1.本发明属于电力作业攀爬机器人技术领域,具体涉及一种具备在线螺栓复紧功能的检修机器人。
背景技术:2.电力的稳定、安全是促进各行各业发展的基本保障。在我国,如图16所示的电力角钢塔数量多、分布广,且长期显露于野外环境甚至多尘强风高湿的恶劣环境下;这使得在后续检修维护过程中,维护人员需要登高作业,并对电力角钢塔处连接螺栓进行复紧稳定,不仅危险系数高,劳动强度高,且滞空时间长,极易造成工作人员体力透支,从而进一步危害工作人员的身体健康,同时维护方式显然效率极其低下。是否能够研发出一种用于电力角钢塔或其他高空作业所用的检修机器人,从而能实现全高空作业下的螺栓复紧作业需求,为本领域近年来所亟待解决的技术难题。
技术实现要素:3.本发明的目的是克服上述现有技术的不足,提供一种体积更为小巧紧凑的具备在线螺栓复紧功能的检修机器人,其具备更高的工作可靠性和稳定性,可确保实现其沿电力角钢塔的攀爬过程中的力封闭效果和形状封闭效果,并通过搭载螺栓复紧装置及套筒辅助更换匣,从而能够在确保安全施工的前提下,实现全高空作业下的套筒在线更换功能,最终大大节省人力巡检成本,提高检修效率,并保障输电系统安全可靠运行。
4.为实现上述目的,本发明采用了以下技术方案:
5.一种具备在线螺栓复紧功能的检修机器人,其特征在于:包括主机以及布置于主机上的角钢夹持组件;沿角钢主材长度方向,所述角钢夹持组件为两组以上且在主机上依序布置,各角钢夹持组件可在直线驱动部的驱动作用下产生沿角钢主材长度方向的直线往复动作;
6.所述角钢夹持组件包括固定座,固定座上布置用于抵紧角钢主材外壁或棱线的抵压部以及用于沿角钢主材横截面方向产生收拢夹持动作的夹持部,夹持部与抵压部彼此相向施力从而夹紧角钢主材;所述夹持部包括两根对称的爪杆,爪杆的首端构成夹紧端,各爪杆的尾端分别穿过一组摆动导向套,从而使相应爪杆可沿配套的摆动导向套的轴向作直线往复动作,摆动导向套再通过铅垂铰接座铰接在固定座上;夹持部还包括分别水平设置在爪杆尾端上方及下方的安装板和推拉板,以安装板和推拉板的相邻板面为工作面,安装板的工作面处凹设有定向槽,定向槽外形呈由固定座后端向固定座前端口部逐渐外扩的“八”字状,推拉板的工作面上凹设有“一”字状的引导槽,爪杆的尾端布置铅垂推拉轴,铅垂推拉轴的两轴端分别配合所述定向槽与引导槽,从而使得铅垂推拉轴的两轴端可在所述定向槽与引导槽内作同步的滑轨导向动作;推拉板通过水平驱动组件驱动从而产生垂直铅垂推拉轴方向的水平往复动作,且引导槽的槽长方向相交于推拉板的水平动作方向;所述爪杆包括通过铅垂轴彼此铰接的后杆体和前杆体,前杆体的首端构成所述夹紧端;摆动导向套上
贴附式的固定有限位弹片,所述限位弹片的首端伸出摆动导向套且沿摆动导向套径向向爪杆处弯折,直至抵紧在爪杆外壁处,从而将爪杆弹性压紧在摆动导向套筒壁上;前杆体的尾端对应限位弹片的弯折端而凹设有缺口,在铅垂轴露出摆动导向套的筒腔外时,该弯折端能在限位弹片弹性力作用下卡入缺口内,此时前杆体和后杆体之间角度大于180
°
;前杆体内侧壁布置锚点,复位拉簧一端固接在该锚点处,另一端固接在铅垂轴上;
7.主机首端处布置有用于复紧螺栓的螺栓复紧装置,该螺栓复紧装置包括延伸臂以及固定于延伸臂上的工作头,所述延伸臂包括固定在主机上的底部框架,底部框架上安装用于驱动工作头产生旋转动作的旋转组件以及用于驱动工作头产生定点操作的平面位移组件,其中:
8.旋转组件:包括可在底部框架上产生回转动作的旋转座,旋转座的回转轴线垂直角钢主材的长度方向,且该回转轴线位于角钢主材棱边所在的对称面上;旋转座由旋转动力源驱动其产生指定动作;
