本申请是以下申请的分案申请:申请日2008年3月3日,申请号200880009561.0,发明名称“用于工件的耐磨硬涂层及其制备方法”。
发明背景
本发明涉及经设计用于用工具加工(tooling)难于机械加工(machine)的材料(例如硬化工具钢、不锈钢和钛合金)的硬的耐磨涂层。这种极端的机械加工条件的应用需要具有优秀耐磨性、热硬性和耐氧化性以及高韧性和良好粘附性的涂层。
本发明进一步涉及这种耐磨涂层的制备方法,即规定的pvd电弧蒸发方法(definedpvdarcevaporationprocess)。
其进一步涉及涂覆的工件,特别是具有由烧结碳化物(cementedcarbide)、金属陶瓷(cermet)、立方氮化硼(cbn)或高速钢制成的主体的工具。
现有技术
altin是广泛用于硬化钢的机械加工的pvd涂层。然而,altin如果用作单一层或由不同ti/al/n化学计量的子层构成的多层,其可以在至多不超过900℃用于工具加工应用,因为依赖于铝/钛比,随着温度高于800℃至850℃,其硬度就开始变差。
因此,us2005-0003239将alcrn涂层施加于工件,以提高其耐氧化性。已知该涂层在不超过1100℃具有良好的耐氧化性和热硬性,具体依赖于铝/铬比。这种涂层有助于提高用于很多工具加工应用的铣削性能,然而不能显著提高更难于机械加工的材料(例如硬化工具钢、高速钢、钛和镍合金和奥氏体钢)的工具加工性能。与此类似,申请wo-2006/005217、wo-2006/084404和us2006-0222893也通过使用不同的多层和/或在alcrn基质中引入其他元素来试图进一步优化该涂层的耐氧化性和/或(热)硬性。
ep1690959公开了另一种声称在硬化钢的切削方面取得进展的涂层。该涂层包括基于不同al和si化学计量的(tialsi)n的双层系统。
us2006-0269789公开了用于高速切削高硬度材料的硬多层。该多层包括基于tialcrnx(x=c或o)的第一涂层、tialcrnx和tial(sic)nx的混合物的第二涂层或这种交替层的多层、和基本由tial(sic)nx构成的第三最外涂层。
尽管这种层系统在耐磨性和耐氧化性方面可以取得某些进展,但似乎仍需要进一步改进在上述对材料进行机械加工方面有难处的带涂层切削工具的性能。
技术实现要素:
因此,本发明的一个目的是提供优化的硬涂层和工件,特别是涂覆有硬涂层的切削工具,所述硬涂层用于改善在对材料(例如高速钢、钛合金、镍合金、奥氏体钢,特别是例如具有高于50,优选高于55hrc的硬度的硬化工具钢的硬材料)进行机械加工方面有困难的工具加工性能。本发明的另一目的是在不丧失alcrn的优秀氧化性和热硬性的情况下提供这种涂层。通过下面和权利要求1和2中所示的本发明的前两个方面中的任一方面可以实现这些目的。本发明的第三个目的是提供依照权利要求12的用于制备用于机械组件的元件(例如模具和模头)的改进的切削工具,和其他切削工具(例如刀刃)以及用于执行依照权利要求16的这种操作的切削方法。一个应用焦点是在例如成本降低、制备程序的优化和工件表面粗糙度改进方面对铣削操作中切削性能进行改进。本发明的第四个目的是提供用于制备依照权利要求13的本发明涂层和本发明工具的pvd方法。
令人惊奇的是,通过本发明的第一方面的工件可以解决本发明的第一和第二个目的,该工件具有表面,其中所述表面的至少一部分涂覆有通过pvd方法沉积的耐磨多层式硬涂层,该硬涂层包括至少第一支撑层和包含纳米晶体硅的第二层,该第一层位于在该工件和该第二层之间。
第一层包含以下组成的涂覆材料:(tiaal1-a)n1-x-ycxoy,其中0.4<a<0.6,0≤x和y<0.3。可替代地,该第一层可以包含(albcr1-b)n1-x-ycxoy,其中0.5<b<0.7,0≤x和y<0.3。
