使用脉冲调制的激光进行二维打印的增材制造系统的制作方法

文档序号:26189457发布日期:2021-08-06 18:41阅读:126来源:国知局
使用脉冲调制的激光进行二维打印的增材制造系统的制作方法

相关专利申请的交叉引用

本公开是要求于2018年12月19日提交的美国专利申请第62/781,996号的优先权权益的非临时专利申请的一部分,该美国专利申请通过引用以其整体并入。

本公开总体上涉及增材制造,且更具体地,涉及使用具有可控脉冲形状和定时的高通量激光进行二维打印的粉末床熔融增材制造。

背景

传统的部件加工通常依赖于通过钻孔、切割或研磨来去除材料以形成零件。相比之下,增材制造(也称为三维(3d)打印)通常涉及材料的顺序逐层添加以构建零件。

在一个高吞吐量实施例中,可以使用高通量激光束从金属或其他材料粉末层中熔化二维区域或“图块(tile)”。然而,光学系统(opticaltrain)中较高的峰值功率相当于增加了激光损坏光学器件的风险。

针对粉末的标准高通量脉冲序列(pulsetrain)的另一个问题与等离子体的产生和等离子体的急剧体积膨胀有关。当等离子体维持其体积并使其体积膨胀时,会产生冲击波,这会将打印(或激光照射)区域周围的大量粉末推离到周围区域中。实际上,激光束照射、等离子体产生、等离子体维持和膨胀、冲击波传播和粉末运动的这种连锁反应降低了打印工艺的质量。

这尤其对于基于高功率粉末床熔融的增材制造系统来说是一个问题。目前可用的典型传统粉末床熔融增材制造系统使用功率为大约300w至1000w并且聚焦射束直径为50微米(50um)至100um的单个激光束。这相当于只有大约几mw/cm2的激光功率通量(例如,聚焦直径为100um的1000w圆形激光束具有[1000w/(π*(0.005cm)^2)]=12.74mw/cm2的通量),这足以熔化金属粉末并使其沸腾,但没有达到可能产生和维持等离子体的能量密度。此外,由于熔体体积小,任何等离子体引起的影响都很小。通常,在传统系统的打印工艺中可以看到金属喷溅的液滴,但是很少或没有等离子体引发的冲击波将打印区域周围的粉末推开(等离子体引发的冲击波将打印区域周围的粉末推开导致严重且负面地影响打印工艺的“光晕效应(haloeffect)”)。

当使用高功率通量激光束快速熔化并且固化打印区域内的粉末层时,需要改进的工艺和系统来防止不可接受的光晕效应。在一些情况下,用于基于二维粉末床熔融的增材制造系统的有用的激光束功率通量的范围可以从几十到数百kw/cm2甚至到gw/cm2水平。不幸的是,在氩气环境中,这些水平的激光功率通量通常足以产生并且维持等离子体,该等离子体在制造期间会推开粉末颗粒而形成不可接受的光晕(halo)。

幸运的是,通过高通量激光的适当的脉冲成形(pulseshaping)和定时,可以减少或减轻对光学器件的损坏和不想要的等离子体产生。

概述

在增材制造方法一个实施例中,提供了金属、陶瓷、聚合物或其他材料的粉末床。在粉末床的限定二维区域或“图块”处引导包括一个或更多个脉冲并具有大于20kw/cm2的通量的经整形激光束脉冲序列(shapedlaserbeampulsetrain)。该能量足以在限定二维区域内熔化和熔融粉末。系统参数、激光参数、光学参数和粉末材料参数在一些情况下被设置为使得按重量计小于10%的粉末颗粒被喷射到限定二维区域之外的区域中,在其它情况下,按重量计小于20%的粉末颗粒被喷射到限定二维区域之外的区域,在其它情况下,按重量计小于40%的粉末颗粒被喷射到限定二维区域之外的区域,在其它情况下,按重量计小于80%的粉末颗粒被喷射到限定二维区域之外的区域,在其它情况下,按重量计小于90%的粉末颗粒被喷射到限定二维区域之外的区域,在其它情况下,按重量计小于95%的粉末颗粒被喷射到限定二维区域之外的区域,在其它情况下,按重量计小于99%的粉末颗粒被喷射到限定二维区域之外的区域。

在一些实施例中,经整形激光束脉冲序列由包括任意脉冲激光源(arbitrarypulsedlasersource)、至少一个前置放大器和至少一个功率放大器的系统提供。激光通量可设置在200kw/cm2至10gw/cm2之间,并且粉末床的限定二维区域被选定在0.000025cm2至1,000cm2之间。在一些实施例中,粉末床上的粉末层的厚度在1μm-2000μm的范围、25μm-250μm的范围和50μm-100μm的范围中的至少一个之间。当使用小于10gw/cm2的脉冲激光强度时,所使用的粉末的直径尺寸小于100,000um,而在所选实施例中,使用大于20kw/cm2的脉冲强度,所使用的粉末的直径小于500um。