9.平面位移组件:包括位移方向彼此垂直的x轴位移机构和y轴位移机构;所述x轴位移机构包括x轴机架以及可沿x轴机架长度方向产生往复直线动作的x轴动块,x轴动块的动作方向与旋转座的回转轴线形成四十五度夹角且该夹角开口指向角钢主材所在方向;所述y轴位移机构包括y轴机架以及可沿y轴机架长度方向产生往复直线动作的y轴动块,y轴机架与x轴动块间彼此固接;
10.工作头:包括打击座以及安装于打击座首端的用于定位和转动套筒的打击锚杆,所述打击锚杆的首端外形轮廓与套筒处预设的拆装孔的外形轮廓相匹配,且打击锚杆的首端与拆装孔间形成可拆装的弹性卡接或螺纹配合关系;所述打击座固定在y轴动块上,且打击座内布置打击电机从而带动打击锚杆产生绕套筒轴线的回转动作;
11.所述主机上还固定有便于与工作头间实现高空套筒更换操作的套筒辅助更换匣,且套筒辅助更换匣与螺栓复紧装置均固定于主机的首端处;所述套筒辅助更换匣包括匣体,匣体上设置可供单个套筒放入的容纳孔,容纳孔为两组以上且沿既定方向依序布置;该辅助更换匣还包括杆长方向平行容纳孔径向的解锁拉杆,匣体在容纳孔旁侧处设置有连通容纳孔的导向腔或导向轨,解锁拉杆位于导向腔内或导向轨上从而可产生沿容纳孔布置方向的往复行进动作,该辅助更换匣还包括用于驱动解锁拉杆产生上述动作的动力源;解锁拉杆的朝向容纳孔孔腔的一侧凸设有限位凸起;限位凸起伸入容纳孔孔腔内,并与套筒处预设的定位凹口间形成限制套筒产生上行动作的止口配合;当解锁拉杆产生往复行进动作时,同一时刻有且仅有一组限位凸起和相应定位凹口能彼此脱开,从而解锁该定位凹口所对应的套筒。
12.优选的,所述打击锚杆的首端为匹配拆装孔外形的四方棱柱状,在该首端的侧壁处凹设有定位销孔,定位销孔内布置可沿打击锚杆径向产生弹性伸缩动作的弹性销,从而与拆装孔孔壁处的槽口间形成弹性卡接配合;x轴机架上回转配合有x轴丝杆,x轴丝杆上螺纹配合有x轴动块;y轴机架上回转配合有y轴丝杆,y轴丝杆上螺纹配合有y轴动块;x轴丝杆和y轴丝杆均分别通过一组同步电机驱动从而产生相应回转动作;所述旋转动力源为旋转电机,旋转座回转配合在底部框架处的定位支架上,并通过蜗轮与旋转电机输出轴处的蜗杆间形成动力传递配合。
13.优选的,所述匣体包括长方盒体状的外壳体以及布置于外壳体内的安装基板,容
纳孔沿外壳体依序均布;所述解锁拉杆为长方杆体状,且解锁拉杆杆身与容纳孔孔腔间存有交集,解锁拉杆上对应各套筒而布置用于避让套筒上行路径的避让弧槽;沿解锁拉杆的杆长方向,各相邻避让弧槽之间区域形成所述限位凸起,且各限位凸起的宽度依序增大或依序减小,以确保同一时刻有且仅有一组限位凸起和相应定位凹口能彼此脱开;所述安装基板水平布置从而将外壳体的盒腔分隔为上盒腔和下盒腔;外壳体的盒盖处贯穿布置安装孔,该安装孔的孔壁构成容纳孔孔壁,安装基板的上板面构成容纳孔孔底,最终形成沉孔状的容纳孔;解锁拉杆沿上盒腔延伸并与各容纳孔内的相应套筒间形成止口配合。
14.优选的,所述动力源为电动推杆,动力源固定于安装基板下板面处,动力源的伸缩轴与解锁拉杆的动力端通过连接块彼此固接;所述解锁拉杆上布置有感应点,所述感应点数目与套筒数目相对应,且感应点之间距离等于相邻套筒间距;用于监控感应点所在位置的光电开关布置在匣体处,且光电开关的感应面位于感应点的动作路径上。
15.优选的,所述直线驱动部包括安装在主机上的滑移电机以及与滑移电机的输出轴同轴布置的滑移丝杆,滑移丝杆回转配合在主机上且杆长方向平行主机长度方向,固定座上布置滑移套从而与滑移丝杆间形成丝杆螺母结构;滑移丝杆的两侧分别布置一组滑移轨道,各角钢夹持组件处固定座上均布置有滑移块,所述滑移块与滑移轨道间形成导向方向平行主机长度方向的滑移导向配合。