第二层包括以下组成的涂覆材料:(al1-c-d-ecrcsidme)n1-x-ycxoy,其中m表示周期表系统的第4族(ti、zr、hf)、第5族(v、cb[nb]、ta)、第6族(cr、mo、w)的过渡金属中除铬之外的至少一种元素,且0.2<c≤0.35,0<d≤0.20,0<e≤0.04。在本发明的优选实施方案中,第二层包含以下组成的涂覆材料:(al1-c-d-ecrcsidme)n1-x-ycxoy,其中m表示w、mo、ta或cb[nb],且0.06<d≤0.15,特别地0.10≤d≤0.11。(niob(铌)或columbium(钶)表示周期表系统的第41号元素,国际通用简称nb,也称作cb)。
本发明的其它方面涉及第一层的晶体结构,其优选包括两个不同相,特别是面心立方(fcc)和六方密堆(hcp)相。因此,如果经过热处理或至少700℃或750℃的高工作温度,该hcp相的xrd信号可以变得更加明显。该hcp相能够是富含al的,沉积态的六方相的百分比应当为5~40vol%,优选10~30vol%。
本发明的其他方面涉及纳米晶体层内的al/cr比、第一和第二层的厚度和总涂层厚度之比、层织构和结构以及第一和第二层交替的多层。例如,当以商值qal/cr=(1-c-d-e)/c表达的al/cr比在范围1.5<qal/cr≤2.4时,带涂层的切削工具的性能特别好。
在另一实施方案中,第一涂层的厚度d1小于第二涂层的厚度d2,例如商值qd=d2/d1在以下范围:1<qd≤4,而本发明的涂层的总涂层厚度d在以下范围:1μm≤d≤10μm,优选2μm≤d≤6μm。
本发明的另一方面涉及该涂层系统中所定义的层的硬度和杨氏模量。与支撑层相比该纳米晶体层的硬度较高被证明是有利的。例如用vickers微压痕在40mn的负载下测定,第一层优选具有2.400~2.800hv的硬度,而第二层具有2.800~3.200hv的硬度。可以通过例如本领域技术人员可从us6071560和us6274249和其他文献中已知的控制特定工艺参数(尤其是基底偏压和工艺压力或反应气体压力)来调节硬度和杨氏模量(后者很大程度影响涂层系统的韧性)。
然而,对于本发明,使用包括以下步骤的沉积方法被证明是有利的:在第一涂层的沉积过程中应用第一较低的基底电压u1,以及在第二涂层的沉积过程中应用第二较高的基底电压u2。其中,该第一基底电压在0v≤u1≤100v范围内,第二基底电压在80v≤u2≤200v范围内,其中u2-u1≥20v。另外或可替代地,在第一涂层的沉积过程中可以使用较高的工艺压力,以降低第一层的固有层应力(intrinsiclayerstress)以及由此的硬度。在沉积过程中将工件加热到高于550℃的温度(特别到约600℃)并将其保持在该温度似乎得到了对涂层粘附性和工具性能的进一步有利影响。
对上述层性质的另一可能影响方式是如上或下面实施例所述改变某些附加元素的含量或改变al/cr比值。通过调节硅含量以得到对晶粒细化的优化导致硬度的最大化,可以进一步改进第二基于纳米晶体合金化alcrn的层的硬度。此外,通过另外用作例如硬涂层的晶界相中的扩散屏障的上述过渡金属(特别是w、mo、cb和ta),得到了有益的固溶硬化(solutionhardening)。总之,这种基于纳米晶体合金化alcrn的层被证明是对高温和氧化具有非常高的耐受性,因此高效防止该支撑层和基底被氧化。织构系数qi=i(200)/i(111)在0.7≤qi≤2(qi定义为衍射强度i(200)与i(111)之比,分别为材料的x射线衍射光谱中的(200)和(111)平面)可以达到切削操作的最佳性能。这相当于沿(200)和(111)平面均衡生长。关于该测试的细节可以参见图1。
与第二层相反,该支撑层具有柱状生长结构和通过较高杨氏模量体现的较高的弹性。这证明是将机械负载从非常耐磨损和耐高温的第二层转移到该工件的基底材料的最佳组合。
作为上述两层构造的替代方式,可以使用其他层系统来进一步改进针对特定应用的层性能。例如,可以使用薄金属性粘附层以得到基底和第一支撑层之间优化的界面。这种粘附层可以包括ti、cr、tial或alcr,且可以具有如本领域技术人员已知的、朝向第一层逐渐增加的n、c和/或o含量的过渡区域。
