片中形成孔。因为光学系统使用线状聚焦,能透过在基材片之间具有较大(>1微米,最高达4mm,例如10-500微米)空气间隙或其它填料材料(例如水,透明聚合物,透明电极如氧化铟锡)的透明材料进行钻孔。应指出,甚至当玻璃片宏观地(许多微米,几十微米,或甚至几百微米)隔开时,能透过多个玻璃片持续钻孔的能力是这种线状聚焦钻孔方法的一个特别优势。相反,当使用其它激光方法时,例如依赖基于kerr效应的自聚焦来形成高长径比通道的那些方法,或使用形成玻璃孔自身来形成光导的那些方法,两玻璃工件之间存在的间隙例如空气间隙会完全打乱工艺,使得难以对片底部进行高质量钻孔,或完全不能进行钻孔。这是因为当这种非线状聚焦(例如不是gauss-bessel)束进入空气时,其将快速地衍射和铺展开。如果没有预先存在的通道来重新限定束或者没有显著的kerr效应来再聚焦束,那么束将铺展成太大的直径,以至于不能改性下面的材料。在基于kerr效应的自聚焦的情况下,在空气中进行自聚焦的临界功率多至玻璃中所需的临界功率的~20倍,这使得空气间隙非常成问题。然而,对于线状聚焦系统而言,不管那里是否存在玻璃材料或聚合物,或空气间隙,或甚至真空,束都能继续形成高强度的核。因此,无论在材料中的玻璃层和上面的玻璃片之间是否存在间隙,线状聚焦束都可继续对下面的玻璃层进行钻孔。

类似地,堆叠件基材片可在全部堆叠件中包含具有不同玻璃组成的基材。例如,一种堆叠件可包含eaglexg玻璃和康宁(corning)玻璃2320的两基材片。或者,透明基材片的堆叠件可包含非玻璃透明无机材料,例如蓝宝石。基材必须对用来形成线状聚焦的激光波长是基本上透明的,例如激光波长是200nm-2000nm,例如,1064nm,532nm,355nm,或266nm。在一些实施方式中,所述基材还可对在约390nm-约700nm中的至少一个波长是透明的。在一些实施方式中,基材可透射至少70%,至少75%,至少80%,至少85%,或至少90%的约390nm-约700nm中的至少一个波长。玻璃或其它透明材料中的钻孔/损坏痕迹可用来形成制品,所述制品包含基材堆叠件(彼此隔开的或直接接触的),其具有通过所述堆叠件形成的多个孔,其中孔延伸通过基材中的每一个,孔的直径是例如1-100微米,且间隔是例如25-1000微米。因此,这种方法可用来形成基本上透明的制品,所述制品包含多层堆叠件,其中多层堆叠件包含多个玻璃层和位于玻璃层之间的至少一个聚合物层,或具有不同组成的至少两个玻璃层,或至少一个玻璃层和至少一个非玻璃无机层。

孔或缺陷线条/损坏痕迹之间的横向间隔(节距)由当在聚焦的激光束下方平移基材时激光的脉冲或脉冲群频率决定。通常,只需要单一皮秒激光脉冲群来形成一个完整的孔,但如有需要,可使用多个脉冲群。为了在不同节距形成孔,可激发激光来在更长或更短的间隔发射。在一些实施方式中,激光激发通常可与束下方的工件的平台驱动移动同步,所以激光脉冲群以固定间隔激发,例如每隔1微米,每隔5微米,每隔10微米,或每隔20微米或更大。当在预期用作插入层的基材中形成损坏痕迹时,相邻损坏痕迹之间的距离或周期性可取决于所需的通孔图案(即,在蚀刻过程之后形成的孔)。例如,在一些实施方式中,所需的损坏痕迹图案(以及在蚀刻之后由其形成的所得通孔)是不规则间隔的非周期性图案。损坏痕迹图案需要在其中在中间层上放置迹线的位置处,或者在中间上待设置芯片的形成特殊电气连接的位置处。因此,用于插入层的切割和损坏痕迹钻孔的不同在于插入层的通孔以非周期性图案的形式布置。然而,对于切割图案,以特殊的周期性节距来制备损坏痕迹,其中节距取决于被切割的材料的组成。在本文所述的方法中,孔或缺陷线条(损坏痕迹,或穿孔)的相邻的孔/缺陷线条/损坏痕迹之间的间隔可为约10微米或更大,约20微米或更大,约30微米或更大,约40微米或更大,约50微米或更大。在一些实施方式中,间隔可为最高达约20mm。在一些实施方式中,间隔可为50微米-500微米或从10微米-50微米。

图9显示相似的样品,在这种情况下从俯视图可知300微米厚康宁玻璃具有周期性孔阵列。清楚地看见激光束的入口点。相邻孔之间的节距或间隔是300微米,孔的近似直径是2微米,且绕着每一个孔存在约4微米直径的边缘或改性或升高的材料。已探索了各种激光加工参数,以寻找产生下述孔的条件:该孔完全穿透材料且具有极少的玻璃微裂纹化。

激光功率和透镜焦距(其决定聚焦线长度和因此决定功率密度)是确保完全穿透玻璃和较低微裂纹化的特别重要的参数。例如,图10显示其中出现显著玻璃微裂纹化的结果。

还可特意形成只部分延伸通过材料的穿孔或损坏痕迹。这种情况下,这种痕迹可用于制备盲孔或穿孔(via)。激光形成的盲孔的示例见图11。这里,损坏痕迹延伸通过玻璃的约75%。为了实现上述,提高光学器件的聚焦,直到线状聚焦只导致在玻璃顶部部分中造成损坏。可实现其它盲孔深度,例如只延伸通过玻璃的10%、25%、50%或任意分数数值的玻璃厚度。

发现下述条件适于在300微米厚康宁玻璃中形成损坏痕迹,其是从第一表面延伸到第二表面的连续或非连续通孔或通道:

到轴棱锥透镜的输入束直径是约3mm1/e2

轴棱锥角=10度

初始准直透镜焦距=125mm

最终物镜焦距=50mm

入射束汇聚角(β)=12.75度

聚焦设定为在z=0.25mm处(在零件顶部表面以下约50微米)

激光脉冲能量是约180微焦耳)

激光脉冲重复率=200khz。

3脉冲/脉冲群

这些条件的结果见图9。

对于切割操作,激光激发通常与束下方的零件的平台驱动移动同步,且激光脉冲最常见地以固定间隔激发,例如每1微米或每5微米。在给定基材中的应力水平下,确切间隔由促进从穿孔到穿孔的裂纹传播的材料性质决定。然而,与切割基材不同,还可使用相同方法来只对材料穿孔,且在孔或损坏痕迹之间具有更大的距离。在插入层的情况下,孔通常以比切割所需距离大得多的距离隔开–不是约10微米或更小的节距,而是孔之间的间隔可为几百微米。如上所述,孔的确且位置无需具有规则的间隔(即,它们是非周期性的)–该位置只是由激发激光来发射的时间来决定,并可在零件之内的任意位置处。图8中制备的孔是一些代表性插入层应用的间隔和图案的示例。

一般来说,可用的激光功率越高,使用上述方法可越快地在材料中穿孔和/或可越快地在材料中形成损坏痕迹。在钻孔玻璃用于插入层或相似应用的情况下,加工速度通常不是直接受限于激光功率,而是更多地受限于将已经充裕的激光脉冲或脉冲群引导至需要孔的具体位置的能力。如上所述,在一些实施方式中,所需的损坏痕迹图案(以及在蚀刻之后由其形成的所得通孔)是不规则间隔的非周期性图案。损坏痕迹图案需要在其中在中间层上放置迹线的位置处,或者在中间上待设置芯片的形成特殊电连接的位置处。因此,用于插入层的切割和损坏痕迹钻孔的不同在于插入层的通孔以非周期性图案的形式布置。例如,市售脉冲群模式皮秒激光器可方便地以~100-200khz的重复率产生~200微焦耳/脉冲群的激光脉冲群。这对应于约20-40瓦特的时均激光功率。然而,为了对插入层进行钻孔,常常这些脉冲群中的大多数都没有利用到,因为甚至使用非常快的束挠曲方法,也只能以khz或可能几十khz的速率,在所需的孔位置处设置束。这意味着使用上述线状聚焦和皮秒脉冲激光方法的有效钻孔的主要挑战在于如何跨越基材表面移动和引导束。一种方法可用于将孔图案分割成一系列一维的线条,其中每一线条包含全部的孔,例如分享相同y-轴位置的孔。玻璃或束随后可以“光栅扫描”模式进行扫描,其中激光束沿x-方向移动,越过共用相同y-轴数值的所有所需的孔位置进行扫描。束进行扫描时,只在所需的孔位置处激发激光来发射脉冲群。在扫描给定的y-线条之后,将基材或激光束移动到新的y-位置,为在这个新的y-线条上的一组新的所需孔位置重复这个过程。然后,继续这个过程直到制备在基材上的所有所需的孔。

上述过程较简单,但不必然是有效的,因为平台的速度和所需孔的间隔将决定可使用多少分数的激光脉冲/脉冲群。例如,如果激光可以200,000脉冲群/秒的速度产生脉冲或脉冲群,但平台以0.5m/秒的平均速度移动且孔平均相隔100微米,那么只使用约5,000脉冲群/秒–可用激光脉冲群的约2.5%。虽然这的确钻了5,000孔(或损坏痕迹)/秒,但这只是激光容量的较小部分。

可使用更有效地方式来引导激光束。玻璃或束递送光学器件的扫描可与可来自检流计镜(检流计(galvo))和f-θ透镜的快速束挠曲组合,或与光学器件或玻璃或小范围的压电致动组合,或电光束挠曲(eod)或声光束挠曲(aod),从而实现在垂直于如上所述的线性“光栅”扫描方向的方向上快速调节束。在这种情况下,因为束沿着y-轴扫描,可使用快速束偏转器进行较小和快速的调节,其使得在给定时间中将脉冲引导至在线性平台(x,y)坐标的一定范围之内的任意孔。因此,不是只能沿着线的给定位置引导激光束孔,系统现在可将激光束引导至在光栅扫描线的划痕(swath)宽度dy之内的任意孔。这可大大增加每单位时间中激光束可进入的孔数目,并因此大大增加可钻孔的孔数目/秒。此外,快速束偏转器不仅可用于垂直于光栅扫描轴的方向,还可平行于扫描轴。此外,通过平行于扫描轴挠曲束,快速束挠曲组件(例如检流计,aod,eod,压电)可用来实现对具有相同扫描轴位置(例如在上述实施例中的x-轴)但具有不同y-轴位置的在dy划痕之内的孔进行钻孔,因为束可在不停止线性平台移动的情况下,相对于平台扫描向后“移动”来钻在给定x-位置处的第二孔。此外,沿着扫描轴的快速挠曲还允许更精确地设置孔,因为其可用来将束引导至所需的x-轴位置,且与脉冲激光可用于发射脉冲群的时间的任何较小的时间拖延无关,且还补偿线性平台移动中的速度和加速度的伪差(artifact)。

或者,不使用沿一个方向连续扫描并配合该扫描进行快速束移动,而是能使用更传统的“步进和重复”方法,其中将线性平台移动到具体的(x,y)位置,对在快速束偏转器(例如检流计)的一些领域之内的所有孔进行钻孔,并将线性平台步进到新的(x,y)位置,并重复该过程。然后,为了总体的钻孔速度,可优选地使用上述配合的线性平台和快速偏转器方法,其中线性平台几乎一直保持恒定地移动。

