本发明属于金属材料领域,涉及一种海上风电用超高强度耐腐蚀软磁铁素体不锈钢近净成形方法。
背景技术:
海上风力发电变压器用零部件要求具有超高强度的同时,还应具备抵抗海洋大气腐蚀的能力,同时具备优良的软磁特性。目前所采用的不锈钢材料很难同时满足上述使用要求。因此需要在该设备采用耐腐蚀、同时具有优异力学性能和软磁特性的结构功能一体化不锈钢材料,同时改进制备方法,缩短制备流程,以降低海上风力发电变压器用零部件的制造成本,延长使用寿命。
氮在铁素体不锈钢中的溶解度极低,一般≤0.08%,如何制备氮过饱和的高氮铁素体不锈钢,进一步提高铁素体不锈钢的耐腐蚀性能和力学性能,一直是个挑战。现有技术中,制备高氮不锈钢的方法主要有氮气加压熔炼法、反压铸造法、粉末冶金法。氮气加压熔炼法存在设备复杂、高压危险、工艺控制困难、组织均匀性差、生产成本高等缺点;反压铸造法在凝固时所需的气体压力太大,所能制造的钢锭吨位有限;粉末冶金工艺中的选择性激光熔化工艺可用于近终成形制备铸锻方法难以制造的海上风电用复杂形状金属零部件,利用选择性激光熔化的高温加热和快速冷却的特点,采用高氮双相不锈钢粉末选择性激光熔化烧结可以制备出氮含量大于0.2%、铁素体含量接近100%的结构功能一体化超高强度高氮软磁铁素体不锈钢,实现海上风电用超高强度耐腐蚀软磁铁素体不锈钢的短流程近净成形制备。
技术实现要素:
有鉴于此,本发明的目的在于提供一种海上风电用超高强度耐腐蚀软磁铁素体不锈钢材料及近净成形方法,利用高氮双相不锈钢粉末,近净成形制备高氮软磁铁素体不锈钢,提高高氮软磁铁素体不锈钢的力学性能、耐腐蚀性能、软磁性能。
为了实现上述发明目的,本发明提供以下技术方案:一种超高强度耐腐蚀软磁铁素体不锈钢近净成形方法,适用于海上风电,包括以下步骤:
(1)按照元素质量百分比26~33%cr,3~5%mo,5.5~9.5%ni,0.5~1.5%cu,0~1.0%co,0.3~0.6%n,c≤0.03%,mn≤1.5%,p≤0.035%,s≤0.01%,si≤0.5%,o≤0.006%,余量的fe进行配料,依次经熔炼和锻造,得到不锈钢电极棒;
(2)将所述步骤(1)得到的不锈钢电极棒进行等离子旋转电极雾化渗氮制粉,得到高氮双相不锈钢粉末;
(3)将所述步骤(2)得到的高氮双相不锈钢粉末进行选择性激光熔化,得到海上风电用超高强度耐腐蚀软磁铁素体不锈钢。
优选地,所述步骤(2)中,等离子旋转电极雾化渗氮制粉的条件包括:真空度为1×10-3~10×10-3pa,氮气压力为0.1×105~3×105pa,氧的质量百分数小于0.01%。
优选地,所述等离子旋转电极雾化渗氮制粉的等离子弧功率为100~400kw。
优选地,所述等离子旋转电极雾化渗氮制粉时,不锈钢电极棒的转速为25000~30000转/分,所述不锈钢电极棒的进给量为1~10毫米/秒。
优选地,所述步骤(3)中烧结时采用85~90j/mm3的激光能量密度,采用每一层相对上一层旋转65~68°的扫描策略,冷却速度约为104~106k/s,氮气压力为1.01×105~1.05×105pa,氧的质量百分数小于0.01%。
