一种高性能类金刚石复合涂层及其制备方法与流程

文档序号:15426731发布日期:2018-09-14 21:06阅读:317来源:国知局

本发明涉及真空镀膜领域,具体地说是一种用于提高类金刚石涂层使用寿命的涂层及其制备方法。



背景技术:

等离子增强磁控溅射技术(plasmaenhancedmagnetronsputtering,简称pems)属于物理气相沉积(physicalvapordeposition,简称pvd)的一种,该技术可以制备各种金属及金属化合物涂层。

等离子全方位离子镀膜技术(plasmaimmersioniondeposition,简称piid)是化学气相沉积(chemicalvapordeposition,简称cvd)技术的一种,它的优势在于不需要对工件进行转动,可以对复杂工件内外表面同时进行全方位镀膜。利用piid技术制备得最多的涂层之一就是类金刚石涂层(diamondlikecarbon,简称dlc),dlc主要在加工铝合金、铜合金、石墨等材料。由于dlc涂层与基体结合力较差,在加工过程容易发生膜层脱落或崩膜情况。目前针对提高dlc结合力的方法主要包含以下4个方面:

(1)表面预处理

表面预处理是指利用超声波碱性溶液去除工件表面的宏观污渍,包括油、蜡等,达到表面清洁状态。表面预处理的好坏是保证涂层与基体拥有好的结合力、制备高性能涂层的基础。清洁工件表面预处理工艺容易在加工过程中忽视,仅做一些常规的表面清洁,其效果一般。

(2)打底层

在dlc涂层与基体之间镀一层/多层膜,膜的厚度通常只有几百纳米到1个微米厚,它不仅可以与基体原子间可以形成稳定的化学键,还可以和外层dlc涂层里面的c元素形成化学键,从而可以显著提高dlc涂层的结合力。传统pems技术制备金属氮化物和piid技术制备dlc涂层一般而言是放在不同的设备上操作的,对于拥有一定冲击力(要求膜基结合力好)、表面阻力低的应用场合,单一技术并不能很好的解决。

(3)等离子渗氮

通过向真空室内充入n2,在高能量n等离子体的轰击下和高温(500-600℃)作用下,部分n原子会渗入基体纳米级至微米级深度,同时会与基体原子形成氮化物,这样在外层镀dlc后可以显著提高结合力。但对于热处理温度较低的材料,高温下会发生退火,硬度下降明显,因此渗氮工艺对工件材质上会有所限制。

(4)等离子注入

通过在工件表面施加10kv以上的偏压,使等离子体中带正电的离子轰击工件,在强大的轰击力作用下注入到工件表层内部,注入层深度一般为纳米级。等离子注入对偏压电源要求较高且价格昂贵,另外,由于过程中产生辐射,需增加防护措施。



技术实现要素:

本发明提供一种新型高性能类金刚石复合涂层制备工艺,达到提高结合力,延长使用寿命的目的。

本发明解决技术问题采用如下方案:

一种高性能类金刚石复合涂层,其特点征在于,所述涂层由内至外依次包括cr打底层、crn过渡层和dlc表层;或ti打底层、tin过渡层和dlc表层。

进一步,所述crn过渡层中,原子数百分比如下:

cr:50%-61%;

n:39%-50%;

o:0-2%。

进一步,所述tin过渡层中,原子数百分比如下:

ti:50%-61%;

n:39%-50%;

o:0-2%。

进一步,所述dlc表层中,原子数百分比如下:

h:20%-30%;

c:63%-80%;

n:0-5%

o:0-2%。

进一步,打底层厚度为50-100nm;过渡层厚度为0.2-1.0μm;dlc表层层厚度为2.0-5.0μm。

本发明同时保护一种高性能类金刚石复合涂层的制备工艺,其特点在于,包括如下步骤:

(1)制备打底层

将工件置于充满等离子体ar+的真空罐内,开启磁控溅射cr靶或ti靶,镀膜时间5-10分钟;

(2)制备过渡层

保持步骤(1)状态下,向真空罐内同时充入氮气,镀膜时间10-30分钟;

(3)制备dlc表层

将真空罐内的ar和n2关闭,同时向真空室充入c2h2气体,镀膜时间90-150分钟。

进一步,所述真空罐内设有转架,所述工件固定在转架上,所述转架与真空罐壁绝缘设置,所述真空罐内还设有一作为电子发射源的钨丝,所述钨丝加载交流电使其处于红热状态;同时在钨丝和真空罐体之间加载有直流偏压,加热后的钨丝向真空室内释放大量的电子,在放电电压的作用下电子向真空壁加速,在此过程中电子与中性ar气分子发生碰撞,导致ar气体电离,并最终使真空罐内充满等离子体。

进一步,制备打底层工艺参数如下:

真空罐内空间:1m3,钨丝长度:30cm,钨丝上加载交流电压:20v,钨丝电流:30a-40a,钨丝相对真空罐电压:-120v,钨丝相对真空罐1偏流:5-10a,转架转速:1-2rpm,磁控溅射靶电压:-500v,磁控溅射靶功率:2-4kw,工件偏压:120v,ar气流量:150sccm,气压:0.8pa,镀膜时间:5分钟;

制备过渡层工艺参数如下:

钨丝上加载交流电压:30v,钨丝电流:45a-55a,钨丝相对真空罐14电压:-150v,钨丝相对真空罐偏流:10-15a,转架转速:2-4rpm,磁控溅射靶电压:-500v,磁控溅射靶功率:2-4kw,工件偏压:-40v,ar气流量:200sccm,n2流量:50sccm,气压:1.5-2.0pa,镀膜时间:10-30分钟;

制备dlc涂层工艺参数如下:

钨丝上加载交流电压:30v,钨丝电流:45-55a,钨丝相对真空罐电压:-150v,钨丝相对真空罐偏流:10-15a,转架转速:0.5rpm,工件偏压:-3-4kv,c2h2流量:150-300sccm,气压:0.8-2pa,镀膜时间:90-150分钟。

与已有技术相比,本发明有益效果体现在:

本发明在传统表面预处理技术的基础上,使用自有的清洗方法,并配合褪镀、干式喷砂、湿式喷砂、抛光等工序辅助,优化工件表面的清洁效果以及刃具类工件钝化的效果。涂层制备工艺在中、低温下进行,实现在相同结合力等级前提下以金属打底和过渡层的方式取代等离子渗氮工序,使用cr、ti等金属元素打底可以实现dlc快速褪镀;在制备dlc过程中,使用等离子增强装置可以使c2h2的离化率由原有的10%提升至30%,离化率的提高使膜层更加致密,同时有助于结合力的提高,该方法制备的dlc可以使整个涂层结合力提高1-2个等级(依据vdi3198测试标准),膜层的干摩擦系数由0.3-0.6降低至0.05-0.1,同工况测试在摩擦阻力显著降低的情况下膜层使用寿命提高2-3倍。

附图说明

图1是本发明制备金属打底及过渡层时真空罐状态示意图。

图2本发明制备类金刚石涂层真空罐状态示意图。

图3本发明类金刚石复合涂层结构示意图。

图4是不同制备工艺制备的dlc涂层结合力情况对比。

其中:1、绝缘子,2、转架,3、工件,4、溅射靶,5、pems金属等离子体,6、低密度等离子体,7、钨丝,8、抽气口,9、piid等离子体,10、工件基体,11、金属打底层,12、金属氮化物过渡层,13、类金刚石涂层,14、真空罐体。

为了便于本领域技术人员理解,下面结合附图通过具体实施方式对本发明作进一步的说明。

具体实施方式

本实施例类金刚石复合涂层制备工艺,包括工件表面预处理、金属打底制备、金属氮化物过渡层制备、类金刚石涂层制备等步骤,具体操作方法及工艺过程如下:

一、工件表面预处理

对于来料检查符合镀膜处理条件的工件,需要对其表面进行预处理才能进炉进行镀膜。

工件表面预处理包括原有涂层褪镀处理、干式喷砂处理、湿式喷砂处理、抛光处理以及超声波清洗、防锈处理、高温风切除水等预处理步骤,具体工艺步骤如下:

1、原有涂层褪镀处理

对于工件表面的原有涂层一般需要在镀膜前将其去除,一方面是为了使涂层不至于太厚,涂层大于5μm在加工过程极易造成崩膜;另外可以保证镀膜结合力不受底层结合力的影响。一般采用化学方法进行褪镀,对于不同的涂层选择的药液一般不同。以下列出几种涂层褪镀工艺如下:

表1

(表1的适用范围是指原工件中含有适用范围中的涂层)

2、干式喷砂处理

干式喷砂是采用压缩空气为动力,夹杂磨料(棕刚玉、白刚玉、玻璃珠、塑料颗粒)高速喷射到需要处理的工件表面,由于磨料对工件表面的冲击和切削作用,可以去除工件表面的毛刺和大的宏观污渍,另外还可以使工件表面的机械性能得到改善,提高工件的抗疲劳性,增加了它和涂层之间的结合力,延长了涂层的耐久性。

干式喷砂处理工艺参数:

喷枪嘴距离工件表面:100-200mm,喷砂压力:0.2-0.4mpa;喷砂角度:与工作面成30°-60°,喷砂次数:正反装各一次;喷枪在工作中作轻微的摆动;根据不同产品选择砂料:220目玻璃珠或者白刚玉;喷砂结束用氮气将工件表面的砂料出干净。

3、湿式喷砂处理

白刚玉湿喷的目的圆化工件的刃口,使其工作状态由单一的“点线接触”变为“面接触”,增大了受力面积可以有效提高工件的服役寿命,刃口圆化范围需控制在15-30μm,过大或过小都会严重影响寿命;所述白刚玉颗粒大小为200-500目,工作压力0.15-0.3mpa,喷嘴与工件表面角度90°,喷嘴距离工件距离180-300mm。