其他或另外的可能方式是使第一层包括交替的(tiaal1-a)n1-x-ycxoy和(al1-c-d-ecrcsidme)n1-x-ycxoy层或交替的(albcr1-b)n1-x-ycxoy和(al1-c-d-ecrcsidme)n1-x-ycxoy层的多层。这种堆积的层将具有几纳米~几百纳米的优选层厚度,最大值可以根据需要在该层的堆积内变化。
工件主体或基底材料优选至少选自以下中的一种:高速钢、烧结碳化物、立方氮化硼、金属陶瓷或陶瓷材料。这种带涂层的工件可以用于很多类型的工具,然而特别可用于切削工具,例如端铣刀、钻子、切削刃、或齿轮切削工具,例如齿轮滚铣刀。当应用于由烧结碳化物、立方氮化硼、金属陶瓷或陶瓷材料制成的工具时,这些涂层具有改进在具有hrc50及更高(或甚至hrc55及更高)的rockwell硬度的硬材料(例如硬质钢)上的切削工艺的切削性能的良好潜力,以下实施例将对此进行详细论证。
附图简述
以下附图和实施例意于借助于一些特定的实施方案解释本发明,所述特定实施方案绝不意于限制权利要求的范围。参考以下附图,其中:
图1显示了tialn/alcrn和tialn/alcrsiwn硬涂层的xrd谱;
图2显示了tialn/alcrn和tialn/alcrsiwn硬涂层的拟合的xrd谱;
图3是tialn/alcrn和tialn/alcrsiwn硬涂层的sem横截面;
图4显示了具有六方相的tialn/alcrsiwn硬涂层的xrd谱;
图5是峰强度图表;
图6显示了使用前后在切削工具上的tialn/alcrsiwn的xrd谱。
图1显示了不同al/cr比的tialn/alcrn和3个tialn/alcrsiwn涂层的xrd图案。将所述涂层沉积在具有钴粘结剂相的商用烧结碳化物镶刃(insert)上,相应于获自实施例1和2的第1.6、2.4、2.5和2.6号涂层。除用于沉积第二层的靶材料之外,涂覆参数对于所有涂层都相同。靶组成以及涂层特征的细节可以参见表1和2。
用具有cukα(λ=1.5406nm)源的brukeraxs装置使用bragg-brentano几何学在2°的掠射角下记录所有xrd光谱,以使对来自支撑层和基底的衍射信号的扰动最小化。
可以从光谱中导出两个重要事实:
-使用w和si合金化的alcr靶导致该涂层衍射图案的峰高下降以及峰信号的加宽。这可以归因于由于合金化元素(特别是硅)造成的晶粒细化作用。因此,该alcrsiwn第二层沉积成具有纳米晶体结构,从图3b的sem图像横截面中也可以看到。
-与显示清楚的(111)取向的具有未合金化的alcrn第二层的涂层系统相比,具有合金化第二层的系统在晶体取向方面不显示或仅显示较弱的择优性。因此,如果用上述的掠入角测定,定义为衍射强度i(200)与i(111)(分别为材料的x射线衍射谱中的(200)和(111)平面)之比的qi在1的附近,优选为0.7~2。
如果如图2中可以看到的应用依照lorentian方法的峰拟合,那么可以从xrd图案中导出对该涂层结构的更详细的信息。该拟合已经应用于来自表示编号1.6和1.9的涂层的光谱的2θ刻度上44.5°附近的(200)信号。因此可以通过测定半最大值处的全峰宽(fwhm),对加宽进行量化。将该装置的恒定背景影响排除掉,得到以下值,显示alcrsiwn第二层的显著峰加宽:
tialn/alcrsiwn:fwhm(200)=1.7°
tialn/alcrn:fwhm(200)=1°
用si和w来合金化alcrn涂层导致从43.8°朝向较低的2θ角43.4°的峰值偏移,作者将其归因于由于钨原子的尺寸较大导致的晶格平面的加宽。由此晶格参数从alcrn的d(200)=2.064nm改变为alcrsiwn的d(200)=2.082nm。
图3a和3b中可以看到放大倍数为100000直径的两个涂层横截面的sem图像。在5kv的加速电压下记录sem图像。图像显示了两种双层涂层,各自具有约1μm厚度的柱状生长(ti0.5al0.5)n支撑层和较厚的顶层。因此,图3a显示了已经具有比可比较的粗柱状第一层更细的层的alcrn顶层。然而,图3b中的(al.57cr.31si.10w.02)n第二层的结构显示出比图3a显著更微细的纳米晶体结构,这对应于图1和2的xrd光谱观察到的峰加宽。
