本发明属于低膨胀合金技术领域。特别涉及一种具有高的最大磁导率的低膨胀合金及制备方法。
背景技术:
随着现代航天、航空、船舶等工业的发展,对惯性导航系统的精度和可靠性要求越来越高。由于惯性导航系统的惯性部件活动部分很多,机械结构精密而复杂,所组成的系统需要在复杂环境下长时间工作,连续提供高精度的多种导航数据。为此要求惯性部件的材料具有优异的综合性能。膨胀合金作为一种重要的惯性元件材料,在使用过程中,除了对膨胀系数提出要求,还对其最大磁导率提出要求。目前惯性元件常用的低膨胀合金是4J32合金(FeNi32Co4)和4J36合金(FeNi36)。需要指出的是《YB/T5241-2014低膨胀铁镍、铁镍钴合金》标准中规定4J32合金的膨胀系数α(20~100℃)为≤1.0×10-6/℃,4J36合金的膨胀系数α(20~100℃)为≤1.5×10-6/℃。利用常规的热处理工艺(在氢气保护条件下,随炉升温至840℃,保温1小时,水冷,在315℃±10℃,保温1小时,随炉冷或空冷),4J32合金的最大磁导率μm接近4780Gs/Oe,而4J36合金的最大磁导率μm仅为3270Gs/Oe左右。也就是说,常规的4J32和4J36合金的膨胀性能良好,但是磁性能却较差。进而影响了惯性元件的灵敏性。为此开发一种兼有高的最大磁导率、低膨胀系数且加工性能优异的合金应用于惯性元件,成为惯性导航领域的重要任务。
技术实现要素:
本发明的目的在于提供一种具有高的最大磁导率的低膨胀合金及制备方法,解决了惯性元件用常规的4J32合金、4J36合金存在的最大磁导率和膨胀系数不能同时满足要求的问题。
一种具有高的最大磁导率的低膨胀合金,成分按重量百分含量为:C:0.003~0.060%、Si≤0.05%、Mn≤0.09%、P≤0.005%、S≤0.0025%、Ni:32.8~33.8%、Co:4.0~5.0%、V≤1.0%、Nb≤1.0%、Cr≤1.0%,其余为Fe。
优选的,所述成分含量中,Nb+V≤1.0%。
本发明中添加一定量的C、Nb、V,使之在低温条件下形成NbC、VC析出相,固化了游离的碳,稳定了合金的组织,有利于膨胀系数的降低。同时在晶界处形成VC析出相,有利于控制合金的晶粒尺寸,调整合金的磁性能。但是C、Nb、V含量不能过多,还要满足一定的比例,因此C含量控制在0.003~0.060%,V含量控制在≤1.0%,Nb含量控制在≤1.0%。
本发明中添加一定量的Cr,有利于降低合金的磁致伸缩系数,使得最大磁导率的提高,但是过多含量的Cr,会造成合金的膨胀系数增加,因此Cr含量控制在≤1.0%。
合金的性能除依赖于合金成分外,还决定于合金的组织结构。合金的组织结构由合金的冶炼、热变形和热处理工艺决定。
一种具有高的最大磁导率的低膨胀合金的制备方法,具体步骤及参数如下:
1、采用真空感应炉冶炼,在1150~1230℃条件下,锻造成70~90×70~90mm方坯;
2、再经1150℃~1210℃热轧成Φ35~Φ50mm棒材;
3、成品棒材在氢气保护条件下,随炉升温至1000℃~1200℃,保温5~8小时,缓冷至500~600℃,再快冷到300~320℃,保温1~3小时,缓冷到室温。
本发明采用的热处理制度采用多步骤热处理,与常规低膨胀合金不同。其优点在于在高温条件下(1000℃~1200℃)下处理,有利于晶粒的长大,提高合金的磁性能。在低温条件(300~320℃)下,保温1~3小时,有利于消除前面产生的应力,稳定膨胀性能。
采用上述技术方案所产生的有益效果在于:本发明在4J32合金化学成分的基础上,严格控制S、P含量,降低Mn含量,适当的添加Nb、V、Cr等元素,通过真空炉冶炼控制合金的纯净度、热轧获得均匀细小的晶粒组织,再通过合理的热处理,使得晶粒均匀长大,在有效的保证了合金低膨胀系数的前提下,提高合金的最大磁导率。
所述方法制备的合金最大磁导率μm≥7100Gs/Oe、膨胀系数α(20~100℃)≤1.3×10-6/℃。
本发明的优点在于:为满足惯性元件对合金膨胀系数和最大磁导率的要求,通过合理的合金化学成分,充分发挥各合金元素的作用,结合真空炉冶炼、热轧及热处理工艺,生产出一种具有高的最大磁导率的低膨胀合金。
具体实施方式
实施例1-6
本高磁导率低膨胀系数合金采用下述的化学成分含量制备而成。
本合金经真空感应炉冶炼、锻造开坯、热轧成棒材,再制成测试尺寸要求的样品。采用表1所示的成分配比,并以4J32合金作为对比例。所述实施例和对比样品均采用真空感应炉冶炼,在1150~1230℃条件下,锻造成方坯,再经1150℃~1210℃热轧成棒材。所不同的是,实施例1、4和对比例在1230℃条件下,锻造成70×70mm方坯,再经1190℃热轧成Φ35mm棒材,热处理制度为:在氢气保护条件下,随炉升温至1200℃,保温5小时,缓冷至600℃,再快冷到315℃,保温1小时,缓冷到室温;实施例2、3是在1210℃条件下,锻造成80×80mm方坯,再经1180℃热轧成Φ45mm棒材,热处理制度为:在氢气保护条件下,随炉升温至1000℃,保温6小时,缓冷至600℃,再快冷到315℃,保温2小时,缓冷到室温;实施例5、6是在1200℃条件下,锻造成90×90mm方坯,再经1150℃热轧成Φ50mm棒材,热处理制度为:在氢气保护条件下,随炉升温至1100℃,保温8小时,缓冷至550℃,再快冷到315℃,保温3小时,缓冷到室温。各实施例样品和对比例样品的最大磁导率和膨胀系数数据见表2。
表1 各实施例中合金的化学成分(wt.%)
表2 各实施例样品和对比例的最大磁导率和膨胀系数数据
由表2可知,本发明合金不但具有较高的最大磁导率(≥7100)Gs/Oe,同时具有较低的膨胀系数(≤1.3×10-6/℃)。尽管膨胀系数相对于4J32合金略有增加,(与其他合金相比,仍属于低膨胀合金),但合金的磁性能指标获得明显的提升。说明本技术在改善常规低膨胀合金的磁性能方面非常有效。