16.优选的,所述限位弹片外形呈l型板状,摆动导向套外形呈四方套筒状,从而配合横截面呈四方形的爪杆;以摆动导向套的平行铅垂轴的外壁为配合壁,水平板段贴靠在配合壁上,且该水平板段上贯穿布置贯通孔;轴向拉簧一端固定在水平板段的尾端处;轴向拉簧的另一端沿水平板段长度方向向前延伸,并穿过贯通孔后从而固定在配合壁上;所述贯通孔为孔型长度方向平行水平板段长度方向的腰形孔;水平板段的两侧分别布置一组径向拉簧,径向拉簧一端固定在摆动导向套上的垂直铅垂轴的相应侧壁处,另一端向水平板段的同侧延伸并固定在该侧处。
17.优选的,水平板段的尾端上翘形成铰接耳,配合壁处凸设有穿过所述贯通孔的固定柱,轴向拉簧两端分别固定在铰接耳与固定柱上;水平板段的两侧布置有支耳,摆动导向套上的垂直铅垂轴的两侧壁均布置有锚柱,从而用于固定所述径向拉簧。
18.优选的,所述铅垂推拉轴为两根且同轴的分置于爪杆尾端的上部及下部处;两根铅垂推拉轴的相应轴端布置有便于与所述定向槽及引导槽间形成滚动配合的滚动轴承;所述“一”字状的引导槽由两组水平子槽体沿推拉板长度方向依序排布形成,每组水平子槽体对应配合位于爪杆尾端处的一组铅垂推拉轴。
19.优选的,所述水平驱动组件包括推拉丝杆,推拉丝杆与推拉板配合形成丝杆滑块机构,推拉丝杆水平向固定座后方延伸并与推拉电机的输出轴间构成动力配合。
20.优选的,所述抵压部包括包括槽长方向铅垂布置且槽口朝向角钢主材的棱线所在方向的v型块,v型块的槽底线构成用于配合角钢主材的棱线的配合线,v型块的两槽面构成用于配合角钢主材的两槽面的配合面;所述v型块布置于爪杆所围合形成的区域内;抵压部还包括用于驱动v型块产生相对角钢主材的行进及相离动作的驱动机构,驱动机构包括水平布置在v型块槽背处的两组螺套,各螺套内均同轴的螺纹配合一组螺杆,两组螺杆沿角铁主材长度方向依序布置且位于同一铅垂面上;两组螺杆的动力端通过同步带配合在同一同步电机上。
21.本发明的有益效果在于:
22.1)、本发明实现对电力角钢塔上的螺栓的复紧作业需求,其具备更高的工作可靠性和稳定性,可确保实现其沿电力角钢塔的攀爬过程中的力封闭效果和形状封闭效果,最终替代人工,实现高精准和高效率的高空作业需求。
23.一方面,按照常规思路,在实际使用夹爪夹持角钢主材时,如遇到更大尺寸的角钢主材,为避让脚钉等路障,通常需要将爪杆沿垂直角钢主材方向作更大幅度的平行位移,也即需要夹爪有更大的抬脚高度,这部分的平行位移量会带来主机或夹爪厚度的增加,随之导致体积上的庞大性。作为本发明的核心部分,本发明的角钢夹持组件采用了关节式的爪杆,搭配限位弹片,从而体积更为小巧,使得主机更为靠近角钢主材,整体的动作稳定性更高。同时,还具备了以下功能:
24.其一,爪杆张开时,具备更大的张开区域。当推拉板推动两组爪杆产生前行动作时,两组爪杆在摆动导向套的作用下产生张开动作,直至铅垂轴露出摆动导向套的筒口;此时,在复位拉簧的作用下,整个前杆体绕铅垂轴产生向后的弯折状况,也即前杆体与后杆体之间角度由原本的180
°
变成大于180
°
,使爪杆的最大张开幅度得以提升。
25.其二,爪杆夹持时,具备更为可靠的力封闭性及形状封闭性。当推拉板回缩并带动两组爪杆产生夹持动作时,限位弹片首先脱离缺口,并随后在爪杆相对摆动导向套的回缩动作下,推动前杆体复位至与后杆体呈现180
°