在图4中,将图1的tialn/alcrsiwn硬涂层的xrd光谱以更高的分辨率模式显示,箭头所示的2θ数值处应当出现六方相峰。可以清楚地认识到随着alcrsiwn涂层中铝含量的升高,该六方相峰变得越来越明显,其对应着涂层编号1.6、2.4、2.5良好的切削性能。
图5是tem-saed(透射电子显微镜-选择区域电子衍射)分析的峰强度图表,以给出来自tialn/(al0.62cr0.26si0.10w0.02)n涂层的立方和六方图案的更详细的图像。化合物的化学计量数是指靶组成。
图6中显示了在pvd过程之后沉积状态的(a)和依照用实施例8中详细描述的闪耀亮红色的碎片进行高速侧铣过程用过状态的(b)的tialn/(al0.57cr0.31si0.10w0.02)n涂层的xrd光谱。靶组成、厚度比和性能的细节参见表8。在铣削约40m之后获得的光谱(b)令人惊奇地显示了显著更高的六方xrd信号。通过将该涂层加热到至少750℃也可以观察到类似的六方相百分比的升高。为观察到这种温度引发的相变的最小al百分比为49~57%,具体取决于其他元素的基质,随着这种情况的出现,本领域的人员可以容易地对其进行确定。从750℃~800℃向上,六方相似乎随着温度的升高而增加,直至至少1100℃。在600℃(可以是通过pvd方法沉积状态的)直至约1100℃的温度范围内,可以在横截面stem分析中检测到由高aln含量的hcp相嵌入立方体相微晶制成的沉淀硬化网络。750℃时的微晶尺寸为5~200nm。用大多数切削试验,这种涂层都优于未显示相变的涂层,且较高的al靶组成(例如57%)似乎性能较好。这是更令人惊奇的,因为至今为止,在从室温到高速工具加工可以达到的任意温度的整个温度范围内具有稳定的刚玉相的氧化铝涂层,当面临非常高的热负载时,似乎具有无与伦比的优势。然而,对于(alcrsiw)n涂层,相变似乎具有有利的效应,其可能是由于在切削过程中高温稳定氮化铝相的连续扩增造成的。图6(b)中观察到的33.2°峰的峰位置似乎与获自jcpdsxrd数据集合的六方密堆hcp-aln的hcp100峰完美吻合。其他可以毫无疑义辨识的aln峰位于36.1°(表示002信号)、49.2°(102)、59.4°(110)和101.6°(211)。无论如何,至今为止对这种温度诱导相变行为的原因仅可以进行假设。仍需进行详细的调查。当al百分比超过约70%,hcp-aln-相变成主要相,不再能够观察到这种相变。
优选实施方案详述
下面借助实施例公开了本发明的一些特别实施方案,使用不同切削操作和切削参数对本发明的工具与现有技术的工具的切削性能进行了比较。
所有本发明的硬涂层和对比实施例都是使用oerlikonbalzersrcs©涂覆系统在电弧蒸发构造中进行沉积的。在pvd沉积过程中将切削工具安装在三重旋转夹具(threefoldrotatingfixture)上。下面实施例中所述的在切削工具上沉积的硬涂层在该切削工具的柄上测定具有2~6μm的总厚度。该新涂层与获自以下的现有技术涂层进行比较:oerlikonbalzers标准涂覆工艺,对于tialn称作futuranano,对于altin称作xceed,对于alcrn称作alcrona。
实施例1
使用实施例1,将涂覆有现有技术涂层(例如tialn、altin、alcrn和(alcrsiw)n)的端铣刀的切削性能与一系列涂覆有tialn或alcrn/(al1-c-d-ecrcsidwe)n双层式涂层的本发明的端铣刀进行比较。
所有涂层通过阴极电弧蒸发合成的。编号1.4~1.10的涂层的沉积是在600℃的沉积温度和3.5pa的总压力在氮气气氛下进行的。对于第一支撑层,施加优选在-40v~-100v的低偏压,而对于第二层,使用-80v~-200v的较高的偏压,其中第二层的偏压的绝对值比第一层的偏压高至少20v,优选高40v。编号1.1~1.3涂层的沉积是在500℃的沉积温度和3.0~4.0pa的总压力在氮气气氛下进行的。
