表面质量及点焊性优异的高强度热浸镀锌钢板及其制造方法与流程

文档序号:15204643发布日期:2018-08-21 07:18阅读:183来源:国知局

本发明涉及用于汽车车身结构用部件等的热浸镀锌钢板,更具体地,涉及表面质量及点焊性优异的高强度热浸镀锌钢板及其制造方法。



背景技术:

近年来,根据用于保护地球环境的二氧化碳的规定,为了汽车的轻量化以及提高汽车的冲撞稳定性等做出了努力,作为其中的一个方面,一直以来需要汽车用钢板的高强度化。

为了满足这种需要,近年来开发了拉伸强度为900mpa以上的高强度钢板并利用为汽车用钢板。

提高钢板强度的方法有增加包括碳在内的钢强化成分的添加量的方法,通过此方法能够制造易于提高强度的钢板。

但是,就汽车用钢板而言,尤其汽车车身用钢板而言,在成型为车身的过程中不能产生如裂纹(crack)等缺陷,因此需要提高强度的同时确保延伸率。

因此,为了同时确保钢板的强度和延展性,主要添加mn、si、al、cr、ti等元素,并且适当地调节这些元素的添加量的同时控制制造条件,从而可以制造具有高强度和高延展性的钢板。

另外,为了延长汽车的寿命,需要确保汽车用钢板的耐蚀性,为此,利用通过熔融锌进行镀覆处理的热浸镀锌钢板。这种热浸镀锌钢板可以将在连续退火炉中经过退火处理的钢板装入镀浴中进行镀覆处理来制造。

但是,就具有900mpa以上的拉伸强度的汽车用高强度钢板而言,为了确保所期望的强度和延展性,在钢中添加si、mn、al等成分,这些元素是容易被氧化的元素,在对所述钢板进行退火时与退火炉中存在的微量的氧或水蒸气反应而在钢板表面形成si、mn或al的单独氧化物或者它们的复合氧化物,从而在后续的镀锌时阻碍锌的润湿性,由此在镀覆钢板表面产生局部或整体没有附着锌的未镀覆现象,从而存在镀覆钢板的表面质量大幅降低的问题。

不仅如此,对高强度镀锌钢板进行点焊时,由于加热和冷却而会产生膨胀和收缩,由此在局部产生拉伸应力时,产生熔融状态的锌沿着基材铁的晶界渗透而引发脆性裂纹的液态脆性裂纹(液态金属脆性(liquidmetalembrittlement))现象。如上所述,相比于熔合部,在焊接热影响部产生严重的由镀锌钢板的点焊引起的液态脆性裂纹,由此焊接后的强度会大幅降低。

就镀锌钢板的液态脆性裂纹而言,在基础钢板中的si、mn、al等含量高的高强度钢中严重产生,其原因在于,高强度钢为由铁素体、贝氏体、马氏体、奥氏体等组成的复合组织钢,对镀锌的复合组织钢进行点焊时,在焊接过程中,由于温度的上升,表面的镀锌层发生熔融,并且熔融的锌渗透至基材铁的晶界,从而产生液态脆性裂纹。尤其,基材铁的表层部组织中同时存在铁素体和奥氏体时,由于晶界能量显著大于铁素体和铁素体相的晶界能量,通过铁素体和奥氏体晶界,液态锌的渗透会加重,从而产生严重的液态脆性裂纹。

而且,在焊接部产生液态脆性裂纹时,材料的刚性会大幅降低。

因此,为了使高强度热浸镀锌钢板适合用作汽车用钢板,提高镀覆时的表面质量的同时降低焊接部的液态脆性裂纹是非常重要的。

以往,为了提高高强度钢板的镀覆质量,提出了如下各种技术。

专利文献1中,在退火过程中以0.80~0.95的空燃比控制空气和燃料,并在氧化性气氛的直焰炉(directflamefurnace)中氧化钢板,以在钢板内部的一定深度以内形成包含si、mn或al的单独氧化物或复合氧化物的铁氧化物,然后在还原性气氛中进行还原退火而还原铁氧化物,然后进行热浸镀锌,由此提高镀覆质量。

