一种水处理铜复配缓蚀剂的制作方法

文档序号:12997143阅读:793来源:国知局
一种水处理铜复配缓蚀剂的制作方法与工艺

本发明属于化工领域,涉及缓蚀剂,具体来说是一种水处理铜复配缓蚀剂。



背景技术:

铜及其合金具有优良的导电和导热性,在电力、电子、海洋等行业得到了广泛的应用。铜及其合金虽然具有一定的耐蚀性,但在一些含有高浓度cl-的腐蚀介质中很容易被腐蚀,从而对材料的外观和性能造成破坏,导致巨大的经济损失和安全隐患。针对铜及其合金的腐蚀防护,除了研制新型铜合金材料外,寻求简单高效的防腐方法显得尤为重要。缓蚀剂的使用具有操作简单、量少成本低等特点,是一种经济有效的防腐方法。但单一缓蚀剂的使用已无法达到防腐工作的要求,开发新型复配缓蚀剂成为研究者的共识。

以苯并三氮唑(bta)为代表的唑类化合物是铜及其合金的特效缓蚀剂。btah可以和一价铜离子形成链状聚合物,从而在铜合金表面形成保护层。但单独使用时用量大,成本高并且具有一定的毒性,会对环境造成影响。从目前相关报道来看,复配缓蚀剂的研究很多集中在有机唑类化合物与无机金属盐、表面活性剂和其他有机化合物上。申请号为201010608485.4的专利提供了一种复合配方,以顺酐辛胺、油酸酰胺、钼酸钠和bta进行复合。该配方的使用避免了单独使用bta的弊端,但其缓蚀技术指标有待进一步提高。申请号为201210121066.7的专利利用有机唑类化合物和无机盐,实现了缓蚀剂高浓度快速成膜,低浓度维持运行修膜。但其工艺路线较为复杂,药剂的种类较多,而且一些药剂的水溶性不好,只溶解在有机溶剂中,对水质产生影响。从上述相关报道分析,复配缓蚀剂的研究存在着缓蚀效果不佳的问题。而目前研究的复配缓蚀剂大多是通过缓蚀剂间的物理和化学吸附作用,在铜表面形成保护膜,从而起到协同作用。但是通过这种相互作用形成的协同效果并不是很明显,寻找其他的方式提高缓蚀剂的复配缓蚀效果是非常重要的。cu(i)催化的有机叠氮和炔烃点击化学反应具有反应条件温和、产率高、立体选择性好等优点,已被普遍使用合成三氮唑衍生物应用为缓蚀剂。利用铜腐蚀产生的cu+,通过表面点击化学反应,发挥缓蚀剂的协同作用,能有效改善对铜及其合金的缓蚀效果。



技术实现要素:

针对现有技术中的上述技术问题,本发明提供了一种水处理铜复配缓蚀剂,所述的这种水处理铜复配缓蚀剂要解决现有技术中的缓蚀剂对铜及其合金缓蚀效果不佳的技术问题。

本发明提供了一种水处理铜复配缓蚀剂,包括苄基叠氮,所述的苄基叠氮的浓度为0.1-1.0mm。

进一步的,所述的苄基叠氮的浓度为1.0mm。

本发明提供了一种水处理铜复配缓蚀剂,包括3-丁炔-1-醇,所述的3-丁炔-1-醇的浓度为0.1-1.5mm。

进一步的,所述的3-丁炔-1-醇的浓度为1.0mm。

本发明提供了一种水处理铜复配缓蚀剂,包括苄基叠氮和3-丁炔-1-醇,所述的苄基叠氮的浓度为0.3-0.7mm,所述的3-丁炔-1-醇的浓度为0.3-0.7mm。

进一步的,所述的苄基叠氮和3-丁炔-1-醇的浓度之和为1.0mm。

进一步的,所述的苄基叠氮的浓度为0.5mm,所述的3-丁炔-1-醇的浓度为0.5mm。

具体的,上述缓蚀剂的溶剂为水。或者将苄基叠氮和/或3-丁炔-1-醇溶解在3wt.%nacl溶液中。

具体的,上述的苄基叠氮(ba),分子式为c7h8n3;3-丁炔-1-醇(3-bol),分子式为c4h6o。

本发明的制备是将苄基叠氮和/或者3-丁炔-1-醇溶解在水中,或者溶解于3wt.%nacl溶液中即可使用。

由电化学结果可知,叠氮和端炔化合物之间存在缓蚀协同作用,即从缓蚀效率来讲,具有“1+1≥2”的效果,最优缓蚀效率可达到92.2%。这种复配缓蚀剂能使铜的阴、阳极腐蚀电流密度均降低,同时抑制铜腐蚀的阴、阳极反应,是一种混合型缓蚀剂。