为了获得甚至更高的系统通量(孔/秒/系统),上述束扫描方法还可与束分裂技术组合,其中共同的激光源使其脉冲群在单一基材或序列基材上的多个束递送头之间分布。例如,可将声光或电光元件用于将每第n个脉冲偏转到给定光学路径,且可使用n个光学头。这可通过下述来实现:使用这种束转向元件的角度偏转性质,或使用这种元件的偏振变化性质来通过依赖于偏振的束分裂器引导束。

取决于所需的图案损坏痕迹(和通过蚀刻过程由其形成的通孔),可以下述速度形成损坏痕迹:大于约50损坏痕迹/秒,大于约100损坏痕迹/秒,大于约500损坏痕迹/秒,大于约1,000损坏痕迹/秒,大于约2,000损坏痕迹/秒,大于约3,000损坏痕迹/秒,大于约4,000损坏痕迹/秒,大于约5,000损坏痕迹/秒,大于约6,000损坏痕迹/秒,大于约7,000损坏痕迹/秒,大于约8,000损坏痕迹/秒,大于约9,000损坏痕迹/秒,大于约10,000损坏痕迹/秒,大于约25,000损坏痕迹/秒,大于约50,000损坏痕迹/秒,大于约75,000损坏痕迹/秒,或大于约100,000损坏痕迹/秒。

蚀刻:

为了将孔放大到可用于金属/导电材料涂覆/填充和电气连接的尺寸,对零件进行酸蚀刻。使用酸蚀刻来将孔放大到最终直径可具有多种益处:1)酸蚀刻将孔从太小以至于不能进行金属化和用于插入层的尺寸(例如,约1微米)改变到更方便的尺寸(例如,5微米或更高);2)蚀刻可开始于非连续的孔或仅仅是通过玻璃的损坏痕迹,并将其蚀刻掉以形成连续的通孔;3)蚀刻是高度平行的过程,其中零件中全部的孔/损坏痕迹同时放大–这比如果激光必须再次接触孔并钻掉更多的材料来放大孔的做法快得多;和4)蚀刻有助于钝化零件之内的任何边缘或小的裂缝,这增加材料的总体强度和可靠性。

图51a和51b分别显示在激光钻孔之后和在酸蚀刻之后的基材1000。如图51a所示,基材1000可经历如上所述的激光钻孔方法中的任意一种,以形成一个或多个损坏痕迹或导向孔1002,其从第一或顶部表面1004延伸到第二或底部表面1006。只是为了说明之目的,将损坏痕迹1002显示为连续孔。如上所述,在一些实施方式中,损坏痕迹1002是非连续孔,其中损坏痕迹中存在基材颗粒。如图51b所示,在对基材1000进行如下所述的蚀刻过程中的任一种之后,放大损坏痕迹以形成通孔1008,其具有在顶部表面1004的顶部开口处的顶部直径dt,在底部表面1006的底部开口处的底部直径db,和腰部直径dw。如本文所使用,腰部指位于顶部开口和底部开口之间的孔的最窄的部分。虽然将通孔1008的轮廓显示为因腰部而成沙漏形的,但这只是示例性的。在一些实施方式中,通孔是基本上圆筒形的。在一些实施方式中,蚀刻过程产生具有下述直径的通孔:大于1微米,大于约2微米,大于约3微米,大于约4微米,大于约5微米,大于约10微米,大于约15微米,或大于约20微米。

在一实施例中,所用的酸是以体积计的10%hf/15%hno3。将零件在24-25℃的温度下蚀刻53分钟,以除去约100微米材料。将该零件浸没于这种酸浴中,并使用40khz和80khz频率的组合的超声搅拌,来促进在孔/损坏痕迹中的流体渗透和流体交换。此外,在超声域之内进行零件的手动搅拌(例如,机械搅拌),以防止来自超声域的驻波图案在零件上形成“热区域”或空穴化相关的损坏,且为了提供越过零件的宏观流体流动。将酸组合物和蚀刻速率特意设计成缓慢地蚀刻零件–材料除去速率只有1.9微米/分钟。小于例如约2微米/分钟的蚀刻速率使得酸完全渗透窄的孔/损坏痕迹,且搅拌来交换新鲜的流体并从开始时非常窄的孔/损坏痕迹除去溶解的材料。这使得在蚀刻过程中,在基材的全部厚度(即孔或损坏痕迹的全部长度)中,孔以几乎相同的速率进行扩展。在一些实施方式中,蚀刻速率可为小于约10微米/分钟的速率,例如小于约5微米/分钟的速率,或小于约2微米/分钟的速率。

图12a和12b显示所得零件的俯视图和仰视图。孔的直径是约95微米,且是非常圆形的,这表明存在非常少的材料微裂纹化。孔的节距是300微米,每一个孔的直径是约90-95微米。使用背光获得图12a和12b中的图象,每一个孔之内的明亮区域也表明孔已通过酸蚀刻完全打开。将相同样品切割成小片,以更近地观察孔的内部轮廓。图14和15显示结果。孔具有“沙漏”形状,即它们朝向孔的中间逐渐变小。通常,这个形状由蚀刻环境决定,而不是由导向孔形成过程决定。明亮的区域是玻璃,深色的区域是孔。孔的顶部(激光入射)直径是约89微米直径,腰部是约71微米,底部(激光出口)直径是约85微米。

相反,图13显示蚀刻来自激光加工的具有显著微裂纹化样品的结果–孔蚀刻成细长的形状而不是圆形特征。微裂纹化可通过下述来减少:降低激光脉冲群能量,增加脉冲数目/脉冲群,或增加线状聚焦的长度,例如使用更长焦距物镜。这些变化可降低在基材之内包含的能量密度。此外,必须小心地确保光学系统的最佳对齐,从而不会将色差引入线状聚焦而在线状聚焦中形成方位角不对称。这种不对称可在基材之内引入高能量密度位置,其可导致微裂纹。