如上所述,在退火工序中利用氧化后还原的方法时,从钢板表层到一定深度以内的与氧的亲和力大的成分被内部氧化而抑制向表层的扩散,因此在表层上由这些元素引起的氧化物的形成相对得到抑制,从而在镀浴中与锌的润湿性得到改善,由此能够减少未镀覆。

但是,通过氧化后还原的方法,即使高强度钢板的镀覆性得到改善,但是为了将钢板成型为结构部件后进行组装而进行点焊时,在抑制液态脆性裂纹的方面还存在局限性。

作为另一个技术,专利文献2中公开了如下方法,即,在退火炉内维持高露点(dewpoint),由此将容易氧化的mn、si、al等成分在钢的内部进行内部氧化,从而减少退火后在钢板的表面上进行外部氧化的氧化物,以提高镀覆性。

通过上述技术将氧化性成分进行内部氧化时,外部氧化会减少,从而具有改善镀覆性的效果,但是基础钢板含有奥氏体相,从而在进行点焊时,通过铁素体和奥氏体晶界,液态锌的渗透会加重,因此存在产生液态脆性裂纹的问题。

现有技术文献

(专利文献1)韩国公开专利公报第2010-0030627号

(专利文献2)韩国公开专利公报第2009-0006881号



技术实现要素:

要解决的技术问题

本发明的一个方面的目的在于,在提供适合于汽车车身结构用部件的高强度热浸镀锌钢板时,提供如下的高强度热浸镀锌钢板及其制造方法,所述热浸镀锌钢板的镀覆表面质量优异,而且在进行点焊时抑制液态脆性裂纹的产生,从而具有优异的焊接性。

技术方案

本发明的一个方面提供表面质量及点焊性优异的高强度热浸镀锌钢板,所述热浸镀锌钢板包括基础钢板及形成在所述基础钢板表面的镀锌层,

以重量%计,所述基础钢板包含:碳(c):0.1~0.3%、硅(si):0.5~2.5%、锰(mn):2.0~8.0%、可溶性铝(sol.al):0.001~0.5%、磷(p):0.04%以下(0%除外)、硫(s):0.015%以下(0%除外)、氮(n):0.02%以下(0%除外)、铬(cr):0.01~0.7%、钛(ti):(48/14)×[n]~0.1%、余量的fe及不可避免的杂质,

以面积分数计,所述基础钢板的微细组织包含5~30%的铁素体、5~20%的奥氏体、50~80%的贝氏体和马氏体以及2%以下(包括0%)的析出物,以面积分数计,所述的从表面到厚度方向的2μm以内的微细组织包含50%以上的铁素体、2%以下(包括0%)的奥氏体、50%以下(包括0%)的贝氏体和马氏体以及2%以下(包括0%)的析出物。

本发明的另一个方面提供制造表面质量及点焊性优异的高强度热浸镀锌钢板的方法,其包括以下步骤:

以1100~1300℃的温度范围,对具有上述成分组成的钢坯进行再加热;在ar3以上的温度下,对经过再加热的所述钢坯进行热精轧,以制造热轧钢板;在700℃以下的温度下,对所述热轧钢板进行收卷;对经过收卷的所述热轧钢板进行酸洗后进行冷轧,以制造冷轧钢板;在以露点温度为-40~-20℃、气体气氛为3~70%的h2及余量的n2进行控制的退火炉中,以700~950℃的温度范围,对所述冷轧钢板进行一次再结晶退火5~120秒;在以露点温度为-20~5℃、气体气氛为3~70%的h2及余量的n2进行控制的退火炉中,以780~950℃的温度范围,对经过一次再结晶退火的所述冷轧钢板进行二次再结晶退火5~120秒;将经过二次再结晶退火的所述冷轧钢板冷却至200~400℃;以及对经过冷却的所述冷轧钢板进行维持之后以450~500℃进行再加热或再冷却,然后浸渍于镀锌浴中,以制造热浸镀锌钢板。

有益效果

根据本发明,通过合金的成分组成和制造条件的优化来控制镀覆钢板的基材铁的表面和内部的微细组织,从而能够提供具有可利用于汽车车身结构用部件的水平的强度及延展性的高强度热浸镀锌钢板。