目前,有机缓蚀剂的协同机理有以下几种:一是某种缓蚀剂吸附后能改变金属表面电荷分布,有利于另一种缓蚀剂的吸附,形成更好的保护膜。二是复配缓蚀剂能在金属表面形成双层膜结构,相互增强膜的稳定性。但本发明使用的复配缓蚀剂,在铜腐蚀产生的cu+的催化作用下,能够在铜表面发生点击化学反应形成三氮唑化合物。三氮唑化合物沉积在铜表面,同时还有两种复配缓蚀膜的存在,这种三元缓蚀膜增强了对铜的保护效果。利用腐蚀产生的金属离子的催化作用,诱导缓蚀保护膜的形成,来抑制金属腐蚀的方法具有创新性。

通过电化学测试得出复配缓蚀剂配方为:0.5mmba、0.5mm3-bol,复配药剂总用量为1.0mm,缓蚀效率达到92.2%。本发明采用的复配缓蚀剂不仅能改善单一缓蚀膜的缺陷,而且能通过表面点击反应形成三氮唑缓蚀膜,抑制铜腐蚀的阴极和阳极反应。本发明使用的复配缓蚀剂在铜腐蚀产生的cu+催化作用下,具有更好的协同作用,能高效抑制铜在海水介质中的腐蚀。

本发明和已有技术相比,其技术是显著的。本发明利用有机叠氮和炔烃化合物的表面点击化学反应,提供一种新型的水处理铜缓蚀剂配方。通过点击组装在铜表面制备了三氮唑缓蚀膜,能降低铜在海水淡化过程中的腐蚀,提高设备利用率,进而增强生产率和经济效益。

附图说明

图1为铜电极在含有不同浓度3-bol缓蚀剂的3wt.%nacl溶液中浸泡1h后的(a)交流阻抗,(b)极化曲线。

图2为铜电极在含有不同浓度ba缓蚀剂的3wt.%nacl溶液中浸泡1h后的(a)交流阻抗,(b)极化曲线。

图3为铜电极在含有不同浓度复配缓蚀剂的3wt.%nacl溶液中浸泡1h后的(a)交流阻抗,(b)极化曲线。

图4为铜试片在含有不同缓蚀剂的3wt.%nacl溶液中浸泡24h后的扫描电镜图(sem):(a)空白溶液;(b)含1.0mmba缓蚀剂;(c)含1.0mm3-bol缓蚀剂;(d)含0.5mm3-bol+0.5mmba缓蚀剂。

具体实施方式

下面通过实施例并结合附图对本发明进一步阐述,但并不限制本发明。

电化学分析

电化学测量是在solartron1260和1287electrochemicalinterface测试系统上完成的,测试内容包括交流阻抗和极化曲线。交流阻抗和极化曲线测试都是通过三电极体系进行的,饱和甘汞电极(sce)作为参比电极,pt电极作为辅助电极。铜电极作为工作电极,用环氧树脂密封,露出1cm×0.5cm的工作面,测试之前进行预处理。交流阻抗测试的频率范围从10-2-105hz,测量的信号幅值为5mv正弦波。极化曲线的扫描速率为1mv/s,扫描范围相对于开路电位±250mv。

实施例1

本实施例中的水处理铜复配缓蚀剂,其中腐蚀介质是3wt.%nacl溶液,配制不同浓度的3-bol缓蚀溶液,3-bol浓度为0.1、0.5、1.0、1.5mm。向3wt.%nacl溶液中分别添加不同浓度的3-bol缓蚀溶液,然后将铜电极浸泡在包含缓蚀剂的3wt.%nacl溶液中,室温下浸泡1小时后测试交流阻抗和极化曲线,测试结果见图1(a)和图1(b)。

所述的铜电极依次经不同目数金相砂纸打磨后,依次用无水乙醇、去离子水冲洗,以除去表面残渣和油脂。

从图1(a)可以看出,添加3-bol后,阻抗的圆弧半径增加。由交流阻抗得出的膜电阻rf、电荷转移电阻rct、极化电阻rp、缓蚀效率ηr等参数见表1。缓蚀效率的计算公式如下:

其中rp,inh是添加缓蚀剂后的极化电阻,rp,(0)是未添加缓蚀剂的极化电阻,rp是rct和rf的和。

由表1可知,其缓蚀效率随3-bol浓度的增加而增加,在1.0mm时缓蚀效率最好。继续增大3-bol浓度,缓蚀效率反而下降。从图1(b)可以看出,3-bol的添加使腐蚀电位正移,腐蚀电流显著降低。交流阻抗和极化曲线结果得出3-bol能有效抑制铜腐蚀的阳极反应,是一种阳极型缓蚀剂。

实施例2

本实施例中的水处理铜复配缓蚀剂,其中腐蚀介质是3wt.%nacl溶液,配制不同浓度的ba缓蚀溶液,ba浓度为0.1、0.3、0.5、1.0mm。向3wt.%nacl溶液中分别添加不同浓度的ba缓蚀溶液,然后将铜电极浸泡在包含缓蚀剂的3wt.%nacl溶液中,室温下浸泡1小时后测试交流阻抗和极化曲线,测试结果见图2(a)和图2(b)。

所述的铜电极依次经不同目数金相砂纸打磨后,依次用无水乙醇、去离子水冲洗,以除去表面残渣和油脂。铜电极被浸泡在含有不同浓度缓蚀剂的3wt.%nacl溶液中。

从图2(a)和图2(b)可以看出,添加ba后,阻抗弧半径明显增加,腐蚀电位正移,腐蚀电流密度下降。由此可知:铜电极在3wt.%nacl溶液中的腐蚀速率明显降低。

实施例3

本实施例中的水处理铜复配缓蚀剂,其中腐蚀介质是3wt.%nacl溶液,缓蚀剂总浓度为1mm,复配缓蚀剂的比例分别是0.3mm3-bol+0.7mmba、0.5mm3-bol+0.5mmba、0.7mm3-bol+0.3mmba。向3wt.%nacl溶液中分别添加上述的复配缓蚀剂,然后将铜电极浸泡在包含上述缓蚀剂的3wt.%nacl溶液中,室温下浸泡1小时后测试交流阻抗和极化曲线,测试结果见图3(a)和图3(b)。

从图3(a)和图3(b)可知,复配缓蚀剂的添加也能减缓铜的腐蚀。结合表1数据可知,与缓蚀剂总量为1mm的3-bol或ba相比,在复配比例为0.5mm3-bol+0.5mmba时,其缓蚀效率有所提高,说明在这个配比下两者存在缓蚀协同作用。但在其他比例下并没有显示出协同作用,这与点击化学反应在1:1的配比下发生是一致的。在添加0.5mm3-bol+0.5mmba后,阴极和阳极腐蚀电流密度均有所降低,铜的阴极和阳极腐蚀反应均被抑制,说明这种复配缓蚀剂是一种混合型缓蚀剂。

实施例4

将铜试片表面依次经过不同目数金相砂纸打磨后,用无水乙醇、去离子水冲洗,以去除表面油污和油脂。预处理好的铜试片在空白和含有不同缓蚀溶液的3wt.%nacl溶液中浸泡1天后,用去离子水冲洗掉表面吸附的有机分子,干燥后用扫描电子显微镜观察铜试片表面的形貌。其结果见图4,实验温度为室温。

由图4(a)可以看出,在空白溶液中浸泡一天的铜试片表面出现了严重的腐蚀坑。添加ba缓蚀溶液后,铜表面变得相对光滑,没有出现明显的腐蚀坑。腐蚀介质中添加3-bol后,铜表面出现了一层明显的复合膜。这是由铜的腐蚀产物和3-bol形成的复合物,沉积在铜表面防止铜的进一步腐蚀。从图4(d)可以看出,添加复配缓蚀剂后,铜表面形貌明显和添加单一缓蚀剂的表面形貌不一样。铜表面出现了一些大分子聚合物,这是叠氮和炔类化合物在cu+的催化作用下,形成了三氮唑分子,这种三氮唑化合物相互作用形成大分子链,吸附在铜表面,形成致密的保护膜。

表1铜电极在含有不同浓度的3-bol的3wt.%nacl溶液中浸泡1h后的交流阻抗参数

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1