4、抛光处理

抛光处理是用尼龙抛光轮或羊毛轮对工件表面进行抛光处理,一般配合粒径5μm金刚石抛光膏使工件的工作面表面粗糙度ra≤0.4。

5、超声波清洗/防锈处理/高温风切除水

超声波清洗、防锈处理、高温风切除水均是在多槽超声波清洗线上进行,具体参数如下:

表2

二、金属打底层制备

如图1所示,通过抽气口8将真空罐14内的气压抽至10-3pa或以下,并加热至200℃,烘烤1h,备用;转架2通过绝缘陶瓷1与真空罐14绝缘。使用加热的钨丝7作为电子发射源,钨丝上加载交流电使其处于红热状态,通过在钨丝7和真空罐14体之间加载直流偏压,加热后的钨丝7向真空室内释放大量的电子,在放电电压的作用下电子向真空壁加速,在此过程中电子与中性ar气分子发生碰撞,导致ar气体电离,并最终使真空罐14内充满等离子体6。

相比传统磁控溅射,钨丝7产生的等离子体可以显著增强等离子体密度。所以,等离子体的增加可以提高溅射速率,同时工件也可以吸引充满于整个真空罐14内的ar+,其不断的轰击使膜层的致密度和结合力增强。

金属打底工艺参数如下:

真空罐内空间:1m3,钨丝7长度:30cm,钨丝7上加载交流电压:20v,钨丝7电流:30a-40a,钨丝7相对真空罐14电压:-120v,钨丝7相对真空罐14偏流:5-10a,转架2转速:1-2rpm,磁控溅射靶4电压:-500v,磁控溅射靶4功率:2-4kw,工件3偏压:120v,ar气流量:150sccm,气压:0.8pa,镀膜时间:5分钟,打底层11厚度:50-100nm。

三、制备金属氮化物过渡

制备金属氮化物过渡层12是向真空罐14内继续充入氮气,同时调节镀膜工艺参数,将钨丝7表面的功率加载至1.5-2kw,并提高钨丝7相对真空罐14电压,加大电子发射功率后使磁控溅射靶4溅射出的高密度的金属等离子体5,高密度的金属等离子体5具有高的离化率,使金属氮化物过渡层12更加致密,并能显著提高涂层结合力。

制备金属过渡层工艺参数如下:

钨丝7上加载交流电压:30v,钨丝7电流:45a-55a,钨丝7相对真空罐14电压:-150v,钨丝7相对真空罐14偏流:10-15a,转架2转速:2-4rpm,磁控溅射靶4电压:-500v,磁控溅射靶4功率:2-4kw,工件3偏压:-40v,ar气流量:200sccm,n2流量:50sccm,气压:1.5-2.0pa,镀膜时间:10-30分钟,涂层厚度:0.5-1.0μm。

四、制备类金刚石涂层

如图2所示,制备类金刚石涂层13是将真空罐14内的ar和n2关闭,然后向真空罐14充入c2h2气体,并将转架2及工件3上的偏压切换为高压脉冲偏压电源,保持等离子增强装置(钨丝7)处于开启状态制备类金刚石涂层13。

钨丝7持续发射的电子与c2h2气体分子发生碰撞,使c2h2气体的离化率由10%提高至30%左右,制备的类金刚石涂层13更加致密,结合力更高。

制备dlc涂层工艺参数如下:

钨丝上加载交流电压:30v,钨丝电流:45-55a,钨丝相对真空罐电压:-150v,钨丝相对真空罐偏流:10-15a,转架转速:0.5rpm,工件偏压:-3-4kv,c2h2流量:150-300sccm,气压:0.8-2pa,镀膜时间:90-150分钟,涂层厚度:2.0-5.0μm。

表1各种镀膜工艺下涂层性能对比

表2类金刚石复合涂层分层成分组成(at.%)

涂层硬度采用hv-1000型显微维氏硬度计测量,加载载荷50g;利用isc-200型针盘式摩擦磨损试验机测试涂层的干摩擦系数,对磨材料为氧化铝球;成分组成采用eds能谱测试获得。

涂层结合力依据vdi3198标准,使用洛氏硬度计加载150kg载荷于涂层表面,使用光学显微镜或扫描电镜低倍数观察压痕形貌,以hf1-hf6不同等级来评估涂层与基体的结合力,hf1表示涂层非常完整,hf6表示涂层崩裂和脱落厉害。从图4可以看出:使用pems技术金属打底+氮化物过渡后的dlc涂层与基体结合力较好,金属cr打底+crn过渡的dlc涂层周围基本没有崩裂,相比而言,金属ti打底+tin过渡的dlc涂层有细微崩裂,说明cr与dlc及基体的结合力更好。

以上内容仅仅是对本发明所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1