在另一个实施例中,可以通过提供校准步骤来实现对系统的动态调节,该校准步骤包括响应于由初步光晕测试形成的光晕的检测面积,调节激光束能量、脉冲宽度或限定二维区域的面积中的至少一个。也可以响应于由初步光晕测试形成的光晕的检测面积,根据时间调节脉冲形状、脉冲数量或脉冲峰值功率。典型地,光晕的半径被设置为超出限定二维区域大于50微米。在其他实施例中,光晕的半径被设置为超出限定二维区域大于10微米。在其他实施例中,光晕的半径被设置为超出限定二维区域大于1微米。

在一个实施例中,激光时间脉冲宽度在20纳秒至100微秒之间。可以使用脉冲数大于或等于一(1)的激光脉冲序列,并且激光脉冲峰值功率可以根据时间进行调节。

在另一个实施例中,用于二维打印的激光系统包括激光脉冲信号源和一个或更多个前置放大器模块,以接收激光束并将其导向光学隔离装置。一个或更多个放大器模块可以被定位成接收来自光学隔离装置的激光束,并将激光束导向粉末床的限定二维区域。激光脉冲信号源可以提供方波、斜坡或脉冲序列中的至少一种,并且光学隔离装置可以包括普克尔斯盒(pockelscell)、法拉第旋转器(faradayrotator)、法拉第隔离器(faradayisolator)、声光反射器或体布拉格光栅(volumebragggrating)中的至少一种。

在另一个实施例中,激光控制方法包括将激光脉冲信号源导向前置放大器模块和光调制器或隔离装置以提供第一激光束的步骤。第一激光束可被导向放大器模块,以提供包括一个或更多个脉冲并且具有大于20kw/cm2的通量的经整形激光束脉冲序列。通常,通量在200kw/cm2至10gw/cm2之间。激光时间脉冲宽度可以设置在20纳秒至100微秒之间的范围。可以使用脉冲数大于一(1)的激光脉冲序列,并且激光脉冲峰值功率可以根据时间进行调节。可以在尺寸为0.000025cm2至1,000cm2之间的二维区域处引导经整形激光束脉冲序列。

在一个实施例中,可以在增材制造站(station)处引导经整形激光束脉冲序列。例如,可以在增材制造粉末床的限定二维区域处引导经整形激光束脉冲序列,以熔化和熔融限定二维区域内的金属或其他粉末。

在一个实施例中,增材制造的方法包括提供包围粉末床的外壳,并且该外壳具有包括可选地处于大于大气压力的至少50%惰性气体的气氛。可以在粉末床的限定二维区域处引导具有大于20kw/cm2的通量的激光束,以熔化和熔融限定二维区域内的粉末。

在一个实施例中,增材制造方法包括提供包围粉末床的外壳,该外壳具有包括可选地处于低于大气压力的至少50%惰性气体的气氛。可以在粉末床的限定二维区域处引导具有大于20kw/cm2的通量的激光束,以熔化和熔融限定二维区域内的粉末。

在一个实施例中,气氛可以包含以下项中的至少一项:ar、he、ne、kr、xe、co2、n2、o2、sf6、ch4、co、n2o、c2h2、c2h4、c2h6、c3h6、c3h8、i-c4h10、c4h10、1-c4h8、cic-2、c4h7、1,3-c4h6、1,2-c4h6、c5h12、n-c5h12、i-c5h12、n-c6h14、c2h3cl、c7h16、c8h18、c10h22、c11h24、c12h26、c13h28、c14h30、c15h32、c16h34、c6h6、c6h5-ch3、c8h10、c2h5oh、ch3oh和ic4h8。

附图简述

参考以下附图描述了本公开的非限制性的并且非穷举的实施例,其中,除非以其它方式说明,否则在所有各个附图中相似的附图标记指代相似的部分。

图1a示出了响应激光之前的粉末层;

图1b示出了响应于激光诱导等离子体的粉末运动;

图1c示出了响应于防止等离子体形成的任意脉冲的粉末运动;

图2示出了用于以高激光通量水平减少等离子体形成的二维增材制造的设备。

图3a-图3c示出了高通量激光的示例脉冲;以及

图4示出了用于提供合适脉冲序列的系统的模块。

详细描述

在以下描述中,参考了形成说明书的一部分的附图,并且其中以通过说明其中可实践本公开的具体示例性实施例的方式示出。对这些实施例进行足够详细的描述,以使本领域技术人员能够实践本文公开的概念,并且应当理解,可以对各种公开的实施例进行修改,并且可以利用其他实施例,而不脱离本公开的范围。因此,以下详细描述不被认为是限制性的意义。

具有一个或更多个能量源(在一个实施例中包括一个或更多个激光束或电子束)的增材制造系统被定位成发射一个或更多个能量束。射束成形光学器件可以接收来自能量源的一个或更多个能量束并形成单射束。能量图案化单元接收或生成单射束并将二维图案传送到射束,并且可以拒斥不在图案中的未使用的能量。图像中继器(imagerelay)接收二维图案化射束并将其作为二维图像聚焦到高度固定或可移动构建平台(例如粉末床)上的期望位置。在某些实施例中,来自能量图案化单元的任何被拒斥的能量中的一些或全部被再利用。

