三维扫描及验证的实时加工路径生成工艺
1.本技术是申请日为2021年12月6日、申请号为2021114753162、名称为实时采集并三维扫描及验证的多轴联动加工设备及方法的分案申请。
技术领域
2.本发明属于3d激光加工技术领域,具体涉及一种三维扫描及验证的实时加工路径生成工艺。
背景技术:3.随着3d激光加工技术的发展,很多产品都采用了3d激光加工的模式进行激光刻蚀加工,具体的,激光与被加工材料相互作用引起物态变化形成的热物理效应,以及各种能量变化产生的综合结果,也就是说,激光束初始经过聚焦透镜后照射在处于焦平面的工件上,使被加工材料表面的温度迅速上升,当温度上升到接近于材料的蒸发温度时,激光对材料的去除加工开始进行,此时固态金属发生强烈的相变,最先金属开始融化,之后一部分开始汽化,随着温度不断上升,金属蒸汽携带着液相物质以极高的速度从液相底部猛烈的喷溅出来,从而将底部新的表面暴露在激光束照射之下,从而持续产生熔化、蒸发与喷溅,因此,通过这种不断的照射、熔化-蒸发、喷溅、照射,直至达到要求的激光刻蚀深度或穿透整个工件材料,与此同时,激光束按照设定的速度和路径移动,可以获得要求的激光刻蚀加工结构。
4.目前,在3d激光加工过程中,一般先获取待加工工件的表面阵列微结构图,然后,再进行虚拟布局和设计形成加工路径,接着,由激光束按设定的加工路径在x、y、z轴所构成坐标系中直线运动或绕着轴线转动,以实施工件表面的加工。
5.显然,若采用上述的加工方式,其存在以下缺陷:1、一旦待加工产品的待加工面形状过于复杂,这样一来,形成表面阵列微结构图的过程也十分复杂,而且需要很长的时间进行数据的整理,然后数据建模形成加工路径,因此,不仅加工效率低,而且还需要一个庞大且复杂的数据库;2、一旦曲面及其特定区域的特征与所提供的数据模型因制造精度原因会存在偏差时,该方法无法及时消除偏差,如直接使用数据模型进行激光加工,上述偏差会直接转换成加工偏差,这样一来,就会大幅度降低加工后工件的合格率。
技术实现要素:6.本发明所要解决的技术问题是克服现有技术的不足,提供一种改进的三维扫描及验证的实时加工路径生成工艺。
7.为解决以上技术问题,本发明采用如下技术方案:一种三维扫描及验证的实时加工路径生成工艺,所采用的实时加工路径生成系统包括前后设置、且固定连接在3d激光加工部件上的第一面阵扫描相机和第二面阵扫描相机,其中所述第一面阵扫描相机所形成的扫描区域和所述第二面阵扫描相机所形成的扫描
区域共用一条界边,所述3d激光加工部件包括固定座、安装在所述固定座上的激光发射器、扫描振镜和合束镜片,且包括以下过程:首先,由第一面阵扫描相机扫描并获取待加工工件表面的面阵式模型数据信息a,在模型数据信息a下形成初始加工路径规划路段;其次,在形成初始加工路径规划路段的同步过程中,由所述扫描振镜、合束镜片及所述第二面阵扫描相机实时数据采集中获取工件表面的面阵式模型数据信息b,其中由模型数据信息b和模型数据信息a进行比对和验证以消除偏差,并形成实时消除偏差路径规划路段;最后,在同步实施初始加工路径规划路段和实时消除偏差路径规划路段的基础上,形成实时加工路径规划路段。
8.优选地,在形成实时消除偏差路径规划路段之前,还设有参考加工路径规划段,其由工件表面变化曲线获得,且根据参考加工路径规划段实施第一面阵扫描相机进行面阵式模型数据信息a的获取。
9.根据本发明的一个具体实施和优选方面,加工工件表面形成多个连续的待加工面,第一面阵扫描相机所形成的扫描区域和第二面阵扫描相机所形成的扫描区域分别位于相邻两个待加工面上或者位于同一个待加工面上。满足预先扫描的要求,同时也要最佳降低数据存储和计算需要的配件要求,也就是说,不仅加快实时加工路径规划路段的形成效率,而且降低加工成本。
10.优选地,激光发射器所形成的激光加工区位于所述第二面阵扫描相机所形成的扫描区域内,且所述激光加工区的中心与扫描区域的中心对齐设置。这样便于精准的实施工件表面的激光加工。
11.优选地,第一面阵扫描相机和所述第二面阵扫描相机安装在所述固定座上,所述模型数据信息b由所述第二面阵扫描相机、所述扫描振镜、及所述合束镜片同步运动获取。
12.根据本发明的又一个具体实施和优选方面,第二面阵扫描相机位于合束镜片的下方,且形成有效的扫描区域能够覆盖穿过合束镜片的激光束。这样在实施激光加工的同时,能够及时通过第二面阵扫描相机所获得的模型数据信息调节激光发射器的角度和位置,从而实施精准加工。
