本发明涉及汽车部件等中应用的高强度钢板及其制造方法。
背景技术:
作为汽车部件等的原材,从原材的薄壁化所带来的部件轻量化等观点考虑,优选使用高强度钢板。例如,骨架用部件、耐碰撞用部件等为了确保乘务人员的安全而要求在碰撞时不易发生变形,即要求高屈服比。另一方面,作为这些部件的原材,为了在不发生破裂的情况下稳定地进行冲压成形,期望延伸凸缘性优良的高强度钢板。针对这样的要求,到目前为止已公开了各种钢板及其制造技术。
在专利文献1中公开了含有合计为0.01%以上的nb、ti且以再结晶率80%以上的铁素体作为主相的涂装烧结硬化性优良的高强度钢板及其制造方法。
另外,在专利文献2中公开了含有20~50%的未再结晶铁素体作为钢组织的耐碰撞特性和延伸凸缘性优良的高强度钢板及其制造方法。
在专利文献3中公开了添加v、ti、nb中的一种或两种以上、主相为铁素体或贝氏体且将晶界处的铁碳化物的析出量限制为一定以下并且将该铁碳化物的最大粒径控制为1μm以下的延伸凸缘性(扩孔性)优良的热镀高强度钢板及其制造方法。
现有技术文献
专利文献
专利文献1:日本专利第4740099号公报
专利文献2:日本专利第4995109号公报
专利文献3:日本特开平6-322479号公报
技术实现要素:
发明所要解决的问题
但是,专利文献1记载的技术中,添加0.005%以上的ti是必须的。另外,专利文献1中,没有得到具有高屈服比的钢板。专利文献2记载的技术中,控制nb和ti添加量及退火温度而有意地活用了未再结晶铁素体,但未再结晶铁素体与再结晶铁素体相比,延展性低,因此,没有得到具有高屈服比并且兼顾优良的延伸凸缘性的高强度钢板。专利文献3记载的技术中,认为没有得到具有高屈服比并且兼顾优良的延伸凸缘性的高强度钢板。
鉴于上述情况,本发明为了解决上述问题而完成,其目的在于得到具有高屈服比和优良的延伸凸缘性的高强度钢板。
用于解决问题的方法
本发明人为了解决上述的问题而进行了深入研究。结果发现,在以铁素体作为主体的钢组织中,将铁素体的平均结晶粒径微细化至一定以下、并且对nb碳化物的体积率和粒径适当进行控制是重要的。另外发现,为此,调节成预定的成分组成、并且将热轧后的卷取温度、退火的均热温度和各温度范围内的保持时间控制为适当范围是有效的。
本发明是基于以上的见解而完成的,其主旨如下所述。
[1]一种高强度钢板,其中,成分组成以质量%计含有c:0.02%以上且低于0.10%、si:低于0.10%、mn:低于1.0%、p:0.10%以下、s:0.020%以下、al:0.01%以上且0.10%以下、n:0.010%以下、nb:0.005%以上且低于0.070%,余量由fe和不可避免的杂质构成,钢组织以面积率计包含铁素体:85%以上、珠光体:0~15%、马氏体、残余奥氏体和渗碳体的合计:0~3%,上述铁素体的平均结晶粒径为15.0μm以下,nb碳化物的粒径为5~50nm,nb碳化物的析出量以体积率计为0.005~0.050%。
[2]如[1]所述的高强度钢板,其中,上述成分组成进一步以质量%计含有cr:0.3%以下、mo:0.3%以下、b:0.005%以下、cu:0.3%以下、ni:0.3%以下中的任意一种或两种以上。
[3]如[1]或[2]所述的高强度钢板,其中,在高强度钢板的表面具有热镀锌层。
[4]如[3]所述的高强度钢板,其中,上述热镀锌层为合金化热镀锌层。
[5]一种高强度钢板的制造方法,其中,对具有[1]或[2]所述的钢组成的钢片进行热轧后,在精轧温度~650℃的温度范围内的保持时间为10秒以下的条件下对热轧钢板进行冷却,在500~700℃下卷取后,对热轧钢板进行冷轧,将冷轧钢板在连续退火炉中实施在升温时的650~750℃的温度范围内的保持时间为15秒以上、在该保持后在均热温度为760~880℃、均热时间为120秒以下的条件下进行均热的退火。