表1中列出了和下列内容相关的数据:各种蒸发材料(靶)的组成、该涂层的第二纳米晶体涂层(m.l.)内的al/cr比、层的厚度比qd(m.l./s.l.)、在达到90m的切削长度之后所得到的由微米计的侧面磨损所表示的最终切削性能、和在达到100μm的磨损痕迹时以米计的累计工具寿命。
铣削条件:
工件:din1.2379(60hrc)
切削工具:双槽球鼻端铣刀,φ10mm,微粒碳化物级
轴转动:8000min-1
切削速度:200mmin-1
进给速度:0.1mm/齿
径向切削深度:0.5mm
轴向切削深度:0.3mm
冷却剂:压缩干空气
铣削操作:顺铣
单程长度:30m
寿命终止:单程结束时vbmax>100um。
从表1中可见,与涂覆有双层结构的本发明的工具相比,对比实施例1.3~1.6的性能差。尽管与实施例1.3的非合金化的alcrn涂层或实施例1.6的tialn/alcrn双层相比,实施例1.4~1.5的单层alcrsiwn涂层取得了显著改进,但这些涂层仍不能与本发明实施例1.7~1.8的性能相比较。然而,本发明双层的厚度比qd似乎是重要因素,如涂层具有薄含硅层的实施例1.10具有差的性能所示。
实施例2
实施例2中应用了和实施例1相同的沉积参数。试验2.1~2.3中第二涂层的si含量变化而al/cr恒定,试验2.4~2.6中al/cr比变化而si含量恒定。对实施例2的所有试验测定,钨仅有少量变化,最大值在大约2±0.3%,如表2所示。
铣削条件:
工件:din1.2379(60hrc)
切削工具:双槽球鼻端铣刀,φ10mm,微粒碳化物级
轴转动:8000min-1
切削速度:200mmin-1
进给速度:0.1mm/齿
径向切削深度:0.5mm
轴向切削深度:0.3mm
冷却剂:压缩干空气
铣削操作:顺铣
单程长度:30m
寿命终止:单程结束时vbmax>100um。
在表2中,在恒定si含量的情况下(编号2.4~2.6),硬度测定显示随着第二涂层所含的al/cr的升高,硬度降低。在恒定的al/cr比的情况下,在约10%的si含量时可以观察到硬度和切削性能的最大值。此外,可以清楚地看到si含量必须至少高于5.3%以获得良好的切削性能。
附图1详细描述了xrd分析所用的用于如上所述定义q1值的参数和构造。其中,用于定义该商值的(111)峰位于约37.5°的2θ角处,所述的(200)峰位于约43.7°处。优先的,在2°的掠入角测定时,发现q=i(200)/i(111)值在1的附近,特别为0.7~2。
实施例3
在依照下述参数的粗加工操作过程(aroughingoperation)中,将本发明的涂层编号3.4的铣削性能与现有技术的涂层编号3.1~3.3进行了比较。实施例3中应用了和实施例1相同的沉积参数。
铣削条件:
工件:din1.2344(52hrc)
切削工具:双槽球鼻端铣刀,φ10mm,微粒碳化物级
轴转动:4690min-1
切削速度:80mmin-1
进给速度:0.15mm/齿
径向切削深度:4mm
轴向切削深度:0.8mm
冷却剂:压缩干空气
铣削操作:顺铣
单程长度:15.5m
寿命终止:单程结束时vbmax>150um。
实施例4
在编号4.4中使用与编号3.4中所用相同的新涂层,在具有36hrc的硬度的退火工具钢的精加工操作过程中,与现有技术的涂层4.1~4.3比较性能。
铣削条件:
工件:din1.2344(36hrc)
切削工具:三槽端铣刀,φ8mm,微粒碳化物级
轴转动:4777min-1
切削速度:120mmin-1
进给速度:0.05mm/齿
径向切削深度:0.5mm
轴向切削深度:0.10mm
冷却剂:压缩干空气
铣削操作:顺铣
单程长度:5m
寿命终止:单程结束时vbmax>100um。
与现有技术的涂层相比性能的显著改进证明了该新涂层对较软的钢进行机械加工的潜力。
实施例5
实施例5中在切削应用之前,对涂层应用依照de2020060006541使用刷涂机的刷涂处理,以调节可与最初均匀磨损可比较的状态,其确保了之后在切削应用过程中磨损的均匀进行。