本发明提供了一种海上风电用超高强度耐腐蚀软磁铁素体不锈钢近净成形方法,采用等离子旋转电极雾化-选择性激光熔化工艺制备具有优良的力学性能、耐腐蚀性能、软磁性能的复杂形状近终形高氮软磁铁素体不锈钢。等离子旋转电极雾化渗氮在雾化过程中能够提高高氮双相不锈钢粉末的氮含量,生产出流动性好、氮含量高、氧含量极低、粒径细小、球形度优良的高氮双相不锈钢球形粉末;选择性激光熔化能够制备出氮含量大于0.2%、铁素体含量接近100%的结构功能一体化超高强度高氮软磁铁素体不锈钢,实现海上风电用超高强度耐腐蚀软磁铁素体不锈钢的短流程近净成形制备。本发明制备出的高氮双相不锈钢粉末球形度好、杂质含量低,解决粒度和n含量可控的高氮双相不锈钢高洁净度粉末的制备技术瓶颈,实现了选择性激光熔化铁素体不锈钢组织及性能的精确调控,使具有优良的耐腐蚀性能、力学性能、软磁性能的复杂形状高氮软磁铁素体不锈钢零件在海上风力发电装备中得以应用。实施例的数据表明,本发明制得的高氮软磁铁素体不锈钢n含量≥0.2%,铁素体含量≥98%,相对密度≥98%,抗拉强度rm≥1400mpa,屈服强度rp0.2≥1300mpa,伸长率a≥10%,断面收缩率z≥20%,平均晶粒尺寸≤4μm,临界点蚀温度cpt≥45℃,饱和磁感应强度bs≥0.6t,矫顽力hc≤1500a/m。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明海上风电用超高强度耐腐蚀软磁铁素体不锈钢近净成形方法流程图;
图2为本发明实施例1制得的高氮双相不锈钢粉末的扫描电镜图;
图3为本发明实施例1制得的海上风电用超高强度耐腐蚀软磁铁素体不锈钢的xrd图;
图4为本发明实施例1制得的海上风电用超高强度耐腐蚀软磁铁素体不锈钢的应力应变曲线图。
图5为本发明实施例1制得的海上风电用超高强度耐腐蚀软磁铁素体不锈钢的磁滞回线图。
图6为本发明实施例1制得的海上风电用超高强度耐腐蚀软磁铁素体不锈钢的晶粒尺寸分布图。
具体实施方式
本发明提供了一种海上风电用超高强度耐腐蚀软磁铁素体不锈钢近净成形方法,包括以下步骤:
(1)按照元素质量百分比26~33%cr,3~5%mo,5.5~9.5%ni,0.5~1.5%cu,0~1.0%co,0.3~0.6%n,c≤0.03%,mn≤1.5%,p≤0.035%,s≤0.01%,si≤0.5%,o≤0.006%,余量的fe进行配料,依次经熔炼和锻造,得到不锈钢电极棒;
(2)将所述步骤(1)得到的不锈钢电极棒进行等离子旋转电极雾化渗氮制粉,得到高氮双相不锈钢粉末;
(3)将所述步骤(2)得到的高氮双相不锈钢粉末进行选择性激光熔化,得到海上风电用超高强度耐腐蚀软磁铁素体不锈钢。
本发明按照元素质量百分比26~33%cr,3~5%mo,5.5~9.5%ni,0.5~1.5%cu,0~1.0%co,0.3~0.6%n,c≤0.03%,mn≤1.5%,p≤0.035%,s≤0.01%,si≤0.5%,o≤0.006%,余量的fe进行配料,依次经熔炼和锻造,得到不锈钢电极棒。
本发明优选按照元素质量百分比27~32%cr,3.5~4.8%mo,6.5~8%ni,1%cu,1.0%co,0.4~0.5%n,c≤0.03%,mn≤1.5%,p≤0.035%,s≤0.01%,si≤0.5%,o≤0.006%,余量的fe进行配料,依次经熔炼和锻造,得到不锈钢电极棒。
本发明对所述cr、mo、ni、cu、co、n、c、mn、p、s、si、o和fe的来源没有任何特殊的限制,采用本领域技术人员熟知的产品来源或市售商品即可,具体的,如纯铁、纯铜、纯钼、纯镍、纯钴、氮化铬铁等。
本发明对所述各原料的加入顺序、熔炼的温度、时间等工艺参数没有任何特殊的限定,采用本领域技术人员熟知的能够使原料混合均匀即可,在本发明实施例中优选根据原料的种类将原料熔炼得到均匀的液体熔炼产物即可。