[6]如[5]所述的高强度钢板的制造方法,其中,在上述退火后,在高强度钢板的表面施加热镀锌层。
[7]如[6]所述的高强度钢板的制造方法,其中,对上述热镀锌层实施合金化处理。
发明效果
本发明中,将成分组成、热轧后的卷取条件、退火的均热温度和各温度范围内的保持时间等的制造条件适当控制。通过该控制,得到本发明作为目的的钢组织,结果,能够稳定地制造汽车部件等用途所要求的高屈服比且具有优良的延伸凸缘性的高强度钢板。利用本发明的高强度钢板,能够实现汽车的进一步轻量化,本发明在汽车、钢铁业界中的利用价值极大。
具体实施方式
以下,对本发明的实施方式进行说明。需要说明的是,本发明不限定于以下的实施方式。
首先,对本发明的高强度钢板的概要进行说明。
本发明的高强度钢板具有330mpa以上且低于500mpa的拉伸强度、0.70以上的屈服比、130%以上的扩孔率。由于扩孔率为130%以上,本发明的高强度钢板具有优良的延伸凸缘性。
形成含有0.005%以上的nb的成分组成,并形成由必需的铁素体和任意的珠光体等构成、该铁素体的平均结晶粒径为15.0μm以下、nb碳化物的粒径为5~50nm、nb碳化物的析出量以体积%计为0.005~0.050%的钢组织,由此得到上述的具有高屈服比和优良的延伸凸缘性的高强度钢板。在本发明中,nb碳化物也包含nb碳氮化物。
另外,为了使铁素体平均结晶粒径和nb碳化物满足期望的条件,不仅是成分组成,制造条件也是重要的。具体而言,在热轧后的冷却中使精轧温度~650℃的温度范围内的保持时间为10秒以下,使卷取温度为500~700℃,在退火的加热中使650~750℃的温度范围内的保持时间为15秒以上、接着在760~880℃的均热温度下保持120秒以下是重要的。在卷取后的冷却中使nb碳化物均匀微细地析出,冷轧后在退火中使铁素体在较低的温度下再结晶,由此生成微细的铁素体,认为能够抑制均热时的铁素体晶粒和nb碳化物的粗大化。
关于屈服强度和拉伸强度,以使拉伸方向与轧制方向垂直的方式裁取jis5号拉伸试验片,通过依据jisz2241的拉伸试验来求出。扩孔率通过jisz2256所述的扩孔试验来求出。
基于以上的见解完成的本发明的高强度钢板具有汽车部件等的原材所要求的高屈服比、优良的延伸凸缘性。
接着,对本发明的成分组成的限定理由、钢组织的限定理由和制造条件的限定理由进行说明。在以下的说明中,表示成分的含量的“%”是指“质量%”。
(1)成分组成
本发明的高强度钢板以质量%计含有c:0.02%以上且低于0.10%、si:低于0.10%、mn:低于1.00%、p:0.10%以下、s:0.020%以下、al:0.01%以上且0.10%以下、n:0.010%以下、nb:0.005%以上且低于0.070%。另外,本发明的高强度钢板可以进一步以质量%计含有cr:0.3%以下、mo:0.3%以下、b:0.005%以下、cu:0.3%以下、ni:0.3%以下中的任意一种或两种以上作为任选成分。上述以外的余量为fe和不可避免的杂质。
c:0.02%以上且低于0.10%
c形成nb碳化物或者使珠光体、马氏体增加,因此是对屈服强度和拉伸强度的增加有效的元素。c含量低于0.02%时,得不到期望的nb碳化物量,因此,得不到本发明作为目的的拉伸强度。c含量为0.10%以上时,nb碳化物的粒径和铁素体粒径粗大化,或者珠光体、马氏体过度生成,因此,屈服比和延伸凸缘性降低。因此,c含量设定为0.02%以上且低于0.10%。优选设定为0.02%以上。优选设定为0.06%以下。
si:低于0.10%
si一般通过铁素体的固溶强化而对于增加屈服强度和拉伸强度是有效的。但是,添加si时,由于加工硬化能力的显著提高而使拉伸强度的增加量比屈服强度大,屈服比降低,表面性状发生劣化。因此,si含量设定为低于0.10%。需要说明的是,si含量的下限没有特别限定,si含量越少越优选。原理上,si含量可以为0%,但在工业上大多含有0.001%以上。
