MgO与MgMO层的形成方法与流程

文档序号:20510209发布日期:2020-04-24 18:25阅读:1112来源:国知局
MgO与MgMO层的形成方法与流程

本公开关于一种形成mgo层的方法,其中所有的mg原子都被氧化,并且没有含有多余的氧(mg:o比例为1:1),当使用温度低于200℃沉积mg的制程,之后升高基材的温度以气化mg,并在氧化成mgo单层之前留下单层mg,之后重复此制程一或多次,从而改善mgo结晶度、调整在产物mgo层中的电阻×面积(ra)值、并避免氧化不足或过度氧化相关的缺陷。



背景技术:

磁通道接面(magnetictunneljunctions,mtjs)具有广泛的应用,包括通道磁阻(tunnelingmagnetoresistance,tmr)式硬碟读头、磁感应器、磁阻式随机存取记忆体(magneticrandomaccessmemory,mram)以及其他基于自旋逻辑的装置。特别对于mram的应用,由于使用自旋力矩转移-磁阻式随机存取记忆体(stt-mram)的低写入电流,垂直磁化mtjs(p-mtjs)引起人们的极大兴趣。jslonczewski在“磁性多层的电流驱动激发”中j.magn.magn.mater.v159、l1-l7(1996)描述用于写入记忆位元的stt-mram技术,该技术著名的为其长数据保留时间,和以相对简单的架构在高密度记忆体阵列中制造的能力。

p-mtjs的一般结构中,第一和第二磁层分别接触绝缘通道阻障的底表面和顶表面。被称为固定层的磁层具有面外方向(即+z方向)固定的磁化强度。另一磁层称为自由层,其磁化强度可以在+z方向(平行或p状态)或-z方向(反平行或ap状态)。p状态(rp)和ap状态(rap)之间的电阻差由方程式(rap-rp)/rp表征,在下文中称为drr。对于p-mtjs装置,重要的是具有大的drr,因为该值直接相关于记忆体位元的读取余量,或者有多容易区分p状态和ap状态(0或1位元)。

对于使用于嵌入式记忆体应用中的p-mtjs装置阵列,控制rp和drr值的分布非常重要。由于嵌入式放大电路仅在特定范围的rp和drr值内运行,因此无法有效读取超出rp或drr可接受范围的p-mtj装置,并且记忆体位元将会失效。

控制p-mtj装置性能并保持紧密rp和drr分布的关键为通道阻障的品质。典型的通道阻障由一种或多种mgo、al2o3和其他金属氧化物组成。通道阻障很容易形成针孔、晶粒边界或其他“弱”点,这些缺陷会局部降低通道阻障的高度或电阻,从而导致p-mtj具有低电阻(ra)和低drr。如果缺陷随机分布,则p-mtj阵列可能会有一些受通道阻障缺陷影响的装置,并且其rp和drr低于主要群体位元(mainpopulationofbits),从而导致读取和写入失败。这些主要群体之外的位元称为“低尾”位元。

历史上已采用两种方法形成mgo。一种是使用射频(radio-frequency,rf)溅射或电子束(electronbeam,e-beam)气化沉积mgo。第二种技术是通过暴露于气流(自然氧化或nox)或暴露于氧基的电浆(自由基氧化或rox)或臭氧来氧化以沉积mg。这两种方法可能会导致mgo明显氧化不足,其中mg原子大抵未被氧化,从而降低drr,或者导致过度氧化mgo层,在随后的制程中,松散束缚的氧自由扩散并导致相邻的磁层被氧化,也会降低装置性能。

因此,需要一种新的方法形成mgo,其中归因于氧化不足或氧化过度的缺陷数量大抵减少。换句话说,期望有一种技术能制造具有1:1的mg:o比例,并且不包含过量的氧的mgo层,以防止氧在后续制程扩散到相邻层中。



技术实现要素:

本公开的一个目的是提供一种形成具有mg:o比例为1:1的mgo层的方法,其中所有mg原子都被氧化并且不包含松散键结的氧。

第二个目的是提供根据第一个目的的mgo层,在制造mram、硬碟驱动器(harddiskdrive,hdd)、磁传感器或自旋逻辑装置时,可以将其用作通道阻障、高介电常数增强层或绝缘层。

根据本公开的一个实施例,mgo层包括依次形成在基材上的多个mgo单层。基材可以是磁层,例如p-mtj中的钉扎层或自由层,或者是p-mtj中部分完成的通道阻障层或高介电常数增强层中的金属氧化物层,或者mram、hdd、磁传感器或自旋逻辑装置内部分完成的绝缘层中的介电层。作为磁层,基材可以包含co和fe之一或两者,且还包含一种或多种其他元素,例如ni、b、cr、v、mn、zr、mo、nb、hf、ta、w、ir、pd和pt。作为金属氧化物层或介电层,基材可以是完全氧化或氧化不足的mg、al、ti、si或ta的氧化物。