为了确认这种激光和蚀刻过程得到一致的结果,制备100x100阵列(10,000总孔数)且节距为300微米的孔图案,并随后使用机械图象系统来测量蚀刻的样品,从而获得每一个孔的顶部和底部直径以及腰部直径。结果作为直方图显示于图16a-16c。顶部和底部直径都是约95微米,尺寸非常接近,且标准偏差是约2.5微米。与顶部和底部直径不同,腰部是约70微米,且标准偏差是约3微米。因此,腰部比顶部和底部直径窄约30%。图17a-17c显示相同孔的顶部,底部,和腰部的圆度测量的直方图。圆度定义为孔的最大直径减去相同孔的最小直径,且以微米为单位来给出。分布表明孔是基本上圆形的到小于约5微米。分布中不存在显著的拖尾,该拖尾本来表明蚀刻成非圆形状的微裂纹或缺口。

在形成如图12a-15所示并具有图16a-17c所示特征的酸蚀刻的基材之后,发现可改变酸蚀刻条件来调节通孔的各种特征,以使它们可用作插入层的贯通通孔。在一些实施方式中,例如通孔可具有顶部开口,底部开口,和腰部,且可控制腰部直径与顶部或底部开口直径的比例。如本文所使用,腰部指位于顶部开口和底部开口之间的孔的最窄的部分。控制腰部直径,顶部开口,和底部开口的两个因素是蚀刻反应速率和扩散速率。为了蚀刻掉基材全部厚度的材料以将损坏痕迹放大成贯通通孔,酸需要经过损坏痕迹的整体长度。如果蚀刻速率过快,从而酸没有足够的时间来扩散和到达损坏痕迹的所有部分,那么与材料的中部相比,酸将不成比例地在材料表面蚀刻掉更多的材料。可利用操控蚀刻过程的蒂勒模数如蒂勒e.w.(thiele,e.w.)的“催化活性和颗粒尺寸的关系”,《工业和工程化学》,31(1939),页码:916–920所述,来控制腰部直径和顶部或底部开口直径的比例。蒂勒模数是扩散时间和蚀刻反应时间之比,且通过下述公式来表示:

其中:

kr是蚀刻的反应速率常数;

c是本体酸浓度;

γ是基于动力学反应级数的因子;

r是反应过程中的孔的半径;

d有效是酸通过水进入损坏痕迹或孔中的有效扩散系数,其是通过搅拌和超声增强的扩增的自然扩散系数d;和

l是材料厚度的1/2。

根据上述公式,当蚀刻反应时间大于扩散时间时,蒂勒模数大于1。这意味着在酸经过损坏痕迹或孔的整体长度之前,酸就被耗尽,且可通过在损坏痕迹或孔中央的扩散来补充。结果,蚀刻在痕迹或孔顶部和底部进行得更快并由kr控制,在中央的蚀刻将进行得更缓慢,且速率由扩散控制,这得到通孔的沙漏状形状。然而,如果扩散时间等于或大于蚀刻反应时间,那么蒂勒模数小于或等于1。在这种条件下,沿着整体损坏痕迹或孔的酸浓度是均匀的,且损坏痕迹或孔将均匀地进行蚀刻,形成基本上成圆筒的贯通孔。

在一些实施方式中可控制扩散时间和蚀刻反应时间,来控制蚀刻系统的蒂勒模数,并由此控制腰部直径与顶部和底部开口直径的比例。图52显示蚀刻系统的蒂勒(thiele)模数和预期的腰部直径相对于顶部和底部开口直径的百分比之间的关系。在一些实施方式中,蚀刻过程的蒂勒模数可为小于或等于约5,小于或等于约4.5,小于或等于约4,小于或等于约3.5,小于或等于约3,小于或等于约2.5,小于或等于约2,小于或等于约1.5,或小于或等于约1。在一些实施方式中,贯通孔的腰部直径是该贯通孔的顶部开口直径和/或底部开口直径的50%-100%,50%-95%,50%-90%,50%-85%,50%-80%,50%-75%,50%-70%,55%-100%,55%-95%,55%-90%,55%-85%,55%-80%,55%-75%,55%-70%,60%-100%,60%-95%,60%-60%,60%-85%,60%-80%,60%-75%,60%-70%,65%-100%,65%-95%,65%-90%,65%-85%,65%-80%,65%-75%,65%-70%,70%-100%,70%-95%,70%-90%,70%-85%,70%-80%,70%-75%,75%-100%,75%-95%,75%-90%,75%-85%,75%-80%,80%-100%,80%-95%,80%-90%,80%-85%,85%-100%,85%-95%,85%-90%,90%-100%,90%-95%,或95%-100%。在一些实施方式中,贯通孔的腰部的直径是该贯通孔顶部开口直径和/或底部开口直径的约50%或更大,约55%或更大,约60%或更大,约65%或更大,约70%或更大,约75%或更大,约80%或更大,约85%或更大,约90%或更大,约95%或更大,或约100%。在一些实施方式中,贯通孔的腰部直径是该贯通孔的顶部开口和底部开口平均直径的50%-100%,50%-95%,50%-90%,50%-85%,50%-80%,50%-75%,50%-70%,55%-100%,55%-95%,55%-90%,55%-85%,55%-80%,55%-75%,55%-70%,60%-100%,60%-95%,60%-60%,60%-85%,60%-80%,60%-75%,60%-70%,65%-100%,65%-95%,65%-90%,65%-85%,65%-80%,65%-75%,65%-70%,70%-100%,70%-95%,70%-90%,70%-85%,70%-80%,70%-75%,75%-100%,75%-95%,75%-90%,75%-85%,75%-80%,80%-100%,80%-95%,80%-90%,80%-85%,85%-100%,85%-95%,85%-90%,90%-100%,90%-95%,或95%-100%。在一些实施方式中,贯通孔的腰部的直径是该贯通孔顶部开口直径和底部开口直径平均值的约50%或更大,约55%或更大,约60%或更大,约65%或更大,约70%或更大,约75%或更大,约80%或更大,约85%或更大,约90%或更大,约95%或更大,或约100%。