mn:低于1.0%
mn通过铁素体的固溶强化而对于增加屈服强度和拉伸强度是有效的。mn含量为1.0%以上时,钢组织中的马氏体百分率增加,因此,拉伸强度过度增大,得不到本发明作为目的的拉伸强度,因此屈服比和延伸凸缘性降低。因此,mn含量设定为低于1.0%。优选设定为0.2%以上。优选设定为0.8%以下。
p:0.10%以下
p通过铁素体的固溶强化而对于增加屈服强度和拉伸强度是有效的。因此,在本发明中,可以适当含有p。但是,p含量超过0.10%时,由于铸造偏析、铁素体晶界偏析而使铁素体晶界脆化,延伸凸缘性降低。因此,p含量设定为0.10%以下。原理上,p含量可以为0%,但优选设定为0.01%以上且0.04%以下。
s:0.020%以下
s是作为杂质而不可避免地含有的元素。由于mns等夹杂物的形成而使延伸凸缘性、局部延伸性降低,因此,优选尽可能地降低s含量。在本发明中,s含量设定为0.020%以下。优选设定为0.015%以下。原理上,s含量可以为0%,但在工业上大多含有0.0001%以上。
al:0.01%以上且0.10%以下
al是用于精炼工序中的脱氧、并且用于将固溶n以aln的形式固定而添加的。为了得到充分的效果,需要将al含量设定为0.01%以上。另外,al含量超过0.10%时,aln大量析出,延伸凸缘性降低。因此,al含量设定为0.01%以上且0.10%以下。优选设定为0.01%以上且0.07%以下。另外,进一步优选设定为0.01%以上且0.06%以下。
n:0.010%以下
n是在铁水的精炼工序之前不可避免地混入的元素。n含量超过0.01%时,在铸造时析出nb碳化物后,在板坯加热时,nb碳化物也不溶解而以粗大的碳化物的形式残留,因此导致铁素体平均结晶粒的粗大化。因此,n含量设定为0.010%以下。原理上,n含量可以为0%,但在工业上大多含有0.0001%以上。
nb:0.005%以上且低于0.070%
nb是有助于铁素体平均结晶粒的微细化、nb碳化物的析出所带来的屈服比的增加的重要元素。nb含量低于0.005%时,nb碳化物的体积率变得不充分,该效果小。另外,nb含量为0.070%以上时,nb碳化物过量析出,在退火后也残留延展性不足的未再结晶铁素体,因此,延伸凸缘性劣化。因此,nb含量设定为0.005%以下且低于0.070%。优选设定为0.010%以上。优选设定为0.040%以下。
本发明的高强度钢板可以含有以下的成分作为任选成分。
cr:0.3%以下
cr可以作为不损害本发明的作用效果的微量元素含有。cr含量超过0.3%时,由于淬透性的提高而使马氏体过量生成,有时导致屈服比的降低。因此,在添加cr的情况下,cr含量设定为0.3%以下。
mo:0.3%以下
mo可以作为不损害本发明的作用效果的微量元素含有。但是,mo含量超过0.3%时,由于淬透性的提高而使马氏体过量生成,有时导致屈服比的降低。因此,在添加mo的情况下,mo含量设定为0.3%以下。
b:0.005%以下
b可以作为不损害本发明的作用效果的微量元素含有。但是,b含量超过0.005%时,由于淬透性的提高而使马氏体过量生成,有时导致屈服比的降低。因此,在添加b的情况下,b含量设定为0.005%以下。
cu:0.3%以下
cu可以作为不损害本发明的作用效果的微量元素含有。但是,cu含量超过0.3%时,由于淬透性的提高而使马氏体过量生成,有时导致屈服比的降低。因此,在添加cu的情况下,cu含量设定为0.3%以下。
ni:0.3%以下
ni可以作为不损害本发明的作用效果的微量元素含有。但是,ni含量超过0.3%时,由于淬透性的提高而使马氏体过量生成,有时导致屈服比的降低。因此,在添加ni的情况下,ni含量设定为0.3%以下。