状态,以便于前杆体缩入摆动导向套的筒腔内。之后,前杆体尾端固定在摆动导向套的筒腔内,并被限位弹片死死的弹性压紧在摆动导向套的筒壁上,确保了定位的可靠性,避免了爪杆与摆动导向套因彼此的滑动配合而可能产生的配合松动和动作不准确问题。前杆体的首端钩在角钢主材的相应槽边处,搭配抵压部,能实现可靠的力封闭性及形状封闭性。
26.另一方面,基于电力角钢塔上螺栓数目的繁多性和型号不一的现状,显然如何实现在线的套筒更换操作成为难题。如每次使用带有不同型号的套筒的攀爬机器人,性价比显然无法满足日常需求。
27.有鉴于此,本发明还提供了一种安装在主机首端的螺栓复紧装置,从而能通过旋转组件与平面位移组件的配合来定位工作头位置,再通过位于工作头上的打击电机来实现任意点位的螺栓复紧功能;而每当螺栓型号产生改变时,也能很轻松的通过对工作头处的打击锚杆处套筒的在线更换,从而实现便捷化和高效化的作业目的。值得注意的是,旋转组件的回转轴线需要位于角钢主材棱边所在的对称面上;这样,45
°
夹角的x轴位移机构能保证始终沿角钢主材的其中一外壁的壁面水平移动,而y轴位移机构又确保了工作头相对待复紧螺栓作相近及相离动作,其可操控性及工作精准性均可达到有效保证。
28.此外的,基于电力角钢塔的特殊的高空遥控使用环境,高空意外坠物极其危险,因此作业的安全性首当其冲。当采用工作头的上述可拆装结构,并在地面进行装配时,安全性固然得以保障,但是工作效率无法达到最大化。本发明抛弃了地面装配方式,转而采用独特的高空装配构造,利用解锁拉杆对容纳孔内套筒的锁止特性,来保证同一时刻有且仅能有一组套筒被解锁,且该组套筒刚好就是工作头所需使用的套筒型号。这样,在实际工作时,本发明就可以完全适用于现有的攀爬机器人,搭配可拆装工作头,从而在确保安全施工的前提下,又同步的实现高空作业时的套筒在线更换功能,工作效率也能达到最大化。
29.2)、轴向拉簧是限位弹片能达到瞬时动作的关键所在:如单纯的只设置径向拉簧
时,限位弹片也能在爪杆作展开动作时逐渐滑入缺口内,但是,实践证明,该种卡入动作是延时而非瞬发的,这在对准度要求极高的高空遥控作业领域内是不允许的,甚至可能因此产生夹持不牢进而引发安全事故。本发明通过增设轴向拉簧,当爪杆作张开动作时,此时爪杆的前杆体不断的伸出摆动导向套,又由于限位弹片的弯折端被紧紧压在前杆体上,因此在摩擦力作用下,限位弹片开始克服轴向拉簧的弹性力而沿贯通孔的孔型长度方向产生随动前行动作。通过预设轴向拉簧的弹力值,当前杆体前行到缺口露出摆动导向套时,此时轴向拉簧的弹性回复力刚好克服上述摩擦力,使得限位弹片瞬间在径向拉簧和轴向拉簧的共同的弹性回复力下回缩,并卡入刚刚露出摆动导向套的缺口内,进而实现瞬时卡入目的。显然的,上述瞬时卡入动作,使得本发明的动作准确度和精准度得到极大提升,显著的提升了爪杆动作的稳定性及可靠性。
附图说明
30.图1和图2为本发明的装配状态图;
31.图3为角钢夹持组件的立体结构示意图;
32.图4为图3的结构爆炸图;
33.图5为图4的结构爆炸图;
34.图6为图3的剖视图;
35.图7为角钢夹持组件处于爪杆张开状态时的结构示意图;
36.图8为图7的剖视图;
37.图9为图7所示状态下,限位弹片与前杆体的配合状态图;
38.图10为限位弹片的立体结构示意图;
39.图11为爪杆处于夹持过程中的结构示意图;
40.图12为爪杆处于夹持状态下的结构示意图;
41.图13为螺栓复紧装置的结构示意图;
42.图14为旋转组件的立体结构示意图;
43.图15为图14所示结构的装配爆炸图;
44.图16为x轴位移组件的立体结构示意图;
45.图17为图16所示结构的装配爆炸图;