13.优选地,第二面阵扫描相机所形成扫描区域的中心线与经过所述扫描振镜的中心区域的光束垂直设置。这样设置的好处就是:不管绕着z轴转动至任何角度均能够保持相对垂直,使得第二面阵扫描相机所获取的模型数据信息更加准确,进一步减小偏差,以达到最佳的消除偏差效果。
14.第一面阵扫描相机与激光发射器并排设置,且第一面阵扫描相机所形成的扫描区域的中心线与经过所述扫描振镜的中心区域的光束平行设置。这样一来,便于消除偏差后实施平移式激光加工。
15.此外,第一面阵扫描相机的扫描窗口与激光发射器的光束发射窗口共面齐平设置。
16.由于以上技术方案的实施,本发明与现有技术相比具有如下优点:本发明实时采集并在模型数据信息b和模型数据信息a的实时比对和验证下消除偏差并形成实时加工路径,不仅能够大幅度缩短数据处理时间、也降低数据处理需要的硬
件和软件的造价,而且在消除偏差的模式下,能够准确的实施3d激光加工,以大幅度提升工件加工的合格率。
附图说明
17.图1为本发明的多轴联动加工设备的结构示意图;图2为本发明的3d激光加工原理示意图;图3为图2中所对应的3d激光加工工件的俯视示意图;图4为本发明3d激光加工完成后工件的俯视示意图;其中:1、加工平台;2、3d激光加工部件;20、固定座;21、激光发射器;22、扫描振镜;23、合束镜片;3、加工路径规划部件;31、第一面阵扫描相机;32、第二面阵扫描相机;4、多轴运动部件;40、直线运动单元;41、转动单元;p、参考加工路径段;g、工件;q1,q2、扫描区域;q、阴影部分。
具体实施方式
18.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图与具体实施方式对本发明做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
19.在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、
ꢀ“
厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
20.此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
21.在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
22.在发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
23.需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以
是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
24.如图1所示,按照本实施例的实时采集并三维扫描及验证的多轴联动加工设备,其包括加工平台1、3d激光加工部件2、加工路径规划部件3(实时加工路径生成工艺)、以及多轴运动部件4。
25.加工平台1水平设置,同时,在加工平台1上形成以加工平台1长度方向延伸的x轴、沿着加工平台1厚度方向延伸的y轴、沿着加工平台1宽度方向延伸的z轴的三轴坐标系。
26.工件g自长度方向沿着x轴方向延伸、宽度方向沿着z轴方向延伸、厚度方向沿着y轴方向延伸的定位在加工平台1上。
27.3d激光加工部件2包括设置在z轴方向远离原点的端部相固定连接的固定座20、安装在固定座20上的激光发射器21、扫描振镜22和合束镜片23。
28.加工路径规划部件3(实时加工路径生成工艺)与3d激光加工部件2同步运动,且加工路径规划部件3包括沿着加工路径移动方向前后设置且固定连接在固定座20上的第一面阵扫描相机31和第二面阵扫描相机32。
29.本例中,第一面阵扫描相机31用于扫描并预先获取工件待加工面的模型数据信息a,第二面阵扫描相机32用于实时获取工件加工面的模型数据信息b。
30.结合图2所示,第一面阵扫描相机31与激光发射器21并排设置,且第一面阵扫描相机31所形成的扫描区域的中心线与经过扫描振镜22的中心区域的光束平行设置。这样一来,便于消除偏差后实施平移式激光加工。
31.具体的,第一面阵扫描相机31的扫描窗口与激光发射器21的光束发射窗口共面齐平设置。