在一些实施例中,来自激光器阵列的多个射束使用射束均质器(beamhomogenizer)来组合。该组合射束可以被引导至能量图案化单元,该能量图案化单元包括透射或反射像素可寻址光阀。在一个实施例中,像素可寻址光阀包括具有偏振元件的液晶模块和提供二维输入图案的光投射单元。由图像中继器聚焦的二维图像可以顺序地被导向粉末床上的多个位置以构建3d结构。

能量源产生能够被引导、成形和图案化的光子(光)、电子、离子或其他合适的能量束或通量。多种能量源可以组合使用。能量源可以包括激光器、白炽灯、聚光太阳能(concentratedsolar)、其他光源、电子束或离子束。可能的激光器类型包括但不限于:气体激光器、化学激光器、染料激光器、金属蒸气激光器、固态激光器(例如光纤)、半导体(例如二极管)激光器、自由电子激光器、气动激光器、“类镍”钐激光器("nickel-like"samariumlaser)、拉曼激光器或核泵浦激光器。

气体激光器可以包括诸如氦氖激光器、氩激光器、氪激光器、氙离子激光器、氮激光器、二氧化碳激光器、一氧化碳激光器或准分子激光器的激光器。

化学激光器可以包括诸如氟化氢激光器、氟化氘激光器、coil(化学氧碘激光器)或agil(全气相碘激光器)的激光器。

金属蒸气激光器可以包括诸如氦镉(hecd)金属蒸气激光器、氦汞(hehg)金属蒸气激光器、氦硒(hese)金属蒸气激光器、氦银(heag)金属蒸气激光器、锶蒸气激光器、氖铜(necu)金属蒸气激光器、铜蒸气激光器、金蒸气激光器或锰(mn/mncl2)蒸气激光器的激光器。也可以使用铷或其他碱金属蒸气激光器。固态激光器可以包括诸如红宝石激光器、nd:yag激光器、ndcryag激光器、er:yag激光器、钕ylf(nd:ylf)固态激光器、掺钕钒酸钇(nd:yvo4)激光器、掺钕硼酸钙氧钇nd:yca4o(bo3)3或者简称为nd:ycob、钕玻璃(nd:玻璃)激光器、钛蓝宝石(ti:蓝宝石)激光器、铥yag(tm:yag)激光器、镱yag(yb:yag)激光器、镱2o3(玻璃或陶瓷)激光器、掺镱玻璃激光器(棒(rod)、片/碎片(plate/chip)和纤维)、钬yag(ho:yag)激光器、铬znse(cr:znse)激光器、掺铈氟化锂锶(或钙)铝(ce:lisaf,ce:licaf)、掺钷147磷酸盐玻璃(147pm+3:玻璃)固态激光器、掺铬金绿宝石(翠绿宝石(alexandrite))激光器、铒掺杂和铒镱共掺杂玻璃激光器、三价铀掺杂氟化钙(u:caf2)固态激光器、二价钐掺杂氟化钙(sm:caf2)激光器或f-中心激光器的激光器。

半导体激光器可以包括诸如以下项的激光介质类型:gan、ingan、algainp、algaas、ingaasp、gainp、ingaas、ingaaso、gainassb、铅盐、垂直腔表面发射激光器(vcsel)、量子级联激光器、混合硅激光器或其组合。

例如,在一个实施例中,单个nd:yag调q激光器(q-switchedlaser)可以与多个半导体激光器结合使用。在另一个实施例中,电子束可以与紫外半导体激光器阵列结合使用。在其他实施例中,可以使用激光器的二维阵列。在具有多个能量源的一些实施例中,能量束的预图案化可以通过选择性地激活和去激活能量源来完成。

激光束可由各种各样的成像光学器件成形,以组合、聚焦、发散、反射、折射、均匀化、调整强度、调整频率、或者以其他方式成形从激光束源接收的一个或更多个激光束并将从激光束源接收的一个或更多个激光束朝向能量图案化单元引导。在一个实施例中,可以使用波长选择镜(例如二向色镜)或衍射元件来组合各自具有不同光波长的多个射束。在其他实施例中,可以使用多面镜、微透镜以及折射或衍射光学元件来均匀化或组合多个射束。

能量图案化可以包括静态或动态能量图案化元件。例如,光子、电子或离子束可以被具有固定或可移动元件的掩模(mask)阻挡。为了增加图像图案化的灵活性和容易性,可以使用像素可寻址掩模、图像生成或透射。在一些实施例中,能量图案化单元包括可寻址光阀,以单独地或与其他图案化机构结合来提供图案化。光阀可以是透射的、反射的或者使用透射元件和反射元件的组合。可以使用电寻址或光寻址来动态修改图案。在一个实施例中,透射光学寻址光阀用于旋转通过该阀的光的偏振,其中光学寻址像素形成由光投射源限定的图案。在另一个实施例中,反射光学寻址光阀包括用于修改读取射束(readbeam)的偏振的写入射束(writebeam)。在又一实施例中,电子图案化设备从电或光子刺激源接收地址图案,并生成电子的图案化发射。