在一个实施例中,mgo层是由一系列步骤形成的,该步骤包括在rf或直流(dc)溅射沉积室中,例如在温度小于200℃下进行mg沉积的第一步,以确保大部分接近基材的mg物种会黏附在上面。接下来,在rf溅射沉积室中,或在溅射沉积主机架(mainframe)外部的真空炉中,以200℃至900℃之间的温度,较佳地从200℃至400℃,并以大于10-6torr的基本压力对基材进行退火。退火制程使基材上大部分的mg蒸发(升华),仅留下与基材上的氧原子或其他元素键结的mg单层。在第三步中,将从前一步骤剩余的mg单层在-223℃至900℃的温度下氧化,小于400℃较佳,从而形成具有mg:o比例为1:1的mgo单层,因为任何不与mg反应的氧从膜扩散出来,并从氧化腔室中去除。可将mg沉积、升华和氧化的制程流程重复一次或多次,以依次构建多个mgo单层,这些mgo单层形成mgo层,并具有可提供期望ra值的厚度,并且其中有关氧化不足或过氧化的缺陷大抵被消除,与现有技术的mgo膜相比,化学计量有更好的控制以改善结晶结构。

在一些实施例中,退火和氧化步骤可以在同一温度下,在单个腔室中进行,以达到更快的产量。在另一个实施例中,如果mg沉积温度大于200℃,并且等于退火和氧化温度,则所有三个步骤可以在同一腔室中完成。

在第二实施例中,可以在第一步骤期间修改第一实施例的制程流程,以包括选自ti、v、cr、mn、fe、ga、in、al、si、ge、sn、zr、mo、nb、hf、ta、w和n中的至少一种的掺杂元素m与mg共沉积。掺杂元素在退火步骤中可能蒸发或可能不蒸发,并且在氧化步骤中可能不被氧化。因此,在所得的mgmo结构中可以实现与前两个实施例中制造的mgo层的(001)岩盐(bcc)结构不同的结晶结构。此外,与mgo层相比,可以使用m元素引入替代缺陷(substitutionaldefects),以改变mgmo膜中的能带结构或导电性。

附图说明

图1和图2为剖面图,显示垂直磁化磁通道接面(p-mtjs),其中通道阻障和高介电常数增强层其中一个或两者为本公开制程流程制成的mgo层。

图3为剖面图,显示图1中的p-mtj,其已被图案化并且通过封装层和相邻的p-mtjs电性隔绝。

图4为mram阵列的顶视图,其中在行和列中形成复数个p-mtjs。

图5为根据本公开的第一实施例绘示在形成mgo层的第一步骤期间,在基材上沉积mg。

图6为根据本公开的第一实施例绘示mg从图5中的中间结构升华,从而在形成mgo层的第二步骤期间形成第一mg单层。

图7为根据本公开的第一实施例绘示在图6的中间结构中氧化第一mg单层,从而在形成mgo层的第三步骤期间形成第一mgo单层。

图8为根据本公开的第一实施例绘示在形成mgo层的第四步骤期间,在图7中的第一mgo单层上沉积mg。

图9为根据本公开的第一实施例绘示在形成mgo层的第五步骤期间,mg从图8中的中间结构升华以形成第二mg单层。

图10为根据本公开的第一实施例绘示氧化图9中的第二mg单层,从而在形成mgo层的第六步骤期间形成第二mgo单层。

图11为根据本公开实施例的图表,显示mg的蒸发量与退火温度的关系。

图12为一图表,绘示多个温度下mg和其他元素的蒸气压。

图13-图18为根据本公开的第二实施例绘示剖面图,显示形成掺杂mgo层的一系列步骤。

图19为一表格,列出多个金属氧化物形成的自由能。

其中,附图标记说明如下:

1~p-mtj堆叠

10~基材

10-1~底电极

11~晶种层

12~参考层

13~mgo通道阻障

14~自由层

15~高介电常数增强层

16~盖层(硬掩模)