上述以外的余量为fe和不可避免的杂质。另外,在本发明中,除了上述元素以外,也可以在不损害本发明的作用效果的微量范围内含有ti、v、sn、sb、co、w、ca、na、mg等元素作为不可避免的杂质。
(2)钢组织
本发明的高强度钢板的钢组织以面积率计包含铁素体:85%以上、珠光体:0~15%、马氏体、残余奥氏体和渗碳体的合计:0~3%。另外,该钢组织中,上述铁素体的平均结晶粒径为15.0μm以下,nb碳化物的粒径为5~50nm,nb碳化物的析出量以体积率计为0.005~0.050%。
铁素体:85%以上
铁素体具有良好的延展性,在钢组织中作为主相含有,其含量以面积率计为85%以上。铁素体的含量以面积率计低于85%时,得不到本发明作为目的的高屈服比和优良的延伸凸缘性。因此,铁素体的含量以面积率计设定为85%以上。优选设定为95%以上。需要说明的是,本发明的高强度钢板的钢组织可以为铁素体单相(铁素体的含量以面积率计为100%)。
珠光体:0~15%
珠光体对于得到期望的屈服强度和拉伸强度是有效的。但是,珠光体的含量以面积率计超过15%时,得不到本发明作为目的的高屈服比和优良的延伸凸缘性。因此,珠光体的含量以面积率计设定为0~15%。优选设定为0~5%。
马氏体、残余奥氏体和渗碳体的合计:0~3%
钢组织可以含有合计为0~3%的马氏体、残余奥氏体和渗碳体。马氏体、残余奥氏体和渗碳体的合计超过3%时,得不到0.70以上的屈服比。因此,马氏体、残余奥氏体和渗碳体的合计设定为0~3%。
铁素体的平均结晶粒径为15.0μm以下
将铁素体的平均结晶粒径调节至期望的范围对于得到本发明作为目的的0.70以上的高屈服比是重要的。铁素体的平均结晶粒径超过15.0μm时,得不到0.70以上的屈服比。因此,铁素体的平均结晶粒径设定为15.0μm以下。优选设定为10.0μm以下。需要说明的是,铁素体平均结晶粒径的下限没有特别限定,但小于1.0μm时,拉伸强度、屈服强度过度增加,导致延伸凸缘性、延伸性的劣化,因此,铁素体平均粒径优选为1.0μm以上。
nb碳化物的粒径为5~50nm
nb碳化物主要在铁素体晶粒内析出,主要由nbc构成,其粒径对于得到本发明作为目的的高屈服比和优良的延伸凸缘性是重要的。上述粒径小于5nm时,屈服强度过度增加,不仅偏离本发明作为目的的范围,而且还导致延伸凸缘性的降低。上述粒径超过50nm时,屈服强度的增加变得不充分,得不到本发明作为目的的高屈服比。因此,nb碳化物的粒径设定为5~50nm。优选设定为10nm以上。优选设定为30nm以下。
nb碳化物的析出量以体积率计为0.005~0.050%
将nb碳化物的析出量调节至期望的范围对于兼顾本发明作为目的的高屈服比和优良的延伸凸缘性是重要的。nb碳化物的析出量以体积率计低于0.005%时,屈服强度的增加变得不充分,得不到本发明作为目的的高屈服比。nb碳化物的析出量以体积率计超过0.050%时,铁素体的再结晶被显著抑制,延伸凸缘性降低。另外,上述析出量超过0.050%时,拉伸强度过度增加,有时偏离本发明作为目的的范围。因此,nb碳化物的析出量以体积率计设定为0.005~0.050%。优选设定为0.010%以上。优选设定为0.030%以下。
需要说明的是,关于各组织的面积率,利用sem对以从与轧制宽度方向正交的板厚方向断面的表面起板厚1/4位置为中心的板厚1/8~3/8的范围进行观察,通过astme562-05记载的点计数法求出。铁素体的平均结晶粒径通过如下方法求出:利用sem对以上述板厚1/4位置为中心的板厚1/8~3/8的范围进行观察,由观察面积和晶粒数算出圆当量直径。nb碳化物的粒径通过从高强度钢板制作薄膜样品并由tem观察图像算出圆当量直径来求出。nb碳化物的体积率通过提取残渣法来求出。
(3)制造条件
本发明的高强度钢板通过如下方法制造:将具有上述成分组成的钢熔炼,通过铸造制造板坯(钢片)后,进行热轧、冷轧,然后,在连续退火炉中进行退火。在热轧后,可以进行酸洗。以下,对这些制造条件的限定条件进行说明。需要说明的是,以下的说明中,温度是指表面温度。