被拒斥的能量处理单元可以用于分配、重定向或利用未被图案化并通过能量图案图像中继器的能量。在一个实施例中,被拒斥的能量处理单元可以包括从能量图案化单元移除热量的被动或主动冷却元件。在其他实施例中,被拒斥的能量处理单元可以包括“束流收集器(beamdump)”以吸收未被用于定义能量图案的任何射束能量并将其转换为热量。在其他实施例中,可以使用射束成形光学器件回收被拒斥的射束能量。可替代地或附加地,被拒斥的射束能量可以被引导到物品处理单元,以用于加热或进一步图案化。在一些实施例中,被拒斥的射束能量可以被引导到附加的能量图案化系统或物品处理单元。

图像中继器从能量图案化单元接收图案化图像(通常是二维图像),并将其导向物品处理单元10。以类似于射束成形光学器件的方式,图像中继器可以包括用于组合、聚焦、发散、反射、折射、调整强度、调整频率或以其他方式成形和引导图案化图像的光学器件。

物品处理单元可以包括有壁的室和床,以及用于分发材料的材料分配器。材料分配器可以分发、移除、混合、提供材料类型或颗粒尺寸的渐变或变化,或者调整材料的层厚。材料可以包括金属、陶瓷、玻璃、聚合物粉末、能够经历从固体到液体再回到固体的热诱导相变的其他可熔化材料、或者它们的组合。材料还可以包括可熔化材料和不可熔化材料的复合物,其中,成像中继系统可以选择性地瞄准任一种或两种组分,以熔化可熔化的组分,同时或者沿着不可熔化材料离开,或者使其经历蒸发/毁坏/燃烧或其他破坏工艺。在某些实施例中,可以使用浆料、喷雾、涂层、线、条或片材。通过使用鼓风机、真空系统、吹扫(sweeping)、振动、摇动、倾斜或翻转床,可以去除不想要的材料,以便一次性使用或回收利用。

除了材料处理部件之外,物品处理单元可以包括用于保持和支撑3d结构的部件、用于加热或冷却室的机构、辅助或支撑光学器件以及用于监测或调整材料或环境条件的传感器和控制机构。物品处理单元可以全部或部分地支持真空或惰性气体气氛,以减少不想要的化学相互作用,并减轻火灾或爆炸的风险(特别是对于活性金属)。

控制处理器可以被连接以控制增材制造系统的任何部件。控制处理器可以连接到各种传感器、致动器、加热或冷却系统、监视器和控制器,以协调操作。各种各样的传感器(包括成像器、光强度监视器、热、压力或气体传感器)可以被用来提供用于进行控制或监测的信息。控制处理器可以是单个中央控制器,或者可替代地可以包括一个或更多个独立的控制系统。控制器处理器设置有允许输入制造指令的接口。对各种各样的传感器的使用允许各种反馈控制机制,这提高了质量、制造吞吐量和能效。

描述了具有长脉冲灵活性(agility)和可扩展性的激光系统的设计、实施方式和操作方法,以减少对光学器件的损坏并最大程度地减少激光等离子体在打印床中诱导的“光晕”效应。由于两种效应都与激光源的峰值强度成比例,因此在使用点(usepoint)(例如打印平面)处功率通量为每平方厘米20千瓦至超过每平方厘米1吉瓦的高功率激光源特别容易受到光学器件损坏和激光诱导等离子体效应的影响。在一些实施例中,与光晕效应相关的等离子体可以由释放的蒸气/颗粒引发,该释放的蒸气/颗粒由从粉末(fe、cr、al、co、ti、si等)中(特别是从金属组分中)烧蚀/蒸发的材料形成。由于激光加热粉末,因此蒸气/颗粒材料从表面的这种释放可能以如此高的速度发生,以至于足够量的材料可能进入被打印的区域上方的气体区域,即使在激光仍在发射的时候。所释放的材料对仍然入射在被打印图块上的激光具有极高的吸收率,因此,它过热,产生等离子体,该等离子体不仅产生冲击波和光晕效应,而且开始反射任何进一步的入射激光能量并使其分散。这种拒斥效应(rejectioneffect)会降低打印床所用的能量的量,并对图块内的打印工艺质量产生负面影响。工艺气体(processgas)的高导热率允许气体快速传导走从激光加热和熔化工艺中产生的热量。因此,高导热率有助于在等离子体体积膨胀维持之前消除等离子体,并因此最大限度地减小将周围粉末推开的冲击波的机械撞击。工艺气体的高导热率也用于去除来自粉末层顶面的热量,因此降低了粉末层中的垂直温度梯度,并允许对粉末层更均匀地加热和熔化。结果,理想工艺气体的更高的传导率导致更多的热量传递到基部(打印板或当前层下面的先前打印的层)中,并因此使基部的温度更接近熔点,而不熔化当前粉末层的顶部。这产生了有利的热条件,以将粉末层结合到基板或当前层下面的先前打印的层。