如可从上述蒂勒模数公式所确定,损坏痕迹的初始半径和玻璃厚度对蒂勒模数有贡献。图53显示蒂勒模数如何随着损坏痕迹的初始半径降低。图54显示蒂勒模数如何随着基材的厚度的一半增加。在一些情况下,如果需要一定的厚度或损坏痕迹半径,基材厚度和损坏痕迹半径是不能改变的因素。因此,在这种情况下下,可调节影响蒂勒模数的其它因素。例如,图55显示蒂勒模数如何随着有效扩散系数(d有效)的增加而降低。在一些实施方式中,有效扩散系数可通过向蚀刻条件增加搅拌和/或超声来增加,如下文所更加详细描述。图56显示蒂勒模数如何随着酸浓度的下降而降低,在该实施例中是hf浓度。图56还显示增加有效扩散系数和降低酸浓度的组合如何降低蒂勒模数。

在一些实施方式中,可通过调节蚀刻溶液中的酸浓度来控制蚀刻反应时间。在一些实施方式中,蚀刻溶液可为水性溶液,其包含去离子水、主要酸和辅助酸。主要酸可为氢氟酸,辅助酸可为硝酸、盐酸或硫酸。在一些实施方式中,蚀刻溶液可只包含主要酸。在一些实施方式中,蚀刻溶液可包含除了氢氟酸以外的主要酸和/或除了硝酸、盐酸或硫酸以外的第二酸。示例性蚀刻溶液可包含10体积%氢氟酸/15体积%硝酸或5体积%氢氟酸/7.5体积%硝酸,或2.5体积%氢氟酸/3.75体积%硝酸。

在一些实施方式中,基材在蚀刻槽中的取向,机械搅拌,和/或将表面活性剂添加到蚀刻溶液是可改性来调节贯通孔特征的其它蚀刻条件。在一些实施方式中,超声搅拌蚀刻溶液,在容纳蚀刻溶液的蚀刻槽中取向基材,从而损坏痕迹的顶部和底部开口接收基本上均匀地暴露于超声波,从而均匀地蚀刻损坏痕迹。例如,如果将超声传感器设置在蚀刻槽底部,那么基材可在蚀刻槽中进行取向,从而具有损坏痕迹的基材表面垂直于蚀刻槽的底部而不是平行于蚀刻槽的底部。

在一些实施方式中,蚀刻槽可在x,y,和z方向上进行机械搅拌,从而改善损坏痕迹的均匀蚀刻。在一些实施方式中,在x,y,和z方向的机械搅拌可为连续的。

在一些实施方式中,可将表面活性剂添加到蚀刻溶液,以增加损坏痕迹的润湿能力。增加的润湿能力减少扩散时间,并可允许增加贯通孔腰部直径和贯通孔顶部和底部开口直径的比例。在一些实施方式中,表面活性剂可为任意合适的表面活性剂,其溶解于蚀刻溶液且不与蚀刻溶液中的酸反应。在一些实施方式中,表面活性剂可为含氟表面活性剂例如fs-50或fs-54。在一些实施方式中,以毫升表面活性剂/升蚀刻溶液表示的表面活性剂的浓度可为约1,约1.1,约1.2,约1.3,约1.4,约1.5,约1.6,约1.7,约1.8,约1.9,约2或更大。

速度:

使用如上所述的方法借助激光来制备穿孔或“导向孔”或“损坏痕迹”的一个主要优势是加工时间极快。图7所示的损坏痕迹中的每一个都是使用皮秒激光脉冲的单一脉冲群来制备的。这与冲击钻孔具有本质上的不同,后者需要许多激光脉冲来逐步除去材料层。

对于这里所示的样品,平台速度是12m/分钟=200mm/秒。对于300微米间隔,这意味着每1.5毫秒发射激光脉冲群来形成孔,形成速率是667孔/秒。计算平台加速和减速来制备这种约30mmx30mm孔图案的每一行,孔形成速率远远超过300孔/秒。如果图案制备的物理范围更大,那么平台加速的频繁性较低,平均孔形成速率将更快。

因为这里所用的激光可容易地以完全脉冲能量提供100,000脉冲/秒,所以能以这个速率形成孔。一般来说,孔形成速率的限制是可以多快地相对于基材移动激光束。如果孔相隔10微米,平台速度是1m/秒,那么形成100,000孔/秒。事实上,这是切割基材常常做的。但是对于实际插入层,孔常常相隔几百微米,且间隔更加随机(即,存在非周期性图案)。因此,如上所述的用于所示图案的数目只有约300孔/秒。为了获得更高的速率,可增加平台速度,例如从200mm/秒到1m/秒,这实现速度再增加5倍。类似地,如果平均孔节距小于300微米,孔形成速率将同量的增加。

除了在激光束下方平移基材以外,还可使用其它方法来从孔到孔地快速移动激光:移动光学头自身,使用检流计和f-θ透镜,声光偏转器,空间光调制器等。

如上所述,取决于所需的图案损坏痕迹(和通过蚀刻过程由其形成的通孔),可以下述速度形成损坏痕迹:大于约50损坏痕迹/秒,大于约100损坏痕迹/秒,大于约500损坏痕迹/秒,大于约1,000损坏痕迹/秒,大于约2,000损坏痕迹/秒,大于约3,000损坏痕迹/秒,大于约4,000损坏痕迹/秒,大于约5,000损坏痕迹/秒,大于约6,000损坏痕迹/秒,大于约7,000损坏痕迹/秒,大于约8,000损坏痕迹/秒,大于约9,000损坏痕迹/秒,大于约10,000损坏痕迹/秒,大于约25,000损坏痕迹/秒,大于约50,000损坏痕迹/秒,大于约75,000损坏痕迹/秒,或大于约100,000损坏痕迹/秒。