32.第二面阵扫描相机32位于合束镜片23的下方,且形成有效的扫描区域能够覆盖穿过合束镜片23的激光束。这样在实施激光加工的同时,能够及时通过第二面阵扫描相机所获得的模型数据信息调节激光发射器的角度和位置,从而实施精准加工。
33.第二面阵扫描相机32所形成扫描区域的中心线与经过扫描振镜22的中心区域的光束垂直设置。这样设置的好处就是:不管绕着z轴转动至任何角度均能够保持相对垂直,使得第二面阵扫描相机所获取的模型数据信息更加准确,进一步减小偏差,以达到最佳的消除偏差效果。
34.结合图3所示,第一面阵扫描相机31所形成的扫描区域q1和第二面阵扫描相机32所形成的扫描区域q2共用一条界边。这样能够最佳的实现模型数据信息b和模型数据信息a的整合,也进一步降低数据处理所需要硬件和软件的要求,节约成本。
35.本例中,模型数据信息b由第二面阵扫描相机32、扫描振镜22、及合束镜片23同步运动获取。这样能够准确的进行3d曲面的数据实时采集、验证和加工。
36.此外,模型数据信息b和模型数据信息a的实时比对和验证下消除偏差并形成实时加工路径,固定座20在多轴运动部件4驱使下,激光发射器21沿着实时加工路径实施3d激光加工工件待加工面。
37.同时,上述的多轴联动加工设备还包括移动路径输入模块,其中待加工工件自表面形成一组参考加工路径段p,移动路径输入模块用于参考加工路径段p的信息输入,第一
面阵扫描相机31按信息输入预先获取模型数据信息a。在参考加工路径段p的输入下,便于第一面阵扫描相机31的运动路径的控制,从而进一步提升激光加工的效率。
38.多轴运动部件4包括分别沿着x、y、z轴向运动的直线运动单元40、绕着z轴转动的转动单元41,其中转动单元41绕着w方向转动。
39.加工工件表面形成多个连续的待加工面,第一面阵扫描相机31所形成的扫描区域和第二面阵扫描相机32所形成的扫描区域位于同一个待加工面上。满足预先扫描的要求,同时也要最佳降低数据存储和计算需要的配件要求,也就是说,不仅加快实时加工路径规划路段的形成效率,而且降低加工成本。
40.激光发射器21所形成的激光加工区位于第二面阵扫描相机32所形成的扫描区域内,且加工区的中心与扫描区域的中心对齐设置。这样便于精准的实施工件表面的激光加工。
41.结合图4所示,本实施例的实施过程如下:s1、工件放置加工工件长度方向沿着x轴方向延伸、宽度方向沿着z轴方向延伸、厚度方向沿着y轴方向延伸的定位在加工平台1上;s2、加工路径规划首先,由工件表面变化曲线获得参考加工路径段p, 多轴运动部件4在x、y、z轴及w方向驱动3d激光加工部件2沿着参考加工路径段p运动,此时,第一面阵扫描相机31进行面阵式模型数据信息a的获取,在模型数据信息a下形成初始加工路径规划路段;其次,在形成初始加工路径规划路段的同步过程中,由扫描振镜22、合束镜片23及第二面阵扫描相机32实时数据采集中获取工件表面的面阵式模型数据信息b,其中由模型数据信息b和模型数据信息a进行比对和验证以消除偏差,并形成实时消除偏差路径规划路段;最后,在同步实施初始加工路径规划路段和实时消除偏差路径规划路段的基础上,形成实时加工路径规划路段;s3、激光加工多轴运动部件4驱动3d激光加工部件沿着实时加工路径规划路段由后向前逐步对工件表面进行激光加工,以完成图4中阴影部分q的连续加工。
42.综上,本实施例的优势如下:1)、在获取待加工产品曲面及其特定区域的特征与所提供的模型数据和同步实时采集的模型数据的相互验证并形成消除偏差的数据模型,同时根据数据模型同步生成实时加工路径,因此,能够准确的实施3d激光加工,以大幅度提升工件加工的合格率;2)、在两个扫描区域共用一条界边的前提下,不仅满足了预先扫描的路径规划,而且能够大幅度缩短数据处理时间、也降低数据处理需要的硬件和软件的造价,也就是说,不仅加快实时加工路径规划路段的形成效率,而且降低加工成本;3)、在扫描振镜、合束镜片及第二面阵扫描相机三者配合下,能够更准确地获取模型数据信息b,而且在模型数据信息b和模型数据信息a的组合下消除偏差,以获得实时消除偏差路径规划路段,从而获得精确的实时加工路径规划路段;4)、在实施三维扫描之前,输入参考加工路径段的模型数据信息后,更加方便模型
数据信息a快速且准确的获取。
43.以上对本发明做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。