在一些实施例中,使用工程气体(engineeredgas)形成外壳中的气氛,起到减轻等离子体产生和“光晕”问题的作用。在一些实施例中,主要包括氦气的惰性气体可以在受控的温度和压力范围内增强基于粉末床熔融的增材制造工艺的结合和操作。

除了设计气体种类之外,操作条件(诸如温度)可用于进一步增强远离图块表面的期望的热传导或传热系数。例如,在1巴的he工程气体的情况下,导热率可以在0c和600c之间从约0.15增加到约0.3。依次增大压力也可以通过增大传热系数和增加移动冲击波所需的能量来帮助这一工艺。封闭气氛温度可设置在20开氏度(即低温)和5000开氏度之间。在一些实施例中,外壳的气氛温度可以设定在200摄氏度和600摄氏度之间。

对操作条件(诸如压力)的调节可用于进一步增强增材制造并且减少光晕效应。外壳中的气氛可保持在0巴至100巴之间的绝对压力。在一些实施例中,外壳的气氛温度低于大气压力。在其他实施例中,外壳的气氛温度高于大气压力。在增材制造工艺期间,激光与粉末材料和衬底相互作用,并且熔化的粉末材料开始聚结(coalesce)。这一工艺有可能捕获材料中的气泡间隙。通过充分降低气体压力,这些气泡将开始收缩,并最终自行坍塌,这在熔化工艺期间产生更高密度的材料。在一些情况下,该工艺可以以在0.5巴和1.0巴之间的绝对压力发生,在其他情况下,它可以以0.25巴和1.0巴的绝对压力发生,在其他情况下,它可以以0.1巴和1.0巴的绝对压力发生,在其他情况下,它可以以0.01巴和1.0巴的绝对压力发生,在其他情况下,它可以以0.001巴和1.0巴的绝对压力发生,在其他情况下,它可以以0.0001巴和1.0巴的绝对压力发生,在其他情况下,它可以以1e-6巴和1.0巴的绝对压力发生,在其他情况下,它可以以1e-6巴和1e-3巴的绝对压力发生,在其他情况下,它可以以1e-10巴和1.0巴的绝对压力发生。

另外,在增材工艺之后或增材工艺期间,可以调整操作条件(诸如在不同温度处的高压),以提高零件质量。历史上,热等静压(hip)工艺是在零件已通过增材制造制成后进行的,然而在工艺过程中引入它有相当大的好处。hip工艺可在500巴和1000巴之间并且在400c至1500c操作。然而,仅仅在高温高压处操作打印工艺是不够的,因为hip工艺是基于压缩低压气穴(gaspocket)。为此,压力需要在打印工艺的不同阶段进行循环。打印工艺将会在低压处继续,然后间歇地暂停,并在高温处增加压力,以排出孔隙和气穴。

在其他实施例中,其他衍生或替代方法可包括在工艺过程中原位(in-situ)循环和再循环工程工艺气体,或者仅在激光束熔化金属粉末所发生在的打印室局部引入惰性工艺气体环境。

有利地,使用所描述的气体和操作条件,在打印工艺中等离子体的产生和体积膨胀被抑制或最大限度地减小。响应于激光束熔化和熔融的粉末运动和对周围金属粉末的机械撞击(“光晕”)被最大限度地减小,并且对增材打印工艺的继续方面(例如将相邻的图块“缝合(stitch)”在一起)的影响不显著。等离子体的最小产生和体积膨胀也可以使等离子体对打印区域上方激光束的“阻挡”或“散射”效应最大限度地减小。

含he工程工艺气体的高导热率也有助于降低金属粉末层深度上的垂直温度梯度,从而产生更均匀的加热和熔化条件。它能够使用高功率通量激光来快速加热、熔化和固化金属粉末,以便与基材结合。

图1a示出了响应激光之前的粉末层系统100a的横截面和顶部截面(topsection)。取自切面107的截面图101示出了搁置在衬底102上的粉末层103,该粉末层103包含将要打印的可能的图块。俯视图104从上方示出了同一组图块的视图。在这个示例中,在将要打印的图块106的区域中有粉末。将要打印的图块被构成未来可能将要打印的图块的粉末105包围。

图1b示出了响应于具有大于每平方厘米20兆瓦并且范围通常在每平方厘米100兆瓦至10吉瓦之间的通量的激光束的粉末层系统100b的横截面和顶部截面。以这样的功率通量水平,在使用点处形成大量的激光诱导等离子体。取自切面107的截面图101示出了搁置在衬底102上的粉末层103,该粉末层103包含将要打印的可能的图块。俯视图104从上方示出了同一组图块的视图。在这个示例中,存在用激光108打印的图块106。打印的图块被构成未来可能将要打印的图块的粉末105包围。由粉末加热产生的蒸气由于激光108过热,形成气体109膨胀波,该气体109膨胀波将先前处于良好均匀层103中的粉末从打印的图块106旁边的“光晕”区域110推开。这种粉末的运动导致附近图块112上的进一步堆积,这改变了它们的层厚度。粉末从“光晕”区域110开始的移动和粉末在附近图块112中的堆积导致了打印未来层的问题。