最终零件:

在一些实施方式中,对基材进行上述损坏痕迹形成和酸蚀刻过程可得到具有多个通孔的基材。在一些实施方式中,通孔的直径可为约30微米或更小,约25微米或更小,约20微米或更小,约15微米或更小,约10微米或更小,约5-约10微米,约5-约15微米,约5-约20微米,约5-约25微米,约5-约30微米,或最高达几十微米,这取决于预期应用的要求。在其它实施方式中,通孔的直径可大于约20微米。在一些实施方式中,基材可具有含不同直径的通孔,例如通孔可的直径差异可为至少5微米。在一些实施方式中,通孔的顶部开口和底部开口直径差异可为3微米或更小,2.5微米或更小,2微米或更小,1.5微米或更小或1微米或更小,其可通过使用线状聚焦束在材料中形成损坏痕迹来实现。这些损坏痕迹在基材的整体深度上保持非常小的直径,其在蚀刻之后最终形成均匀顶部和底部直径。在一些实施方式中,相邻通孔之间的间隔(中心到中心距离)可为约10微米或更大,约20微米或更大,约30微米或更大,约40微米或更大,约50微米或更大。在一些实施方式中,相邻通孔的间隔可为最高达约20mm。在一些实施方式中,通孔密度可为约0.01通孔/毫米2或更大,约0.1通孔/毫米2或更大,约1通孔/毫米2或更大,约5通孔/毫米2或更大,约10通孔/毫米2或更大,约20通孔/毫米2或更大,约30通孔/毫米2或更大,约40通孔/毫米2或更大,约50通孔/毫米2或更大,约75通孔/毫米2或更大,约100通孔/毫米2或更大,约150通孔/毫米2或更大,约200通孔/毫米2或更大,约250通孔/毫米2或更大,约300通孔/毫米2或更大,约350通孔/毫米2或更大,约400通孔/毫米2或更大,约450通孔/毫米2或更大,约500通孔/毫米2或更大,约550通孔/毫米2或更大,约600通孔/毫米2或更大,或约650通孔/毫米2或更大。在一些实施方式中,通孔密度可为约0.01通孔/毫米2-约650通孔/毫米2,或约5通孔/毫米2-约50通孔/毫米2

如上所述,在一些实施方式中,贯通孔的腰部直径是该贯通孔的顶部开口直径和/或底部开口直径的50%-100%,50%-95%,50%-90%,50%-85%,50%-80%,50%-75%,50%-70%,55%-100%,55%-95%,55%-90%,55%-85%,55%-80%,55%-75%,55%-70%,60%-100%,60%-95%,60%-60%,60%-85%,60%-80%,60%-75%,60%-70%,65%-100%,65%-95%,65%-90%,65%-85%,65%-80%,65%-75%,65%-70%,70%-100%,70%-95%,70%-90%,70%-85%,70%-80%,70%-75%,75%-100%,75%-95%,75%-90%,75%-85%,75%-80%,80%-100%,80%-95%,80%-90%,80%-85%,85%-100%,85%-95%,85%-90%,90%-100%,90%-95%,或95%-100%。在一些实施方式中,贯通孔的腰部的直径是该贯通孔顶部开口直径和/或底部开口直径的约50%或更大,约55%或更大,约60%或更大,约65%或更大,约70%或更大,约75%或更大,约80%或更大,约85%或更大,约90%或更大,约95%或更大,或约100%。在一些实施方式中,贯通孔的腰部直径是该贯通孔的顶部开口和底部开口平均直径的50%-100%,50%-95%,50%-90%,50%-85%,50%-80%,50%-75%,50%-70%,55%-100%,55%-95%,55%-90%,55%-85%,55%-80%,55%-75%,55%-70%,60%-100%,60%-95%,60%-60%,60%-85%,60%-80%,60%-75%,60%-70%,65%-100%,65%-95%,65%-90%,65%-85%,65%-80%,65%-75%,65%-70%,70%-100%,70%-95%,70%-90%,70%-85%,70%-80%,70%-75%,75%-100%,75%-95%,75%-90%,75%-85%,75%-80%,80%-100%,80%-95%,80%-90%,80%-85%,85%-100%,85%-95%,85%-90%,90%-100%,90%-95%,或95%-100%。在一些实施方式中,贯通孔的腰部的直径是该贯通孔顶部开口和底部开口平均直径的约50%或更大,约55%或更大,约60%或更大,约65%或更大,约70%或更大,约75%或更大,约80%或更大,约85%或更大,约90%或更大,约95%或更大,或约100%。

在一些实施方式中,贯通孔的长径比(基材厚度:通孔直径)可为约1:1或更大,约2:1或更大,约3:1或更大,约4:1或更大,约5:1或更大,约6:1或更大,约7:1或更大,约8:1或更大,约9:1或更大,约10:1或更大,约11:1或更大,约12:1或更大,约13:1或更大,约14:1或更大,约15:1或更大,约16:1或更大,约17:1或更大,约18:1或更大,约19:1或更大,约20:1或更大,约25:1或更大,约30:1或更大,或约35:1或更大。在一些实施方式中,贯通孔的长径比可为约5:1-约10:1,约5:1-20:1,约5:1-30:1,或约10:1-20:1约10:1-30:1。