此外,本发明的高强度热浸镀锌钢板在进行点焊时,液态脆性裂纹的产生得到有效的抑制,从而能够确保优异的点焊性和表面质量。

最佳实施方式

本发明人在提供具有适于汽车车身结构用部件的机械物理性质的高强度钢板方面,对能够防止所述钢板在镀覆时所产生的未镀覆等引起的表面质量的降低以及液态脆性裂纹的产生所引起的点焊性的降低的方案进行了深入的研究。

结果,确认了通过优化用作镀覆材料的基础钢板的成分组成及其制造条件,提供具有能够防止镀覆时的未镀覆等缺陷和焊接时的液态脆性裂纹等问题的组织的基础钢板,并对其进行镀锌处理,从而能够提供所期望的表面质量及点焊性优异的高强度热浸镀锌钢板,并完成了本发明。

下面,对本发明进行详细说明。

优选地,本发明的一个方面的高强度热浸镀锌钢板包括基础钢板及形成在所述基础钢板表面的镀锌层,以重量%计,所述基础钢板包含:碳(c):0.1~0.3%、硅(si):0.5~2.5%、锰(mn):2.0~8.0%、可溶性铝(sol.al):0.001~0.5%、磷(p):0.04%以下(0%除外)、硫(s):0.015%以下(0%除外)、氮(n):0.02%以下(0%除外)、铬(cr):0.01~0.7%、钛(ti):(48/14)×[n]~0.1%。

下面,对如上所述控制所述基础钢板的成分组成的理由进行详细说明。此时,除非另有特别的说明,各成分的含量表示重量%。

c:0.1~0.3%

碳(c)是用于确保钢的强度的必要元素,为了确保充分的强度,优选添加0.1%以上的c。但是,当c的含量超过0.3%时,延展性、弯曲加工性及焊接性会降低,从而存在冲压成型性和辊轧加工性变差的问题。

si:0.5~2.5%

硅(si)是提高钢的屈服强度的同时在常温下使铁素体和残余奥氏体稳定化的有效元素。此外,在冷却时抑制从奥氏体中析出渗碳体,并显著阻碍碳化物的生长,从而在相变诱导塑性(transformationinducedplasticity,trip)钢中有助于使充分量的残余奥氏体稳定化。

不仅如此,si是用于确保本发明所期望的900mpa以上的拉伸强度和优异的延展性所必要的元素,为了得到上述效果,优选添加0.5%以上的si。但是,当si的含量过多时,热轧负荷会增大,从而存在引发热轧裂纹的问题,并且退火后表面的si的浓缩量变多,从而存在镀覆性变差的问题。因此,考虑到上述问题,本发明中si的下限优选限制为2.5%。

mn:2.0~8.0%

众所周知,锰(mn)是抑制铁素体的形成并使奥氏体稳定的提高淬透性的元素。此外,mn是提高钢的强度的有效元素,为了确保本发明所期望的拉伸强度,优选添加2.0%以上的mn。所述mn的含量越高,越容易确保强度,但是在退火过程中mn的表面氧化量会增加,从而存在镀覆性变差的可能性。因此,考虑到上述问题,本发明中mn的上限优选限制为8.0%。

sol.al:0.001~0.5%

可溶性铝(sol.al)是在炼钢工艺中为了脱氧而添加的元素,并且是形成碳氮化物的元素。此外,al为扩大铁素体域的元素,其降低ac1相变点,从而具有有利于降低退火成本的效果。为此,优选添加0.001%以上的sol.al。但是sol.al的含量超过0.5%时,焊接性会变差,同时在退火过程中al的表面氧化量会增加,从而存在难以确保镀覆性的问题。

p:0.04%以下(0%除外)

磷(p)是钢中的杂质元素,当p的含量超过0.04%时,焊接性会降低,产生钢的脆性的风险性变高,并且引发凹痕缺陷的可能性变高。因此,p的上限优选限制为0.04%。

s:0.015%以下(0%除外)

硫(s)与所述p相同,均是钢中的杂质元素,并且是阻碍钢的延展性和焊接性的元素。当s的含量超过0.015%时,阻碍钢的延展性和焊接性的可能性变高,因此s的含量优选限制为0.015%以下。

n:0.02%以下(0%除外)