46.图18为y轴位移组件和工作头的立体装配示意图;
47.图19为图18所示结构的装配爆炸图;
48.图20为工作头的装配爆炸图;
49.图21为套筒辅助更换匣的工作状态图;
50.图22为图21所示结构去除外壳体后的正视图;
51.图23为图22的俯视图;
52.图24为图22的右视图;
53.图25和图26为解锁拉杆的动作流程图;
54.图27为电力角钢塔的结构示意图。
55.本发明各标号与部件名称的实际对应关系如下:
56.a
‑
角钢主材 b
‑
套筒 b1
‑
定位凹口 b2
‑
拆装孔
57.11
‑
延伸臂 111
‑
底部框架 112
‑
旋转组件
58.112a
‑
旋转座 112b
‑
旋转电机 113
‑
x轴位移机构
59.113a
‑
x轴机架 113b
‑
x轴动块 113c
‑
x轴丝杆
60.114
‑
y轴位移机构 114a
‑
y轴机架 114b
‑
y轴动块
61.114c
‑
y轴丝杆 115
‑
同步电机 12
‑
工作头 12a
‑
打击座
62.12b
‑
打击锚杆 12c
‑
弹性销 12d
‑
打击电机
63.21
‑
匣体 211
‑
容纳孔 21a
‑
外壳体 21b
‑
安装基板
64.22
‑
解锁拉杆 22a
‑
避让弧槽 22b
‑
感应点
65.23
‑
动力源 24
‑
连接块 25
‑
光电开关
66.30
‑
主机 31
‑
滑移轨道 32
‑
滑移块 33
‑
滑移丝杆 34
‑
滑移套
67.35
‑
滑移电机 40
‑
角钢夹持组件 41
‑
固定座 42
‑
抵压部
68.421
‑
v型块 422
‑
螺套 423
‑
螺杆 424
‑
同步带 425
‑
同步电机
69.43
‑
夹持部 431
‑
爪杆 431a
‑
铅垂推拉轴 431b
‑
后杆体
70.431c
‑
前杆体 431d
‑
铅垂轴 431f
‑
缺口
71.432
‑
摆动导向套 432a
‑
配合壁 433
‑
铅垂铰接座 434
‑
安装板
72.434a
‑
定向槽 435
‑
推拉板 435a
‑
引导槽
73.436
‑
限位弹片 436a
‑
水平板段 436b
‑
弯折端 436c
‑
铰接耳
74.437a
‑
复位拉簧 437b
‑
径向拉簧 437c
‑
轴向拉簧
75.438a
‑
推拉丝杆 438b
‑
推拉电机
具体实施方式
76.为便于整体了解,此处对本发明所应用的整个攀爬机器人的具体实施例的结构及工作方式作以下描述:
77.攀爬机器人,此处以如图1
‑
2所示的尺蠖式结构为例:其具体结构包括长条形框架状的主机30,主机30处布置角钢夹持组件40从而实现相对角钢主材的攀登功能,主机30上再布置工作套件从而实现指定功能的检修目的。本发明中,工作套件为如图13
‑
26所示的螺栓复紧装置及套筒辅助更换匣。其中:如图13
‑
20螺栓复紧装置依靠延伸臂11和工作头12搭配形成,从而实现工作套件对如图27所示的电力角钢塔四角处的角钢主材a处螺栓及周边区域处螺栓的在线复紧功能。如图21
‑
26所示的套筒辅助更换匣是基于螺栓复紧装置的辅助设备,因为在电力角钢塔上进行固定用的螺栓和螺母型号不止一种,所以在对其进行螺栓复紧的时候,在不同时刻可能需要进行套筒的随时更换。