在一些实施方式中,基材的厚度是约20微米-约3mm,约20微米-约1mm,或约50微米-300微米,或100微米-750微米,或约1mm-约3mm。在一些实施方式中,基材可由透明材料制成,其包括但不限于玻璃,熔凝石英,合成石英,玻璃陶瓷,陶瓷,和晶体材料例如蓝宝石。在一些实施方式中,基材可为玻璃,且玻璃可包含含碱金属的玻璃、不含碱金属的玻璃(例如不含碱金属的碱性硼铝硅酸盐玻璃),或层压玻璃件,且层包含不同的玻璃组合物。在一些实施方式中,玻璃可为化学强化的(例如离子交换的)玻璃。在一些实施方式中,所述基材可对在约390nm-约700nm中的至少一个波长是透明。在一些实施方式中,基材可透射至少70%,至少75%,至少80%,至少85%,或至少90%的约390nm-约700nm中的至少一个波长。

然后,通孔可用导电材料进行涂覆和/或填充,且用于电插入层应用。在一些实施方式中,涂覆和/或填充可通过金属化来进行。例如,可通过真空沉积、化学镀、用导电糊料填充或各种其它方法来进行金属化。在那之后,可在零件的表面上图案化电迹线,且可形成一系列的再分配层和接触垫,这实现将电信号从孔按指定路线发送(routing)到在微芯片或其它电路上的连接。

对于生化应用,例如数码聚合物酶链反应(dpcr),还可用涂层功能化零件,其实现控制表面的亲水性或疏水性性质。还可施加其它涂层,其实现连接抗体、蛋白质或其它生物分子。对于dpcr微阵列,具有非常致密和规则的孔阵列的基材是特别有用的-例如节距小于约100微米的六方紧密堆积的孔的图案。对于这种图案,使用上述激光方法所可能形成的速度特别高,因为可以极端频繁的发射激光,并有效地使用激光的全部重复率。因此,可获得超过10,000孔/秒的孔形成速率(1m/秒平台速度以及100微米孔间隔)。应指出,孔形成可只利用小部分的激光脉冲。激光脉冲群重复率可容易地为几百khz,但难以以大到足以使用全部这些脉冲群的速率,将束引导至新的孔位置。例如,实际的孔形成速率可为100孔/秒,500孔/秒,999孔/秒,3,000孔/秒,5,000孔/秒,10,000孔/秒,而激光重复率同时可为100,000脉冲群/秒,200,000脉冲群/秒。在这些情况下,通过例如电光调制器的设备将大多数的脉冲群脉冲重新引导至进入束捕集器(beamdump),而不是引导出激光器和到达基材。因此,与实际上来自激光器的全部重复率的可用的脉冲群/秒相比,将更小数目的脉冲群/秒用于钻孔。许多短脉冲激光在其输出处具有电光或声光调制器,使得它们以这种方式操作。

实施例

实施例1

制备康宁玻璃(300微米厚度)的测试样品,用于在样品中制备通孔,参见图18b和18c。在所有样品中观察到玻璃里面约10微米范围的较小的径向裂纹,如图18a所示,尽管改变激光脉冲群的脉冲群能量和脉冲数目/皮秒,和从50微米到300微米改变节距。

制备康宁玻璃(150微米厚度)的额外样品,用于制备通孔,然后通过蚀刻来放大孔的直径。零件是:节距为300微米的100x100孔阵列,改变激光功率或脉冲群能量(5样品),一个样品具有节距为200微米的150x150孔阵列,一样品具有节距为100微米的300x300孔阵列。如图19a-19c即俯视图(图19a)、仰视图(图19b)和侧视图(图19c)中的蚀刻之前的光学照片所示,成功地制备了通孔且在玻璃表面处没有显著的缺口或裂纹,但有一些内部径向裂纹和表面下损坏(未显示)。如图20a-20e所示,具有增加的激光功率(图20a=55%,图20b=65%,图20c=75%,图20d=85%,图20e=100%激光功率)的蚀刻之后(蚀刻成约100微米直径)的节距为300微米的100x100孔阵列的俯视图表明:在较高功率水平获得最佳结果(最圆的孔,无堵塞(深色的中心表示堵塞的孔)),且最佳在约75-85%功率,从相同样品的仰视图也得到相同的结果,该仰视图示于图21a-21e(图21a=55%,图21b=65%,图21c=75%,图21d=85%,图21e=100%激光功率)。

如图22a-22c所示,在65%激光功率下的较大的阵列测试结果(图22a=150x150阵列,200微米节距,100微米孔)(图22b-22c=300x300阵列,100微米节距,50微米孔)对于100微米和50微米孔都产生圆孔,但也存在一些堵塞,堵塞有一些周期性(可能是由于在蚀刻过程中形成更高或更低混合的较小区域的超声驻波而造成的),且有些区域具有裂纹化的和有缺陷的孔,如图22c所示。

对两100x100阵列样品的维度分析表明圆度(圆度=最大内切直径–最小内切直径)良好(即,小于约5微米),如用于第一样品的图24a-24c所示(图24a=顶部,图24b=底部,图24c=腰部),和用于第二样品的图26a-26c所示(图26a=顶部,图26b=底部,图26c=腰部),且顶部(第一样品示于图23a,第二样品示于图25a)和底部(第一样品示于图23b和第二样品示于图25b)直径几乎相等,腰部(第一样品示于图23c和第二样品示于图25c)是开放的。