氮(n)是形成氮化物的元素,当n的含量超过0.02%时,由于形成aln,存在连铸时产生裂纹的风险性大幅增加的问题,因此n的上限优选限制为0.02%。

cr:0.01~0.7%

铬(cr)为增加淬透性的元素,具有抑制铁素体的形成的效果。尤其,本发明中为了如上所述通过抑制铁素体的形成来确保一定分数的残余奥氏体,优选添加0.01%以上的cr,但是cr的含量超过0.7%时,合金的投入量过多,从而存在成本上升的问题,因此不优选。

ti:(48/14)×[n]~0.1%

钛(ti)为形成氮化物的元素,具有减少钢中的n的浓度的效果。为此,需要以化学当量添加(48/14)×[n(重量%)]以上的ti。如果没有添加ti,则由于形成aln,存在连铸时产生裂纹的可能性,因此不优选,当ti的含量过多而超过0.1%时,除了去除固溶n以外,还会析出碳化物,导致马氏体的碳浓度及强度会降低,因此不优选。

除了上述的成分组成以外,为了进一步提高本发明所期望的物理性质,所述基础钢板还可以进一步包含以下成分。此时,可以选择下述成分中的一种来添加,也可以复合两种以上来添加。

mo:0.1%以下(包括0%)

钼(mo)与所述cr相同,均是有助于提高钢的强度的有效元素,并且是不会阻碍熔融锌的润湿性的同时有利于确保强度的元素。但是,当所述mo的含量过多时,在经济上不优选,因此mo的含量优选限制为0.1%以下。

sb:0.05%以下(包括0%)

锑(sb)是提高镀覆表面质量的有效元素,在添加sb时,sb浓缩在基础钢板的表层部,相对抑制si、mn、al等的表面扩散,从而能够得到提高镀覆性的效果。但是,当所述sb的含量超过0.05%时,钢的脆性会增加,从而存在延伸率降低的可能性,因此sb的含量优选限制为0.05%以下。

nb:0.1%以下(包括0%)

铌(nb)在奥氏体晶界中以碳化物形态偏析,并在退火热处理时抑制奥氏体晶粒的粗大化,从而具有提高强度的效果。但是,当所述nb的含量超过0.1%时,存在制造成本大幅上升的问题,因此,考虑到上述问题,nb的含量优选限制为0.1%以下。

b:0.005%以下(包括0%)

硼(b)是为了确保钢的强度而可以添加的元素,但是b的含量超过0.005%时,在退火时浓缩在表面,从而存在严重阻碍镀覆性的问题。因此,本发明中在添加所述b时,其含量优选限制为0.005%以下。

本发明的余下成分为铁(fe)。但是,在通常的制造过程中从原料或周围环境不可避免地混入并不需要的杂质,因此无法排除这些杂质。所述杂质对于通常的制造过程的技术人员来说是众所周知的,因此在本说明书中不会特别提及其所有内容。

优选地,具有上述成分组成的本发明的基础钢板中,以面积分数计,其微细组织由5~30%的铁素体、5~20%的奥氏体、50~80%的贝氏体和马氏体以及2%以下(包括0%)的析出物组成。

如上所述,以适当地控制分数的方式包含软质相和硬质相,从而能够同时确保强度和延展性,并且通过奥氏体能够大幅提高加工后的强度。

但是,当基础钢板的整体厚度由所述微细组织组成时,在镀锌后进行点焊的过程中,液态锌容易渗透至界面能量高的铁素体相、奥氏体相、贝氏体相、马氏体相的两相界面,由此存在产生液态脆性裂纹(lme)的问题。

因此,本发明中由上述微细组织组成的基础钢板的表层部区域的微细组织优选以铁素体为主相来形成。

更具体地,以面积分数计,所述基础钢板的从表面到厚度方向的2μm以内的微细组织优选由50%以上的铁素体、2%以下(包括0%)的奥氏体、50%以下(包括0%)的贝氏体和马氏体以及2%以下(包括0%)的析出物组成,更优选地,由铁素体单相组成。