图1c示出了响应于在主要含氦气的气氛下,并且使用下面关于图3更详细描述的各种经整形激光脉冲序列的激光束的粉末层系统100c的横截面和顶部截面,该激光束具有大于每平方厘米20兆瓦并且通常在每平方厘米100兆瓦至10吉瓦之间的范围内的通量。取自切面107的截面图101示出了搁置在衬底102上的粉末层103,该粉末层103包含将要打印的可能的图块。俯视图104从上方示出了同一组图块的视图。在这个示例中,在主要为氦气的环境109中,存在用激光108打印的图块106。打印的图块被构成未来可能将要打印的图块的粉末105包围。因为使用经整形激光脉冲序列进行打印,所以由粉末加热产生的蒸气不会由于激光108过热,有可能从先前均匀层103将粉末推开的气体膨胀波被大部分地或完全地消除,从而允许打印的图块106旁边的粉末105在未来的照射(shot)中被打印。此外,粉末层103没有增加,这防止了未来层的问题。

在选定的实施例中,更多或更少量的氦气或其他惰性气体可用于在增材制造外壳中提供气氛环境。例如,可以使用ar、he、ne、kr、xe、co2、n2、o2、sf6、ch4、co、n2o、c2h2、c2h4、c2h6、c3h6、c3h8、i-c4h10、c4h10、1-c4h8、cic-2、c4h7、1,3-c4h6、1,2-c4h6、c5h12、n-c5h12、i-c5h12、n-c6h14、c2h3cl、c7h16、c8h18、c10h22、c11h24、c12h26、c13h28、c14h30、c15h32、c16h34、c6h6、c6h5-ch3、c8h10、c2h5oh、ch3oh、ic4h8。在一些实施例中,可以使用制冷剂或大的惰性分子(包括但不限于六氟化硫)。可以使用按体积(或数密度)计具有至少约1%的he以及选定百分比的惰性/非反应性气体的封闭气氛组成。在一些实施例中,可以使用大于1%的he,而在其他实施例中,可以使用大于10%的he,而在其他实施例中,可以使用大于20%的he,而在其他实施例中,可以使用大于40%的he,而在其他实施例中,可以使用大于80%的he,而在其他实施例中,可以使用95%或更多的he。除了工程气体的组成之外,还可以选择工程气体的操作温度和压力的范围,以最大限度地减小等离子体的产生并提高打印质量。复杂的分子和大原子量的气体可以有与更大的质量和花费更多力或能量来移动相关的好处。虽然较大分子(诸如六氟化硫)的导热率比he(类似于ar)低,但气体密度大得多,并且会将打印工艺(其中,粉末被加热到熔化温度,并引发相变)中从粉末中释放出来的其他气体(o2、h2o蒸气、n2等)排出。这些较轻的气体将有效地漂浮在密度大得多的气体之上,并迅速地从工艺区域被去除。另外,更复杂的分子具有振动和旋转能量储存模式,而惰性气体则没有。这些额外的能量模式增加了气体在高温时的比热(specificheat),并通过从周围的金属蒸气中吸收更多的能量来帮助降低气体的电离势。另外,在sf6(六氟化硫)的情况下,如果主要的惰性气体分子将要被分解(通过等离子体分解,或通过与释放的自由基(radicals)(诸如o、c、h、oh、各种组合、包括来自粉末合金的种类的各种组合等)的相互作用),由分解形成的自由基将有助于在打印工艺中清除释放的气体(o、o2、h、oh、h2o、fe、cr等)。通过改变气体的原子性质、密度或温度,不同的气体可以用于打印不同的材料。

图2示出了系统200,其中通过反射镜211将入射激光束201导向粉末床形成打印激光束202。射束的不重要部分透射通过反射镜211,到达激光通量传感器205以检测激光通量。视觉系统206瞄准基础衬底204上的打印区域203。视觉系统206拍摄的图像被传送到计算机处理器207。控制器208利用图像处理的结果来产生控制信号,以调整激光脉冲的形状、功率和格式。在一个实施例中,从氦气罐209供应到打印室210的氦气的量也可以被调整,并且对打印室气氛温度进行调节。

图3a-图3c示出了一般类型的输出脉冲波形,其可用于消除或最大限度地减小激光等离子体的形成及其对打印工艺的相关“光晕”效应。如参考图3a的曲线图300a所见,可以使用方形脉冲,其中所限定的宽度和幅度被设置为低于激光系统光学器件的激光损坏阈值要求,并且低于导致不希望的粉末运动和光晕形成的等离子体阈值。