熔炼完成后,本发明将熔炼产物进行锻造得到不锈钢电极棒。在本发明中,所述锻造的温度优选为1150~1300℃,更优选为1200~1250℃;本发明对所述锻造的时间没有限定,能够得到所述要求的不锈钢电极棒即可。本发明通过锻造得到致密度大于99%,无明显疏松、缩孔等铸造缺陷的不锈钢电极棒。在本发明中,所述不锈钢电极棒的直径优选为60~75mm,更优选为65~70mm;所述不锈钢电极棒的长度优选为500~700mm,更优选为550~650mm;所述不锈钢电极棒的表面粗糙度ra优选为不大于3μm,更优选为1~1.5μm。
得到不锈钢电极棒后,本发明将所述不锈钢电极棒进行等离子旋转电极雾化渗氮制粉,得到高氮双相不锈钢粉末,所述高氮双相不锈钢粉末中氮元素质量含量优选为0.3~0.6%,更优选为0.4~0.5%。本发明中,所述等离子旋转电极雾化渗氮可生产出流动性好、n含量高、o含量极低、粒径细小、球形度优良的高氮双相不锈钢粉末。
在本发明中,所述等离子旋转电极雾化渗氮制粉的条件包括:真空度优选为1×10-3~10×10-3pa,更优选为1×10-3~3×10-3pa;氮气压力优选为0.1×105~3×105pa,更优选为2×105~3×105pa;氧的质量百分数优选为小于0.01%。在本发明中,所述等离子旋转电极雾化渗氮制粉的等离子弧功率优选为100~400kw,更优选为200~300kw。
在本发明中,所述等离子旋转电极雾化渗氮制粉时不锈钢电极棒的转速优选为25000~30000转/分,更优选为28000~30000转/分;所述不锈钢电极棒的进给量优选为1~10毫米/秒,更优选为3~7毫米/秒。
本发明对所述等离子旋转电极雾化渗氮制粉的设备没有特殊的限定,采用本领域技术人员熟知的、市售等离子旋转电极雾化制粉设备即可,在本发明实施例中优选采用俄罗斯设备,转速可以达到30000转/分,可以生产d50<53μm的细粉。
在本发明中,所述高氮双相不锈钢粉末的平均粒度d50优选为15~53μm,更优选为20~50μm,最优选为30~45μm。
得到高氮双相不锈钢粉末后,本发明将所述高氮双相不锈钢粉末进行选择性激光熔化烧结。
在本发明中,所述选择性激光熔化的激光能量密度优选为70~100j/mm3,更优选为85~90j/mm3;所述选择性激光熔化的扫描方式优选采用每一层相对上一层旋转65~68°的扫描策略,更优选采用每一层相对上一层旋转66.5~67.5°的扫描策略;冷却速度优选为104~106k/s,更优选为105~106k/s;氮气压力优选为1.01×105~1.05×105pa,更优选为1.02×105~1.03×105pa;氧的质量百分数小于0.01%。
本发明对所述选择性激光熔化的设备没有特殊的限定,采用本领域技术人员熟知的、市售选择性激光熔化设备即可。
本发明得到的海上风电用超高强度耐腐蚀软磁铁素体不锈钢由以下质量百分含量的元素组成:26~33%cr,3~5%mo,5.5~9.5%ni,0.2~0.3%n,0.5~1.5%cu,0~1.0%co,c≤0.03%,mn≤1.5%,p≤0.035%,s≤0.01%,si≤0.5%,o≤0.006%,余量的fe。
下面结合实施例对本发明提供的海上风电用超高强度耐腐蚀软磁铁素体不锈钢近净成形制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
图1为本发明海上风电用超高强度耐腐蚀软磁铁素体不锈钢近净成形制备方法的流程图,如图1所示:按照原料配比配料后制备得到不锈钢电极棒,然后对不锈钢电极棒进行等离子旋转电极雾化渗氮制粉,得到高氮双相不锈钢粉末,高氮双相不锈钢粉末进行选择性激光熔化,得到超高强度耐腐蚀软磁铁素体不锈钢。
实施例1