如上所述,由软质相组成所述基础钢板的表层部区域,从而在之后进行点焊时能够有效地抑制液态脆性裂纹。

此外,就所述基础钢板而言,为了在退火工序中通过抑制钢中的氧化性元素(例如,si、mn、al等)的表面氧化来提高镀覆质量,所述基础钢板的从表面到厚度方向的5μm以内优选包含选自si氧化物、mn氧化物、al氧化物及cr氧化物中的两种以上的内部氧化物。

将上述氧化性元素形成为内部氧化物,从而能够抑制这些元素扩散到表面。

可以通过下述的制造工艺,将满足上述的成分组成和微细组织等的本发明的基础钢板制造成热浸镀锌钢板,这种本发明的热浸镀锌钢板具有拉伸强度为900mpa以上的高强度,同时能够确保拉伸强度(mpa)×延伸率(%)的值为16000mpa%以上。

下面,对本发明的另一个方面的制造高强度热浸镀锌钢板的方法进行详细说明。

简略地,准备满足上述成分组成的钢坯之后,对其进行[再加热-热轧-冷轧-退火-镀锌]的工艺来制造。

再加热工序

首先,优选以一定的温度范围,对满足上述成分组成的钢坯进行再加热。

此时,再加热温度范围优选为1100~1300℃,如果再加热温度低于1100℃,则存在热轧荷重急剧增加的问题,另一方面,如果再加热温度超过1300℃,则不仅再加热成本会上升,而且存在表面氧化物的量变得过多的问题,因此不优选。

热轧工序

优选地,将如上述经过再加热的钢坯进行热精轧,以制造热轧钢板。

此时,所述热精轧时的精轧温度优选为ar3以上。如果精轧温度低于ar3,则会进行铁素体+奥氏体的二相域或铁素体域轧制,从而形成混粒组织,并且可能会引起热轧荷重的变动所导致的误操作,因此不优选。

收卷工序

优选地,对制造的所述热轧钢板进行收卷。

此时,所述收卷优选在700℃以下进行,更优选在400~700℃下进行。

如果收卷温度超过700℃,则钢板表面上形成过多的氧化膜,从而存在引发缺陷的可能性,因此不优选,另一方面,如果收卷温度低于400℃,则热轧钢板的强度变得过高,导致在后续的冷轧时轧辊的负荷变大,因此不优选。

冷轧工序

优选地,对经过收卷的所述热轧钢板进行酸洗及冷轧,以制造冷轧钢板。

所述冷轧时,对冷轧压下率不作特别限定,但是考虑到轧制工序的负荷等,优选以60%以下的冷轧压下率进行。

退火工序

优选地,将如上述制造的冷轧钢板装入退火炉中进行退火热处理。

优选地,本发明中为了将上述微细组织,即基础钢板的表层部区域的微细组织形成为软质相的同时,通过形成内部氧化物来抑制氧化性元素的表面扩散,如下所述进行一次再结晶退火及二次再结晶退火。

一次再结晶退火

所述一次再结晶退火优选在以露点温度为-40~-20℃、气体气氛为3~70%的h2及余量的n2进行控制的退火炉中,以750~950℃的温度范围进行。

如果一次再结晶退火时的露点温度低于-40℃,则钢板表面形成si含量高的氧化物,即使在后续的二次退火时控制退火炉内的气氛,退火后的钢板表面上也存在si含量高的氧化物,从而存在阻碍镀覆性的问题。另一方面,当所述露点温度超过-20℃时,钢板表层部正下方的基材铁中形成由si、mn、al或cr组成的内部氧化物,在二次退火过程中所述内部氧化物阻碍在表层部形成铁素体,因此无法得到本发明所期望的表层部的微细组织。

因此,本发明中一次再结晶退火时的露点温度优选控制为-40~-20℃,由此最终退火后的钢板表面形成以mn为主的氧化物,从而不仅能够确保镀覆性,而且由于没有形成内部氧化物,在后续的二次退火及镀锌后,基础钢板表层部的微细组织形成为所期望的软质相,从而能够提高点焊性。