图3b示出了曲线图300b,该曲线图300b具有经整形脉冲序列,该脉冲序列具有与图3a中示出的脉冲相似的能量含量,但是作为一系列短脉冲来递送,这些短脉冲的单个脉冲宽度和脉冲间隙可以被调节以减少激光损坏和粉末运动。以在20kw/cm2至10gw/cm2之间输出的激光通量水平,脉冲序列通常不会使用简单的振荡器(诸如锁模振荡器),因为这样的系统具有不充分的定时以及脉冲形状灵活性,而在没有光学损坏或无意的等离子体产生的情况下可靠地工作。将简单的脉冲序列馈入放大器系统会产生尖峰形脉冲序列(即,第一个脉冲将会非常高,而拖尾脉冲(trailingpulses)较低)。这是由于放大器中的增益饱和,其中进入饱和放大器的第一个脉冲窃取(steal)了可用的能量。

图3c是曲线图300c,该曲线图300c示出了经整形脉冲(或脉冲序列),其随时间的推移而改变激光峰值功率的幅度,以提高整体性能,同时最大限度地减小激光损坏并减少粉末运动。

应当理解,由于经整形激光脉冲操作而导致的系统操作的其他改进可以包括最大限度地减小激光能量要求和/或调节所打印零件的材料属性。

在操作中,可以定制脉冲长度,以针对能力有限的光学器件而使峰值强度降低到的光学损坏阈值以下。

可以定制脉冲长度,以使在粉末层处的峰值强度低于等离子体形成极限,从而改善二维图块打印。

可以根据具有不同激光吸收、熔点和熔融热的特定材料来定制脉冲长度范围,以最大限度地减少由于“光晕”效应而妨碍有效打印的激光等离子体的产生。

作为改进操作的另一个示例,在处于室温的氦气环境中,可以在打印床处以大于每平方厘米8焦耳并且脉冲宽度大于200纳秒来打印316不锈钢粉末(其熔点为1371摄氏度-1399摄氏度)。可替代地,铝粉(其熔点较低,为659摄氏度)需要较低的通量来打印,但由于其密度低(每个粉末颗粒重量轻),光晕效应被加强。为了减少粉末运动,可以使用大于200纳秒的长脉冲宽度。作为另一个示例,钨粉(具有3399摄氏度的非常高的熔点金属)将最大限度地减小等离子体的形成,但是将需要大量的能量来熔化。相比之下,熔融石英(一种潜在的光学组分)具有非常高的熔点(这会需要大量的激光通量),但是具有相对低的密度,其将受益于大于500纳秒的非常长的脉冲长度,以避免严重的光晕问题。

可以定制脉冲长度,以通过改变向粉末递送能量的方式并且有效控制温度变化和随之产生的应力和/或结晶属性来改善成品打印零件(finishedprintedpart)的机械属性。

图4示出了高通量激光系统400的一个示例,该系统能够产生任意的和可适应的脉冲波形,以最大限度地减小激光损坏的可能性,减少或有效地消除激光等离子体在打印床上的粉末中诱导的“光晕”,并调节增材制造的零件的成品材料属性。任意脉冲激光源401可以由与光纤耦合二极管激光源耦合的任意波形发生器构成。为了效率,激光前置放大器402和功率放大器403以多程(multipass)格式使用,并且存储的能量和尺寸是可调节的以匹配系统要求。法拉第旋转器404、法拉第隔离器和普克尔斯盒405用于防止寄生反射损坏系统的低能量部分,并最大程度地减小输出脉冲的能量损失。激光中继和成像系统406用于最大程度地减小激光空间调制,并且随着能量的增长而扩展射束,帮助避免激光损坏并允许有效提取能量。激光系统的输出407可以被导向打印引擎,并最终导向粉末床。

任意脉冲激光源401包括脉冲电信号源,诸如任意波形发生器或作用在连续激光源(诸如激光二极管)上的等效物。在一些实施例中,这也可以通过光纤激光器或光纤发射激光源来实现,该光纤激光器或光纤发射激光源随后由声光或电光调制器来调制。在一些实施例中,使用普克尔斯盒的高重复率脉冲源可以用于产生任意长度的脉冲序列。

各种前置放大器模块402用于向激光信号提供高增益,而光学调制器和隔离器可以分布在整个系统中,以减少或避免光学损坏,提高信号对比度,并防止对系统400的较低能量部分的损坏。光学调制器和隔离器404可以包括但不限于普克尔斯盒、法拉第旋转器、法拉第隔离器、声光反射器或体布拉格光栅。前置放大器模块402可以是二极管泵浦的或闪光灯泵浦的放大器,并且被配置为单程和/或多程或空腔型架构。可以理解的是,术语前置放大器在这里用来表示相对于功率放大器403(更大)来说不受热限制的放大器(即它们更小)。功率放大器通常会被定位为激光系统中的最终单元(finalunit),并且是最易受到热损坏(包括但不限于热断裂(thermalfracture)或过度热透镜效应(thermallensing))的模块。