实施例2

测试了康宁玻璃(300微米厚度)的额外样品,以检测孔质量如何随着最终直径(蚀刻之后)变化。使用增加的激光功率(55,65,75,85,和100%激光功率),以节距为300微米的150x150阵列(每一个样品22,500孔)制备通孔,且通过蚀刻除去获得4种孔直径(30,50,75,和100微米直径)。用于通孔制造过程的激光条件是:50mm透镜,12m/分钟(200mm/秒)平台速度,200khz重复率3脉冲/脉冲群。以约187孔/秒的速度制备通孔。如用于30微米孔的图27a-27c和用于50微米孔的图28a-28c所示,在100%激光功率下,30微米孔上的腰部看起来是窄化的(图27b),而50微米孔上的腰部(图28b)是完全开放的。如用于75微米孔的图29a-29c和用于100微米孔的图30a-30c所示,在100%激光功率下,在两个尺寸上的腰部(图29b和30b)都是完全开放的。如用于30微米孔的图31a-31c和用于50微米孔的图32a-32c所示,在85%激光功率下,30微米孔上的腰部看起来是窄化的(图31b),而50微米孔上的腰部(图32b)是非常开放的。如用于75微米孔的图33a-33c和用于100微米孔的图34a-34c所示,在85%激光功率下,在两个尺寸上的腰部(图33b和34b)都是完全开放的。如用于30微米孔的图35a-35c和用于50微米孔的图36a-36c所示,在75%激光功率下,30微米孔上的腰部看起来是窄化的(图35b),而50微米孔上的腰部(图36b)是完全开放的。如用于75微米孔的图37a-37c和用于100微米孔的图38a-38c所示,在75%激光功率下,在两个尺寸上的腰部(图37b和38b)都是完全开放的,但总体孔径可存在一些变化。如用于30微米孔的图39a-39c和用于50微米孔的图40a-40c所示,在65%激光功率下,蚀刻之后在玻璃里面没有完全形成孔,在30微米孔(图40b)上的结果最差,尽管甚至50微米孔(图40a)看起来有些缺少开口或堵塞。如用于75微米孔的图41a-41c和用于100微米孔的图42a-42c所示,在65%激光功率下,有来自俯视图(图41a和42a)和仰视图(图41c和42c)的不良开口和堵塞的证据。如用于30微米孔的图43a-43c和用于50微米孔的图44a-44c所示,在55%激光功率下,没有完全形成孔,且酸蚀刻没有打开它们。如用于75微米孔的图45a-43c和用于100微米孔的图46a-44c所示,在55%激光功率下,没有完全形成孔,且酸蚀刻没有打开它们。如图46a和46c分别在俯视图和仰视图中所示,甚至100微米孔显示缺少开放腰部或堵塞的证据。

实施例3

通过使得多个层同时进行钻孔,本文所述的方法还实现甚至更高的加工速度。图47显示延伸穿过3重堆叠的150微米玻璃片430的聚焦线432。因为聚焦线432延伸穿过所有3个堆叠的片,可同时通过所有3个层形成完全穿孔或完全缺陷线条。为了通过堆叠件形成完全穿孔,聚焦线长度需要长于堆叠件高度。一旦对零件进行钻孔,可将它们分离且随后进行蚀刻,这使得酸更容易地进入每一片的孔。

用于钻孔的这种线条聚焦方法的显著优势在于该方法对零件之间的空气间隙不敏感,不像依赖于激光束自聚焦的过程那样。例如,聚焦的gaussian束将在进入第一玻璃层时发散,且不会钻到更大的深度,或者如果在对玻璃进行钻孔时,因为沿着孔的侧面的反射出现自聚焦或者波导,那么束将从第一玻璃层射出并衍射,且不钻入第二玻璃层。甚至在使用基于kerr效应的自聚焦(有时称作“激光成丝”)来在材料里面获得较长相互作用长度的加工过程的情况下,使激光束离开上部玻璃工件并进入空气也是个问题,因为与在玻璃中保持基于kerr效应的自聚焦所需的功率相比,在空气中需要多~20倍的功率来诱导基于kerr效应的自聚焦。相反,bessel束将在线条聚焦的全部范围上对玻璃层钻孔,与空气间隙的尺寸变化(最高达几百微米甚至1毫米)无关。

实施例4

在这种钻孔过程中,还能在玻璃片上面、下面和之间插入保护性层或涂层。只要材料对激光辐射是透明的,束仍然能聚焦通过保护性涂层并对玻璃工件进行钻孔。如果在钻孔过程中寻求保持零件干净并防止刮擦或其它除了损坏,这可为特别优选的。在对零件进行钻孔之后,可除去涂层。类似地,在堆叠件钻孔过程中,可在片之间使用这种层例如透明聚合物(例如购自东莞云阳工业有限公司(donguanyunyangindustrialco.ltd.)的聚乙烯自粘膜的yy-100)的薄层,以防止一片在另一片上的表面摩擦,这有助于保持零件强度和防止外观缺陷或其它缺陷。

图48显示用这种方法进行钻孔的两片300微米厚exg玻璃的图象。

图49显示在酸蚀刻之后相同的零件。在这种情况下,从侧面轮廓看,孔的直径看起来是150微米,但实际上直径是约70微米,只是从侧视图上看起来较大,因为存在延伸远离照相机焦平面的多排孔,且每一排稍微沿横向偏移,这形成比实际上更大的孔的错觉。孔的俯视图(图50)显示孔的直径实际上是约70微米,且通过每一孔中央的光表明它们是开放的通孔。

实施例5

将具有损坏痕迹的150微米厚的康宁玻璃零件垂直地放置于酸蚀刻浴中,该浴以体积计包含5%hf/7.5%hno3。将零件在26℃下蚀刻810秒,从而以1微米/分钟的速率除去约13微米的材料。使用40khz和80khz频率的组合的超声搅拌来促进孔中的流体的渗透和流体交换。此外,使零件在超声域之内沿x,y和z方向连续的移动,以防止来自超声域的驻波图案在零件上形成“热区域”或空穴化相关的损坏,且为了提供越过零件的宏观流体流动。在蚀刻过程中,放大损坏痕迹来形成下述通孔:直径是13微米,长径比是11:1,腰部直径是玻璃零件的顶部和底部表面处通孔开口的直径的平均值的73%。图57是酸蚀刻之后的玻璃零件侧视图的光学照片。

本文引用的所有专利、专利申请公开和参考文献的相关教导都通过引用全文纳入本文。

虽然本文描述了示例性实施方式,但本领域普通技术人员应理解在不偏离所附权利要求所包含的范围的情况下,可改变其中的各种形式和细节。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1