铸造方法没有特别限定,只要不发生显著的成分组成的偏析、组织的不均匀,则可以通过铸锭法、连铸法中的任意一种进行铸造。
关于热轧,可以将高温的铸造板坯直接进行轧制,也可以将冷却至室温的板坯进行再加热后进行轧制。另外,在板坯的时刻存在破裂等表面缺陷的情况下,可以利用研磨机等实施板坯修理。在对板坯进行再加热的情况下,为了使nb碳化物溶解,优选加热至1100℃以上。
热轧中,对板坯实施粗轧、精轧。然后,将热轧钢板制成卷取热轧卷材。热轧中的粗轧条件和精轧条件没有特别限定,依据常规方法进行即可。精轧温度低于ar3点时,在热轧钢板的钢组织中生成沿轧制方向伸长的粗大的铁素体,有时在退火后导致延展性的降低。因此,精轧温度优选设定为ar3点以上。
精轧温度~650℃的温度范围内的保持时间:10秒以下
通过将精轧温度~650℃的温度范围内的保持时间适当控制,能够抑制铁素体的平均结晶粒径的粗大化。因此,上述冷却条件在本发明中是重要的。在精轧后的冷却中精轧温度~650℃的温度范围内的保持时间超过10秒时,在热轧的卷取后过度析出粗大的nb碳化物,因此,在退火时铁素体晶粒容易变得粗大,铁素体的平均结晶粒径超过15.0μm,因此屈服比降低。因此,上述冷却中的精轧温度~650℃的温度范围内的保持时间设定为10秒以下。需要说明的是,上述保持时间的下限没有特别限定,从退火时使nb碳化物均匀析出、使铁素体结晶粒径变得均匀的观点考虑,优选保持1秒以上。
卷取温度:500~700℃
卷取温度对于利用nb碳化物的析出量和析出物粒径将退火后的铁素体平均结晶粒径控制为15.0μm以下是重要的。在钢板的宽度方向中央,卷取温度低于500℃时,在卷取后的冷却中不会充分析出nb碳化物,在退火的加热和均热时析出粗大的nb碳化物,铁素体结晶粒径粗大化,因此,得不到本发明作为目的的拉伸强度和高屈服比。卷取温度超过700℃时,在卷取后的冷却中析出粗大的nb碳化物,在退火时铁素体结晶粒径粗大化,因此,得不到本发明作为目的的拉伸强度和高屈服比。因此,卷取温度设定为500~700℃。优选设定为550~650℃。
冷轧依据常规方法进行即可,轧制率优选设定为30~80%。
退火包含使用连续退火炉升温至均热温度后进行冷却的工序。
在升温时在650~750℃下保持15秒以上
升温时的650~750℃下的保持时间是用于将退火后的铁素体平均结晶粒径控制为15.0μm以下的重要的制造条件。升温时的650~750℃下的保持时间少于15秒时,在升温中不会完成铁素体的再结晶,因此,在较高温度的均热保持时再结晶进行,铁素体平均结晶粒径粗大化。因此,升温时的650~750℃下的保持时间设定为15秒以上。优选升温时的650~750℃下的保持时间设定为20秒以上。需要说明的是,保持时间的上限没有特别限定,但保持时间变得过长时,导致nb碳化物的粗大化,因此,保持时间优选为300秒以下。需要说明的是,在此的保持时间是指在650~750℃的温度范围内的停留时间。
均热温度:760~880℃、均热时间:120秒以下
均热温度和均热时间在控制铁素体平均结晶粒径的方面是重要的条件。均热温度低于760℃时,铁素体的再结晶变得不充分,延伸凸缘性劣化。均热温度超过880℃时,铁素体平均结晶粒径粗大化,得不到本发明作为目的的拉伸强度和屈服比。因此,均热温度设定为760~880℃。另外,均热时间超过120秒时,铁素体平均结晶粒径粗大化,因此,得不到本发明作为目的的拉伸强度和高屈服比。因此,均热时间设定为120秒以下。优选设定为60秒以下。需要说明的是,均热时间的下限没有特别限定,从延伸凸缘性的观点考虑,优选使铁素体完全再结晶,因此,均热时间优选为30秒以上。需要说明的是,在此的均热时间是指在760~880℃的温度范围内的停留时间。