另外,所述一次再结晶退火时,以体积%计,气体气氛中的氢含量优选控制为3~70%。当所述气体气氛中的氢含量小于3%时,钢板表面上存在的铁氧化物的还原不充分,另一方面,即使所述气体气氛中的氢含量超过70%,钢板表面的铁氧化物的还原效果也优异,但是考虑到经济方面,优选控制为70%以下,更优选控制为30%以下。

此外,只有将退火温度控制为750℃以上时,才能充分进行再结晶,但是退火温度超过950℃时,退火炉的寿命会减少,因此不优选。

为了得到均匀的再结晶组织,此时的退火时间优选为5秒以上,考虑到经济方面,退火时间优选限制为120秒以下。

二次再结晶退火

优选地,将经过一次再结晶退火的所述冷轧钢板冷却至常温,然后将所述冷轧钢板再次装入退火炉中进行二次再结晶退火。

所述二次再结晶退火优选在以露点温度为-20~5℃、气体气氛为3~70%的h2及余量的n2进行控制的退火炉中,以700~950℃的温度范围进行。

所述二次再结晶退火工序中,为了抑制钢中的si、mn、al、cr等与氧的亲和力大的成分扩散到表面而形成表面氧化物,退火炉内的露点温度优选控制为-20~5℃,以使上述成分进行内部氧化。

此时,当露点温度低于-20℃时,上述成分扩散到表面并被氧化而形成表面氧化物,从而存在阻碍镀覆性的问题。另一方面,即使露点温度超过5℃,对上述氧化性成分进行内部氧化也没有大问题,但是内部氧化物层的厚度会变得过厚,从而存在材质特性变差的问题。

如上所述,将二次再结晶退火时的退火炉内的露点温度维持在-20~5℃时,产生内部氧化的同时在表面上产生脱碳反应,从而有效提高表层部的铁素体相的分数。

另外,所述二次再结晶退火时,以体积%计,气体气氛中的氢含量优选控制为3~70%。当所述气体气氛中的氢含量小于3%时,钢板表面上存在的铁氧化物的还原不充分,另一方面,即使所述气体气氛中的氢含量超过70%,钢板表面的铁氧化物的还原效果也优异,但是考虑到经济方面,优选控制为70%以下。

此外,只有将退火温度控制为700℃以上时,才能充分进行再结晶,从而能够确保所期望的组织和材质。但是,当退火温度超过950℃时,退火炉的寿命会减少,因此不优选。

为了得到均匀的再结晶组织,此时的退火时间优选为5秒以上,考虑到经济方面,退火时间优选限制为120秒以下。

冷却工序

优选地,将如上所述经过一次再结晶退火处理和二次再结晶退火处理的冷轧钢板冷却至一定的温度。

此时,所述冷却优选在200~400℃的温度范围结束,如果冷却结束温度低于200℃,则马氏体的分数变得过大,从而存在难以确保延伸率的问题,另一方面,如果冷却结束温度超过400℃,则奥氏体和马氏体的分数会减少,从而存在无法确保充分的强度和延伸率的问题。

所述冷却优选以5~100℃/s的平均冷却速度进行阶段性(一次及二次)冷却,所述二次冷却速度优选大于一次冷却速度。

为了在进行上述再结晶退火的铁素体和奥氏体的二相域或奥氏体单相域中抑制奥氏体转变为珠光体,所述冷却优选以5℃/s以上的平均冷却速度进行。但是,当平均冷却速度超过100℃/s时,由于快速冷却,钢板的宽度方向的温度偏差变大,从而存在钢板的形状不良的问题,因此不优选。

镀锌工序

优选地,将以上述条件进行冷却的冷轧钢板浸渍于镀锌浴中,以制造热浸镀锌钢板。

此时,将所述冷轧钢板以450~500℃进行再加热或再冷却后以440~500℃进行维持,并浸渍于由0.13~0.3%的al、余量的zn和不可避免的杂质组成的镀锌浴中,然后取出所述冷轧钢板并调节镀覆附着量之后进行冷却,从而能够制造热浸镀锌钢板。

当所述镀浴的温度低于440℃时,锌的粘度会增加,从而存在镀浴内的辊的驱动性会降低的问题,另一方面,当镀浴的温度超过500℃时,所蒸发的锌会增加,因此不优选。

此外,当所述镀浴中的al的含量小于0.13%时,会抑制基材铁与镀层界面上形成的fe-al合金相的形成,从而存在发生镀覆剥离的可能性,另一方面,当所述镀浴中的al的含量超过0.3%时,镀层中的al的含量会增加,从而存在阻碍焊接性的问题,因此不优选。