78.进一步设计时,本发明的尺蠖式结构包括在主机30的朝向角钢主材的一面布置的滑移轨道31,滑移轨道31上设置可沿滑移轨道31产生直线往返动作的滑移块32;滑移块32上均相应布置角钢夹持组件40,从而可根据控制单元动作而控制角钢夹持组件40产生沿主机30长度方向的往复行进动作。与此同时,主机上30还可布置滑移电机35,从而通过与滑移电机35输出轴同轴的滑移丝杆33,来带动位于角钢夹持组件上的滑移套34产生丝杆螺母动作,进而使得滑移块32可相对滑移轨道31产生导向动作。工作时,两组角钢夹持组件40的其中之一或者两者均可通过滑移块32沿主机30长度方向在滑移轨道31上产生上下滑移动作,从而实现类似尺蠖的动作功能。而当主机30沿角钢主材行进至指定点并停下时,可通过预
先装配在主机30首端或其他部位处的工作套件来实现指定动作。其中:
79.一、螺栓复紧装置
80.图13
‑
20为螺栓复紧装置的结构示意图,从各图中可看出,螺栓复紧装置包括了依序装配的底部框架111、旋转组件112、平面位移组件以及工作头12。
81.底部框架111如图13所示,为常见的固定架构造,目的是衔接旋转组件112与主机30的首端,此处就不再赘述。旋转组件112则参照图13
‑
14,采用蜗轮蜗杆传动副来实现旋转电机112b至旋转座112a的动力传递需求,从而实现在当前根角钢主材棱边所在的对称面上的旋转座112a回转需求;换言之,当仅旋转组件112开始动作时,此时工作头12的在角钢主材左侧的摆动量和在角钢主材右侧的摆动量是一致的,以便于实现基准定位需求,为后续工作头的定点螺栓复紧提供基础保障。
82.如图16
‑
19所示的,装配时,x轴位移机构113包括x轴机架113a以及回转配合在x轴机架113a上的x轴丝杆113c,x轴丝杆113c上再布置x轴动块113b,从而使得x轴动块113b可产生沿旋转座112a的回转轴线的45
°
角方向的直线伸缩动作。由于角钢主材为90
°
角钢,而旋转座112a的回转轴线又位于角钢主材棱边所在的对称面上,因此,x轴动块113b的轴线动作方向实际上是平行角钢主材的其中一侧壁的,因此既保证了工作头12相对螺栓的精准定位效果,又保证了工作头12不会与角钢主材产生动作干涉,一举多得。而对于y轴位移机构114,其与x轴位移机构113相同,也包含了相应的y轴机架114a、y轴丝杆114c及y轴动块114b,y轴机架114a固定在x轴动块113b上,以确保与y轴动块114b相固定的打击座12a的直线行进动作。x轴位移机构113和y轴位移机构114均分别依靠相应的同步电机115驱动。
83.对于工作头12而言,参照图19
‑
20所示的,其实际上是通过同轴布置的打击电机12d和位于打击电机12d输出轴处的打击锚杆12b,来实现固定在打击锚杆12b上的套筒的在线回转动作。套筒b的回转动作,可类似套筒扳手,从而带动位于套筒筒腔内的螺栓产生复紧动作。而每次相对螺栓插拔套筒时,可通过y轴位移机构114来完成;每次在精准定位套筒与螺栓的相对位置时,可依靠旋转组件112和x轴位移机构113共同协同完成。
84.二、套筒辅助更换匣
85.图21
‑
26为套筒辅助更换匣的其中一种具体实施例的结构示意图,也即匣体21为长方体时的具体实施构造。在图21
‑
26中,匣体21包括具备中空盒腔的外壳体21a,外壳体21a的盒腔内布置水平板状的安装基板21b,从而将外壳体21a的盒腔划分为上盒腔和下盒腔两部分。图21中,外壳体21a的盒盖处贯穿布置有三组容纳孔211,三组容纳孔211分别对应m16套筒、m18套筒、m20套筒。各套筒均在外壁处同轴凹设定位凹口b1。在外壳体21a内部有长条形的导向腔,导向腔与上盒腔处容纳孔211连通。解锁拉杆22在导向腔里活动,解锁拉杆22的伸入容纳孔211的部分呈现如图23及图25
‑