20~侧壁

21~mgo/fl界面

22~fl/高介电常数增强层界面

30/31/32/33/34/35~步骤

1a/1b/1c/1d~p-mtj

10t~顶表面

12m/14m~磁化

13-0~mgo子层

13-1~第一mg层

13d-1~mgm层

13d-2~第二掺杂层

13m1~mg单层

13md1~mgm单层

13x1~第一mgo单层

13xd1~第一mgmo单层

13xd2~第二mgmo单层

16t~顶表面

25a~内层

25b~外层

25t~封装层顶表面

30d/33d~沉积

w1~宽度

x/y/z~方向

m~掺质

具体实施方式

本公开有关于一种形成具有mg:o比例为1:1的mgo层的方法,并且没有包含多余的氧。当mgo层是p-mtj中的通道阻障时,对化学计量的改进控制以及在多个退火步骤后得到的结晶结构,会得到更高的drr(更少的缺陷和增强的自旋过滤效果)。根据本公开方法形成的mgo层也可以用作p-mtj中的高介电常数增强层,或者用作磁性或半导体装置中的绝缘层。可以将p-mtj合并到mram、stt-mram、用于hdd的读取头中的传感器、生物传感器或基于自旋逻辑的装置,例如自旋扭矩振荡器(spintorqueoscillator,sto)中。在一些图中仅描绘一个p-mtj元件,但是通常在磁性装置的制造过程中,数百万个p-mtjs被行列排列在基材上。p-mtj中的层的厚度在z轴方向上,并且每个层的平面布置在x轴和y轴方向。术语“钉扎层”和“参考层”可以互换使用。

在相关的us2013/0333254中,我们公开一种制造mgo通道阻障的方法,沉积在基材上的第一mg层氧化不足以防止裂痕缺陷,其裂痕缺陷使氧气能够扩散到下面的磁层中。详细而言,第一mg层在小于10-5torr的氧气压力下施予被动氧化制程,然后将第二mg层沉积在部分氧化的第一mg层上,并在10-3torr或更大的氧气压力下氧化第二mg层。

现在,我们公开一种形成mgo的方法,该方法可提供对mgo的化学计量和结晶结构改善控制的好处,并且在调整ra和所得mgo层的厚度方面具有弹性。mgo层具有比先前实现的更好的膜品质(更少的缺陷),并且作为通道阻障和高介电常数增强层之一或两者结合到p-mtj中时,mgo层有望达到更高的drr。

根据一个实施例,p-mtj堆叠1具有通过本公开方法形成的mgo通道阻障13。例如,p-mtj堆叠被制造在基材10上,基材可以是mram或stt-mram中的底电极。p-mtj由堆叠的层组成,其中可选的(optional)晶种层11、参考层12、通道阻障13、自由层14、高介电常数增强层15和盖层(硬掩模)16顺序性地形成在基材上的底自旋阀配置中。晶种层包括一或多个nicr、ta、ru、ti、tan、cu、mg、pt、pd或通常用于促进上覆层平滑和均匀晶粒结构的其他材料。

参考层12可以具有由ap2/ru/ap1表示的合成反平行(syntheticanti-parallel,syap)配置,其中例如由ru、rh或ir制成的反铁磁耦合层被夹在ap2磁层和ap1磁层之间(未显示)。也称为外钉扎层的ap2层形成在晶种层上,而ap1是内钉扎层,通常与通道阻障13接触。ap1和ap2层可以由cofe、cofeb、co或其组合组成。在其他实施例中,ap1和ap2层之一或两者可为具有固有pma的夹层堆叠,例如(co/ni)n、(cofe/ni)n、(co/nife)n、(co/pt)n、(co/pd)n等等,其n为迭层数量。此外,可以在夹层堆叠的最上层与通道阻障层之间插入过渡层,例如cofeb或co。较佳地,参考层具有在z轴方向上的磁化12m,并在示例的实施例中在(+)z轴方向上。

自由层14可以是co、fe、cofe或其合金,并且可以进一步包括b和ni之一或两者。在另一个实施例中,自由层为多层堆叠,其包括两个或更多个具有上述组成的铁磁耦合的子层。此外,在铁磁耦合的两个cofe或cofeb层之间可以插入中间层,例如ta、mg、mo、w、nb、v、ir、hf、zr、al、si或ru。在替代实施例中,自由层(freelayer,fl)具有syap配置,例如fl1/ru/fl2,其中fl1和fl2是两个反铁磁耦合的磁层,或为具有先前相对于参考层组成所述的既有pma的积层堆叠。垂直磁异向性(perpendicularmagneticanisotropy,pma),其磁化14m对准在(+)z轴或(-)z轴方向,通过mgo/fl界面21造成界面垂直异向性增强。

高介电常数增强层15由mgo、或另一金属氧化物、或是mo、w、或另一种在自由层14中fl/高介电常数增强层界面22附近引起界面垂直异向性的金属组成,从而增加自由层中的pma以改善热稳定性。注意,当高介电常数增强层是金属氧化物时,对p-mtj1中的总ra有额外的贡献,其中ra总=ra通道阻障+ra高介电常数增强层。