本发明在通过上述工序和条件制造高强度热浸镀锌钢板时,对通过冷轧制造的冷轧钢板进行一次再结晶退火工序之后且在进行二次再结晶退火工序之前,可以以每一面为0.01~5.0g/m2的附着量在所述冷轧钢板的表面事先镀覆fe、ni、co及sn中的一种以上。

通过上述的事先镀覆能够有效地控制后续的退火工序时的露点温度。

通过本发明制造的高强度热浸镀锌钢板中,基础钢板的表面包括镀锌层,以面积分数计,作为所述基础钢板的微细组织形成5~30%的铁素体、5~20%的奥氏体、50~80%的贝氏体和马氏体以及2%以下(包括0%)的析出物,以面积分数计,从表面到厚度方向的2μm以内形成50%以上的铁素体、2%以下(包括0%)的奥氏体、50%以下(包括0%)的贝氏体和马氏体以及2%以下(包括0%)的析出物。

由此,本发明的高强度热浸镀锌钢板的拉伸强度为900mpa以上,同时能够确保拉伸强度(mpa)×延伸率(%)的值为16000mpa%以上。

具体实施方式

下面,通过实施例对本发明进行更详细的说明。但是,需要注意的是,下述的实施例仅仅是为了例示本发明以进行具体化,而并不是为了限定本发明的权利范围。这是因为本发明的权利范围是由权利要求书中记载的内容和由此合理推导的内容所决定。

(实施例)

在溶解具有下述表1的成分组成的钢之后制造各个钢坯。在1200℃下维持上述的各个钢坯1小时,然后在900℃下进行精轧,从而制造热轧钢板。然后,将各个热轧钢板冷却至650℃,然后在维持650℃的保温炉中维持1小时后进行炉冷。

通过肉眼观察完成冷却的所述热轧钢板是否产生热轧裂纹,然后利用60℃、17体积%的hcl溶液进行酸洗30秒,从而溶解钢板表面的氧化物。将如上所述完成酸洗的钢板以50%的压下率进行冷轧,从而制造冷轧钢板。

通过预处理去除上述的各个冷轧钢板的表面上残留的杂质,然后以下述表2的条件进行一次再结晶退火之后进行冷却。所述一次再结晶退火时,将退火炉内的气氛气体控制为5%的h2-n2条件。

在完成所述一次再结晶退火之后,以下述表2中示出的条件进行二次再结晶退火和热浸镀。此时,退火和热浸镀是在直连型设备中进行,二次退火时的退火炉内的气氛气体控制为5%的h2-n2条件。此外,将经过二次退火的钢板进入镀浴时的温度设为比镀浴的温度高10℃。

在完成所述热浸镀之后,使用气刀将一面为基准的镀覆附着量调节为60g/m2并进行冷却,从而制造各个热浸镀锌钢板。

通过肉眼观察上述的各个热浸镀锌钢板的表面是否存在未镀覆部位以及未镀覆程度,以此评价表面质量,并将其结果示于下述表3中。

此外,为了评价钢板的镀覆粘附性,在钢板的表面涂布汽车结构用粘合剂之后进行干燥,然后弯曲成90°后确认镀覆钢板是否粘附在粘合剂,以此评价镀覆粘附性,并将其结果示于下述表3中。

此外,各个热浸镀锌钢板用jis5号进行拉伸试验,从而测量钢板的拉伸强度和延伸率,并且换算为拉伸强度(mpa)和拉伸强度(ts)(mpa)×延伸率(el)(%)的值并示于下述表3中。

另外,为了测量各个热浸镀锌钢板的基材铁表层部和内部组织的相分数,使用电子背散射衍射(electronbackscatterdiffraction,ebsd)和x射线衍射(x-raydiffraction)。此时,从基材铁的表面到厚度方向的0.3μm以内的位置进行相分析,表示为表层部相分数,并且从基材铁的表面到厚度方向的10μm以内的位置进行相分析,并作为内部相分数示于表3中。