按照27%cr,4.8%mo,6.5%ni,0.5%cu,1.0%co,0.4%n,余量为fe配料,依次在1500℃下熔炼4h、于1150℃下锻造0.5h、车床机械加工,得到致密度大于99%,无明显疏松、缩孔等铸造缺陷,直径为60mm,长度为700mm,表面粗糙度ra为3μm的不锈钢电极棒。
将制备的不锈钢电极棒置于雾化设备内进行等离子旋转电极雾化渗氮,对雾化设备预抽真空处理,然后充入高纯氮气,真空度为1×10-3pa,氮气压力为3×105pa,气氛氧含量的质量百分数小于0.01%,电极棒转速为28000转/分,电极棒进给量为2毫米/秒,等离子弧功率在300kw,得到平均粒度d50=45μm,n含量为0.4%的球形高氮双相不锈钢粉末。对得到的高氮双相不锈钢粉末进行扫描电镜测试,结果如图2所示,由图2可以看出,制得的高氮双相不锈钢粉末球形度好,表面光滑,无卫星粉。
将高氮双相不锈钢粉末进行选择性激光熔化烧结,采用87.96j/mm3的激光能量密度,烧结时采用每一层相对上一层旋转67°的扫描策略,得到海上风电用超高强度耐腐蚀软磁铁素体不锈钢,对其组成进行分析,结果如下:27%cr,4.8%mo,6.5%ni,0.5%cu,1.0%co,0.24%n,余量的fe及少量杂质。
对选择性激光熔化制得的铁素体不锈钢进行xrd分析,结果如图3所示,由图3可以看出,制得的不锈钢主要为铁素体,未发现其它物相的衍射峰,经过显微组织定量分析,铁素体含量为98.5%,还含有0.2%的奥氏体和0.3%的cr2n。
对实施例1制得的铁素体不锈钢的力学性能、耐腐蚀性能、软磁性能进行测试,制得的铁素体不锈钢的应力应变曲线如图4所示,制得的铁素体不锈钢的磁滞回线图如图5所示,制得的铁素体不锈钢的晶粒尺寸分布如图6所示。试验结果如下:相对密度=98.2%,抗拉强度rm=1493mpa,屈服强度rp0.2=1391mpa,伸长率a=13.2%,断面收缩率z=24.1%,铁素体平均晶粒尺寸=3.68μm,临界点蚀温度cpt=45℃,饱和磁感应强度bs=0.69t,矫顽力hc=1429a/m。
实施例2
按照32%cr,3.5%mo,7%ni,0.8%cu,0.5%n,余量为fe配料,依次在1500℃下熔炼5h、于1300℃下锻造0.5h、车床机械加工,得到致密度大于99%,无明显疏松、缩孔等铸造缺陷,直径为70mm,长度为700mm,表面粗糙度ra为1μm的不锈钢电极棒。
将制备的不锈钢电极棒置于雾化设备内进行等离子旋转电极雾化渗氮,对雾化设备预抽真空处理,然后充入高纯氮气,真空度为1.5×10-3pa,氮气压力为3×105pa,气氛氧含量的质量百分数小于0.01%,电极棒转速为30000转/分,电极棒进给量为3毫米/秒,等离子弧功率在400kw,得到平均粒度d50=40μm,n含量为0.5%的球形高氮双相不锈钢粉末。
将高氮双相不锈钢粉末进行选择性激光熔化烧结,采用92j/mm3的激光能量密度,烧结时采用每一层相对上一层旋转68°的扫描策略,得到海上风电用超高强度耐腐蚀软磁铁素体不锈钢,对其组成进行分析,结果如下:32%cr,3.5%mo,7%ni,0.8%cu,0.28%n,余量的fe及少量杂质。
对实施例2制得的铁素体不锈钢的力学性能、耐腐蚀性能、软磁性能进行测试,试验结果如下:相对密度=98.4%,抗拉强度rm=1541mpa,屈服强度rp0.2=1465mpa,伸长率a=11.5%,断面收缩率z=22.4%,铁素体平均晶粒尺寸=3.83μm,临界点蚀温度cpt=50℃,饱和磁感应强度bs=0.71t,矫顽力hc=1405a/m。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。