26所示的单侧凸出的直角锯齿状,也即形成限位凸起。换句话说,解锁拉杆22的伸入容纳孔211的部分呈现如图23及图25
‑
26所示的单侧凹进的等腰梯形状的避让弧槽22a,相邻避让弧槽22a之间形成上述限位凸起。解锁拉杆22伸出部分的末端也即动力端与动力源23的伸缩轴通过连接块24固定,动力源23即电动推杆。电动推杆固定在安装基板21b的背面,随着电动推杆的输出,伸缩轴的水平移动带动解锁拉杆22产生水平移动。
86.如图23所示,解锁拉杆22的外侧还布置有等间距布置的三个凸出的直角锯齿,从而形成感应点22b;三个凸出的感应点22b分别与光电开关25接触。当电动推杆停止输出,解
锁拉杆22即停止,通过光电开关25与感应点22b的匹配即可知道当前解锁拉杆22所处位置。
87.当电动推杆推杆收缩最小的位置时,解锁拉杆22侧边全部卡住套筒的定位凹口b1里,限制所有套筒运动;
88.如图22
‑
24所示;解锁拉杆22第一次停止时,m20套筒对应解锁拉杆22的最右侧的避让弧槽22a,解锁拉杆22对m20套筒不起限制作用,m20套筒可以取出,其余两个套筒与解锁拉杆22对应的为直边,或者说是限位凸起。同理,如图25
‑
26所示,依次可以对m16套筒、m18套筒进行解锁,保证了同一时刻只有一个套筒可以解锁取出。
89.需要对螺栓进行复紧时,先按使用情况,解锁需要的套筒b,然后将延伸臂11的工作头12对准套筒b后面的拆装孔b2,边缓慢旋转,边向拆装孔b2里推进。工作头12侧面有弹性销12c,拆装孔b2的孔腔内凹设有槽口,弹性销12c与槽口配合后,停止工作头12的旋转运动,延伸臂11带动工作头12携带当前的套筒b脱离匣体21处容纳孔211,进行作业。用完套筒放回时,延伸臂带动工作头使其上的套筒对准匣体21上相应的容纳孔211。解锁拉杆22运动,直到相应的避让弧槽22a所在位置解锁,空出存放路径。将套筒沿存放路径塞入相应容纳孔211后,解锁拉杆22运动,直到相应的容纳孔211重新被锁定。
90.三、角钢夹持组件40
91.角钢夹持组件40的设置目的在于能直接实现相对角钢主材的夹持抱紧和松开功能。在上述结构的基础上,角钢夹持组件40的结构可参照图3
‑
12所示,也即包括固定座41以及布置于固定座41前方的夹持部43和抵压部42。工作时,依靠夹持部43和抵压部42的彼此配合,从而使得本发明能呈抱合式的夹紧在角钢主材上。
92.固定座41的结构如图3
‑
6所示,其起到作为夹持部43和抵压部42的安装载体,以及衔接夹持部43、抵压部42和主机30的功能。在固定座41的背面可设置前述滑移块32,从而与主机30上的滑移轨道31间形成导轨配合关系。
93.实际装配时,抵压部42包括v型块421。v型块421如图3
‑
6所示的呈现一侧开设有v型槽的长方块状。在v型块421的背面凸设有两组并列排布的螺套422,每组螺套422内再分别一一对应的螺纹配合有一组螺杆423,螺杆423回转配合在固定座41上,并依靠以同步电机425及同步带424来实现螺杆423的在线回转动作。当同步电机425动作时,同步电机425通过同步带424驱动螺杆423回转,螺杆423的转动推动螺套422产生轴向往复动作,即可带动与螺套422固接的v型块421产生相对角钢主材的棱线的相近及相离动作。
94.夹持部43的具体构造参照图3
‑