此外,通过透射电子显微镜(tem)观察各个热浸镀锌钢板的截面,从而测量基材铁内部的内部氧化物的成分、从基材铁的表面到存在内部氧化物的深度,并示于下述表3中。

并且,为了评价焊接性,重叠两块制造的热浸镀锌钢板并进行点焊,然后通过扫描电子显微镜(sem)观察焊接的钢板的截面,从而测量热影响部的裂纹的尺寸,并将其中的最大尺寸记录为该试片的液态脆性裂纹(lme)的尺寸。

所述点焊根据iso18278-2标准进行,将焊接电流设为比zn喷溅(expulsion)电流低0.5ka。

[表1]

(就具有所述d成分组成的钢板而言,在热轧过程中产生裂纹,从而中断了后续工序的进行。)

[表2]

[表3]

(所述表3中,表面质量是以如下基准进行了评价,即,o:没有未镀覆部位,△:存在直径为1mm以下尺寸的未镀覆,x:存在直径超过2mm尺寸的未镀覆,并且镀覆粘附性是以如下基准进行了评价,即,o:没有镀覆剥离,x:产生镀覆剥离。)

(所述表3中,f表示铁素体、γ表示奥氏体、b表示贝氏体、m表示马氏体。)

如所述表1至表3所示,在钢的成分组成和制造条件满足本发明的的发明例1至发明例12的情况下,从基材铁的表面到厚度方向的2.9μm以内形成mn、si、al或cr的内部氧化物,从而表面氧化相对得到抑制,因此镀覆表面质量优异且镀覆粘附性优异。

此外,不仅具有拉伸强度为900mpa以上的高强度,而且ts×el的值高至16000mpa%以上,从而材质特性优异。

尤其,基础钢板的内部组织以一定的分数包含软质相、硬质相以及奥氏体相,从而具有高强度和高延伸率,并且其表面包含铁素体作为主相,从而点焊时的lme尺寸为67μm以下而良好。

另一方面,比较例1是钢的成分组成中的mn的含量不充分的情况,由于制造条件满足本发明,镀覆表面质量、镀覆粘附性及点焊性优异,但是无法确保充分的强度。

比较例2是一次再结晶退火时的露点温度低于-40℃的情况,在一次再结晶退火过程中形成si含量高的氧化物,因此即使后续的二次再结晶退火满足本发明的条件,也由于镀覆性差而最终发生未镀覆,导致表面质量变差。

比较例3是一次再结晶退火时的露点温度超过-20℃的情况,由于在一次再结晶退火过程中形成的内部氧化物,基材铁表层部的铁素体层的形成得到抑制。由此,表层部微细组织的铁素体相分数低至36%,并且形成过多的奥氏体相,从而焊接后的lme尺寸为188μm,点焊性差。

比较例4是二次再结晶退火时炉内的露点温度低于-20℃的情况,在退火过程中形成厚的si、mn、al、cr等表面氧化物,从而镀覆表面质量和镀覆粘附性变差。此外,基材铁表层部的组织没有形成为本发明所期望的组织,从而焊接后的lme尺寸为460μm而非常大。

比较例5是二次再结晶退火时的退火温度低的情况,基材铁内部的铁素体相分数过大,并且奥氏体相分数低,从而材质特性差。

比较例6是二次再结晶退火后的冷却温度过高的情况,基材铁内部的奥氏体相分数低,从而材质特性差。

比较例7是一次及二次再结晶退火时的露点温度低于本发明中提出的温度的情况,由于si、mn、al、cr等扩散到表面并在外部被氧化,因此镀覆性和镀覆粘附性差,并且表层部的铁素体相分数低,奥氏体相分数高,从而焊接后的lme尺寸为737μm,焊接性非常差。

比较例8是钢中的mn的含量过多且二次再结晶退火炉内的露点温度低的情况,由于钢中的mn、si、cr等扩散到表面并在表面形成厚的氧化物层,因此镀覆性和镀覆粘附性不良。此外,基材铁表层部的铁素体相分数低,奥氏体相分数高,从而焊接后的lme尺寸为612μm,焊接性非常差。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1