前置放大器模块402可以包括在不过度关注能量效率的系统中可用的单程(singlepass)前置放大器。对于能量效率更高的系统,多程前置放大器可以被配置为在进入下一级之前从每个前置放大器402提取许多能量。特定系统所需的前置放大器402的数量由系统要求和每个放大器模块中可用的存储能量/增益来限定。多程预放大可以通过角度复用或偏振切换(例如使用波片或法拉第旋转器)来实现。

可替代地,前置放大器402可以包括具有再生放大器类型配置的空腔结构。虽然由于典型的机械考虑(空腔的长度),这种空腔结构可以限制最大脉冲长度,但是在一些实施例中,可以使用“白盒(whitecell)”空腔。“白盒”是一种多程空腔结构,其中每一次通过(pass)都有一个小的角度偏差。通过提供入口和出口路径,这种空腔可以被设计成在入口和出口之间具有极大数量的通过,从而允许放大器的大增益和有效使用。白盒的一个示例是共焦空腔,射束稍微偏轴注入并且反射镜倾斜,这样在多次通过之后在反射镜上产生环形图案。通过调节注入角度和反射镜角度,可以改变通过次数。

功率放大器模块403还用于提供足够的存储能量以满足系统能量要求,同时支持足够的热管理,以使得无论它们是二极管泵浦的还是闪光灯泵浦的,都能够以系统所需的重复率运行。

经放大的激光束的空间和时间幅度难以控制。激光放大器系统的几乎每个方面都会对激光束产生负面影响,包括:光学像差、热致波前误差、硬件振动、热双折射偏振损失、温度相关增益、激光脉冲与其自身的干涉、来自激光器内表面的经放大的反射以及许多其他因素。所有这些影响都会降低传播射束的空间和/或时间均匀性。一般来说,激光应用需要一致性和高亮度。一种解决方案是尝试将上述所有像差设计到系统之外,以获得衍射受限的射束,该射束随后可以聚焦成非常小的光斑(spot)或者成像到递送位置。这是一个非常困难的问题,通常导致较低的效率,并且在成像的情况下仍然经常产生不完美的幅度控制。另一种方法是射束均匀化(beamhomogenization),这是通过实质上产生许多射束样本并在近场中使它们叠加来实现的。这种方法增加了射束的发散度,并增加了可实现的最小光斑尺寸,但产生了根据所需在近场或远场中实现标称平顶轮廓射束的好处。这种方法的难点在于激光“散斑(speckle)”的存在,它实质上是所有射束样本的干涉峰和干涉谷。这种散斑导致激光系统本身的问题,因为强度尖峰会损坏光学器件,并且还会导致用于曝光、切割、焊接、接合或粉末床熔融增材制造的激光使用点处的通量不均匀。

通过及时“摆动(wiggling)”散斑来对抗激光“散斑”的几种方法包括射束偏转器(声光、电光、机械)、rf相位调制器和波分复用。另外,可以通过增加光谱带宽、增加角度含量、甚至通过多个不相关的源的强力(bruteforce)(这些可以一起减小散斑的对比度并提高整个激光系统的鲁棒性和有效性)来减小激光束本身的空间或时间相干性。

功率放大器的热管理可以在放大器的几何形状(棒、板条(slab)、盘(disk))、冷却方向(边缘冷却、表面冷却)和冷却介质(固体传导、液体或气体)方面包括许多实施例。在一个实施例中,板条放大器传输表面的流体冷却可以提供实现高平均功率的可扩展方法。用于打印的激光系统的一个特征是激光在打印机图像平面上的一致性和均匀性的重要性。流体可以是对激光波长透明的任何类型。在激光波长在900nm和1100nm之间的情况下,可以使用流体,诸如硅油、水、蒸馏水、惰性(noble)或惰性(inert)气体(诸如氦气)或其他气体(诸如h2、n2、o2或co2)。气体冷却方法的另一个好处是,气体的湍流可以通过使“散斑”及时移动来增强激光束的均匀性(减少散斑),从而提高打印性能,并保护下游光学器件免受可能导致激光损坏的高峰值强度的影响。

功率放大器模块403可以被配置为单程和/或多程或空腔型架构。放大器模块可以包括在不过度关注能量效率的系统中可用的单程放大器。对于能量效率更高的系统,多程放大器可以被配置为在进入下一级之前从每个放大器提取许多能量。特定系统所需的放大器的数量由系统要求和每个放大器模块中可用的存储能量/增益来限定。多程预放大可以通过角度复用、偏振切换(波片、法拉第旋转器)来实现。

可替代地,功率放大器403可以包括具有再生放大器类型配置的空腔结构。如关于前置放大器模块402所讨论的,在一些实施例中,白盒空腔可以用于功率放大403。

可以理解的是,通过增加更多的前置放大器和具有适当的热管理和光隔离的放大器,可以在该架构中缩放激光通量和能量。

受益于前述描述和相关联附图中呈现的教导的本领域技术人员将会想到本发明的许多修改和其他实施例。因此,应当理解,本公开不限于所公开的特定实施例,并且修改和其他实施例被认为被包括在所附权利要求的范围内。还应当理解,本发明的其他实施例可以在没有本文具体公开的元素/步骤的情况下实施。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1