依照degm202006000645.1的图2并参考说明书第5页最后一段到第6页第1段末(由此将其通过引用结合进本说明书),用旋转刷进行对该经涂覆的工具的处理。刷子与该工具轴之间的角度约为30°,旋转速度为650转/分。刷涂材料为浸渍sic的nylon,sic粒子尺寸为400目,刷毛直径为0.45mm,刷毛长度为35mm。该工具行星齿轮(toolsatellite)的旋转为9转/分,支撑该行星齿轮的平台的旋转为约0.3转/分。通过使用浸渍al2o3的刷子可以达到将数微米的工件材料条沿切削刃切掉的类似效果。然而在这种情况下,如果应该使用与上述相同的参数(例如将支撑平台的转速设定为0.1转/分),刷涂时间必须是三倍。
依照编号1.2和编号1.8的参数沉积涂层。
铣削条件:
切削工具:双槽球鼻端铣刀,5mm球半径,微粒碳化物级
工件:1.237962hrc
轴转速:6000转/分
轴向切削深度:0.4mm
径向切削深度:0.05mm
进给速度:0.10mm/齿
切削速度:184m/min
进料:600mm/min
冷却剂:空气
铣削操作:用于槽(pocket)(56mm×26mm)的顺铣技术
单程长度:1个槽(pocket)
寿命终止:在槽端部时vbmax>100um。
表5的铣削数据显示:具有这种切削操作的刷涂处理非常适用于涂覆有新多层涂层(5.3和5.4)的工具,而对于涂覆有altin的工具,在应用这种处理时甚至发现其性能略有降低。
可替代地或甚至除此之外,在涂覆工艺之前能够应用通过刷、喷砂、或磨削操作等的类似珩磨处理。
实施例6
制备一系列样品测试钨作为单一合金化元素的影响。依照编号1.2和1.8的参数沉积涂层。
铣削条件:
切削工具:双槽球鼻端铣刀,φ10mm,微粒碳化物级
工件:1.2379(62hrc)
轴转动:8000min-1
切削速度:200mmin-1
进给速度:0.1mm/齿
径向切削深度:0.5mm
轴向切削深度:0.3mm
冷却剂:压缩干空气
铣削操作:顺铣
单程长度:30m
寿命终止:单程结束时vbmax>100um。
与编号6.1相比,编号6.2显示了略微改进的铣削性能。这能够明确地归因于将w添加到该第二基于alcrn的层中。和具有不同al/cr比且另外包含si的优化涂层进行比较,仍存在差距。
实施例7
表7中测定了相应于支撑层的tialn层和双层本发明涂层的硬度和杨氏模量。测定方法是在40mn负载下的vickers微硬度测试,导致仅约0.3μm的穿透深度。因此对该测试没能检测到来自基底材料和支撑层的显著影响。与第二涂层相比,该支撑层的特征在于较低的硬度值和较高的杨氏模量。
从表7中实施例显然可见,在与现有技术的alcrn涂层相比较时,本发明的涂覆有alcrsiwn的工具显示出在硬工具加工操作性能方面的提高。
实施例8
表8中显示了现有技术的涂层8.1和两种本发明的涂层8.2和8.3(显示了图6中详细描述的热诱导相变)的性能。然而,靶组成8.2的涂层难于见到沉积状态的hcp相的迹象。仅在切削40m之后,才可以检测到清晰的但比使用涂层8.3的图6(b)中明显更小的信号。
切削工具:六槽正方形端铣刀,微粒碳化物级
工件:din1.2379(60hrc)
轴转速:7958l/min
轴向切削深度ae:8mm
径向切削深度ap:0.1mm
进给速度fz:0.042mm/齿
切削速度vc:200m/min
冷却剂:压缩空气
铣削操作:侧铣
单程长度:10m
寿命终止:vbmax>150um。
尽管在上述说明书和实施例中关注于硬工具加工应用(hardtoolingapplication),但本领域的人员将认识到这种涂层也可以有利地应用于其他工具和工具加工应用,例如用于成形操作,例如冲压和锻造,或热喷射操作,例如压铸或模铸,以及用于工程化元件,特别是用于具有高耐磨性和高热硬性需求的元件。这种工程化应用的实例可以是内燃机的部件,特别是动力系的部件,例如凸轮和挺杆;燃料喷射系统的部件,例如注射针和阀门座、活塞环和销、高温轴承等。