12所示,包括两组彼此对称的爪杆431,两组爪杆431均插接在摆动导向套432内,而摆动导向套432通过铅垂铰接座433固定在固定座41上。组装时,需确保位于爪杆431尾端处的铅垂推拉轴431a的上轴端应当准确配合在定向槽434a内,也即铅垂推拉轴431a处的滚动轴承能准确与定向槽434a的槽壁间形成滚动配合。再后,将推拉块处引导槽435a卡入铅垂推拉轴431a的下轴端处,并向推拉块的孔内穿入推拉丝杆438b。最后,通过推拉电机438c的回转动作带动推拉丝杆438b转动,即可带动推拉块产生相对推拉丝杆438b的往复直线行进动作。推拉板435的直线动作会因铅垂推拉轴431a的存在而带动爪杆431动作,爪杆431的动作轨迹又由安装板434上的“八”字状定向槽434a所决定。具体反应至如图7
‑
12中时,可看出,爪杆431可产生相对角钢主材的张开及夹持动作。
95.实际上,“一”字状的引导槽435a也可以由两组“一”字状的水平子槽体沿推拉板
435长度方向依序组合形成,每组水平子槽体对应配合位于爪杆431尾端处的一组铅垂推拉轴431a,参照图5及图8所示。两组“一”字状的水平子槽体可以是完全处于同一直线上,也可以如图5及图8所示的存在一定的夹角,只需能实现推拉板动作时带动爪杆431产生沿定向槽434a的行进动作即可。
96.在上述结构的基础上,本发明的爪杆431又包括后杆体431b和前杆体431c,而前杆体431c包括v型杆和钩头。工作时,后杆体431b的尾端布置所述铅垂推拉轴431a,后杆体431b的首端与v型杆尾端通过铅垂轴431d彼此铰接,v型杆的首端再与钩头间形成可拆卸式的螺纹配合。与此同时,通过复位拉簧437a的布置,使得在无其他约束的前提下,前杆体431c和相对后杆体431b产生后仰动作,也即前杆体431c和后杆体431b之间夹角形成如图7
‑
8所示的大于180
°
状态。而在针对不同型号的角钢主材时,可通过拆卸位于爪杆431首端处的钩头并更换新尺寸的钩头,从而适配当前型号的角钢主材,操作上灵活度显然更高。同时,又由于更换部位仅为钩头,而需配合摆动导向套432、推拉板435以及限位弹片436等动件的后杆体431b乃至v型杆无需更换,也有效了保证了现场更换的效率性及便捷性,一举多得。
97.在前杆体431c与后杆体431b能够形成上述状态的前提下,本发明在前杆体431c的尾端开设有缺口431f,并在摆动导向套432的配合壁处布置可在径向拉簧437b和轴向拉簧437c作用下产生复合动作的限位弹片436。限位弹片436的外形如图10所示,且装配状态则如图9所示。通过增设轴向拉簧437c,当爪杆431作张开动作时,此时爪杆431的前杆体431c不断的伸出摆动导向套432,此时由于限位弹片436的弯折端436b被紧紧压在前杆体431c上,因此在摩擦力作用下,限位弹片436开始克服轴向拉簧437c的弹性力而沿贯通孔的孔型长度方向产生随动前行动作。通过预设轴向拉簧437c的弹力值,当前杆体431c前行到缺口431f露出摆动导向套432时,此时轴向拉簧437c的弹性回复力刚好克服上述摩擦力,使得限位弹片436瞬间在径向拉簧437b和轴向拉簧437c的共同的弹性回复力下回缩,并卡入刚刚露出摆动导向套432的缺口431f内,进而实现瞬时卡入目的。显然的,上述瞬时卡入动作,使得本发明的动作准确度和精准度得到极大提升,显著的提升了爪杆431动作的稳定性及可靠性。
98.为确保径向拉簧437b和轴向拉簧437c的装配稳定性,如图9所示的,水平板段436a的尾端上翘形成铰接耳436c,配合壁处凸设有穿过所述贯通孔的固定柱,轴向拉簧437c两端分别固定在铰接耳436c与固定柱上。同时,水平板段436a的两侧布置有支耳,摆动导向套432上的垂直铅垂轴431d的两侧壁均布置有锚柱,从而用于固定所述径向拉簧437b。