升温和均热时的加热方式没有特别限定,可以利用辐射管方式、直火加热方式等进行。
均热后的冷却中的冷却条件没有特别限定,可以列举例如冷却停止温度为400~500℃、平均冷却速度为30℃/s以下、400~500℃的温度范围(500℃~冷却停止温度的温度范围)内的保持时间为10~100秒的条件。
可以对以上述方式得到的高强度钢板的表面实施镀覆。镀覆优选为在热镀锌浴中浸渍的热镀锌等。
通过对热镀锌层实施合金化处理,可以形成合金化热镀锌层。在实施合金化处理的情况下,保持温度低于450℃时,合金化不会充分进行,镀层密合性、耐腐蚀性劣化。另外,保持温度超过560℃时,合金化过度进行,在冲压时产生粉化等问题。因此,保持温度优选设定为450~560℃。另外,保持时间少于5秒时,合金化不会充分进行,镀层密合性、耐腐蚀性劣化,因此,保持时间优选设定为5秒以上。
然后,可以根据需要实施伸长率为0.1~5.0%的平整轧制。
通过以上方法,得到作为本发明目的的高强度钢板,但在冷轧钢板的情况下,即使进一步实施电镀锌、化学转化处理、有机系覆膜处理等表面处理也不会损害作为本发明目的的特性。
实施例
以下,通过实施例对本发明详细地进行说明。
将表1所示的成分组成的钢a~m的板坯在1250℃下均热1小时后,在最终板厚3.2mm、作为ar3点以上的精轧温度900℃、表2所示的保持时间的条件下制作热轧钢板,冷却后,在表2所示的卷取温度下进行卷取。对制造的热轧钢板进行酸洗后,实施最终板厚1.4mm的冷轧而制成冷轧钢板,实施表2所示条件的退火,制造no.1~31的高强度钢板。在不实施镀覆的情况下,退火使用cal(continuousannealingline,连续退火线)来进行。另外,在实施镀覆的情况下,使用cgl(continuousgalvanizing/galvannealingline,连续热镀锌/热镀锌退火线)来实施热镀锌或合金化热镀锌。在形成合金化热镀锌层的情况下,实施在510℃下保持10秒的合金化处理。
对于所得到的高强度钢板,进行钢组织观察和拉伸试验。
关于钢组织的面积率,将以从与轧制宽度方向正交的板厚方向断面的表面起板厚1/4位置为中心的板厚1/8~3/8的范围利用sem放大至1000倍,通过astme562-05记载的点计数法求出。关于铁素体的平均结晶粒径,将以从与轧制宽度方向正交的板厚方向断面的表面起板厚1/4位置为中心的板厚1/8~3/8的范围利用sem放大至1000倍,由面积和晶粒的个数算出圆当量直径来求出。关于nb碳化物的粒径,进行tem观察,通过图像处理求出圆当量直径。观察均在各10个视野中进行,算出其平均值。需要说明的是,结果示于表2中,表2的α是指铁素体、p是指珠光体、m是指马氏体、θ是指渗碳体,α粒径是指铁素体平均结晶粒径,nb(c,n)粒径是指nb碳化物的粒径,nb(c,n)体积率是指nb碳化物的析出量。
关于拉伸强度(ts)和屈服比(yr),使用以使拉伸方向为与轧制方向正交的方向的方式裁取的jis5号拉伸试验片,通过依据jisz2241的拉伸试验来求出。另外,扩孔率(λ)依据jisz2256来算出。需要说明的是,将330mpa以上且低于500mpa的拉伸强度、0.70以上的屈服比、130%以上的扩孔率评价为良好。
表2中示出钢组织的观察结果和拉伸试验结果。no.1~3、6、8~9、12~14、16~17、20、22~23、26满足本发明的全部条件,因此,得到了本发明作为目的的高屈服比且延伸凸缘性优良的高强度钢板。另一方面,no.4~5、7、10~11、15、18~19、21、24~25、27~31的成分组成或制造条件在本发明的范围外,没有得到期望的钢组织,因此,没有得到本发明作为目的的高强度钢板。
产业上的可利用性
本发明的高强度钢板适合于以汽车内板部件等为中心的要求高屈服比和优良的延伸凸缘性的领域。