硬掩模16是非磁性的,并且通常由一种或多种导电金属或合金组成,包括但不限于ta、ru、tan、ti、tin和w。可以理解的是,在蚀刻制程期间,可以选择包括mnpt的其他硬掩模材料,以提供相对于下层mtj层的高蚀刻选择性,上述蚀刻是形成侧壁停止在底电极上的p-mtj元件。在其他实施例中,硬掩模可以包括导电非磁性层,其包括下列之一或多者:ruox、reox、irox、mnox、moox、tiox和feox。

在图2所示的替代实施例中,通道阻障13可以形成在具有顶部自旋阀配置的p-mtj堆叠2中。除了改变堆叠顺序之外,所有层都保留在图1中,使晶种层11、高介电常数增强层15、自由层14、通道阻障13、参考层12和硬掩模16顺序地在基材10上形成。

图3描绘使用传统光刻和蚀刻制程将图1中的p-mtj堆叠1图案化之后的p-mtj元件1a。结果,侧壁20形成在p-mtj1a上并在基材顶表面10t处停止。沉积封装层25,并且封装层25可以包括邻接侧壁20和基材顶表面的内层25a,以及在内层上的外层25b。通常使用化学机械抛光(chemicalmechanicalpolish,cmp)制程在p-mtj1a上形成与封装层顶表面25t共面的顶表面16t。封装层使p-mtj1a与图4中所示的相邻p-mtj元件(p-mtjs)电性绝缘。

参考图4,在上述cmp制程之后,以俯视图示出多个p-mtjs。为简化附图,仅描绘四个p-mtjs,指出p-mtjs形成为行和列的阵列,并被封装层25隔开。p-mtj1a与p-mtj1b在第一行中并形成在底电极10上方,而p-mtj1c、1d在第二行中并形成在底电极10-1上方。每个p-mtj具有宽度w1和大抵圆形的形状。然而,在其他实施例中,可以形成椭圆形或多边形。

本公开的关键特征是用于形成mgo通道阻障13以及可选地用于高介电常数增强层15的mgo膜的制程流程。第一实施例在图5-图10中示出,并且有关于在基材上形成mgo通道阻障,其基材在示例的实施例中为参考层12。

参考图5,参考层12作为示例的实施例中在其上形成mgo层的基材,并且由a1和a2所示的原子晶格组成,其中a1不等于a2,并且a1和a2在水平和垂直方向上交替。例如,al和a2可以选自co和fe。在其他实施例中,al和a2可以在具有通过传统方法在参考层12上形成的岩盐(001)结晶结构的第一mgo子层13-0中分别代表mg和o原子。在这种情况下,第一mgo子层13-0可以通过us2013/0333254中描述的被动氧化或自然氧化制程来形成,或者通过mgo的溅射沉积来形成。然后在可从多个来源获得的溅射沉积工具的rf或dc溅射沉积室中沉积第一mg层13-1(步骤30)。较佳地,mg层在低于200℃的温度下沉积,使得在替代实施例中,最接近基材的溅射的mg物种黏附至参考层12或第一mgo子层。

在图6中显示的接续步骤,当p-mtj形成在作为一部分互补金属氧化物半导体(cmos)装置的嵌入式mram或stt-mram中时,在200℃至900℃之间执行第一退火步骤31,在200℃至400℃之间执行5至300秒的时间为较佳。根据一个实施例,当退火温度大抵高于mg沉积温度时,第一退火步骤在不同于用于mg溅射沉积的腔室的腔室中执行。然而,本公开也预期当mg沉积和退火温度大抵相同(大于200℃)时,步骤30和31都可以在相同制程腔室中相同晶圆台上执行。在所有实施例中,退火腔室中的基本压力通常在1×10-8torr至1×10-9torr之间。较佳地,退火在mg蒸气压达到10-6torr或更高的温度下进行,使得当mg-mg键断裂时,大量的mg将在时间范围内蒸发以获得可接受的制程产量。

关于mg蒸发速率的此条件以致要求图12中所示的最低退火温度为200℃,该温度取自richarde.honig&deana.kramer,rcareview30,pp.285-305(1969),并且显示在多个温度下mg的蒸气压。mg单层13m1保留在基材上,并分别例如在参考层12或金属氧化物子层13-0中键合至a2原子或o原子。mg单层13m1保留在基材上,例如分别在参考层12或金属氧化物子层13-0中键结至a2原子或o原子。通常,在层13-1中与基材形成较强键结(与a2或o原子)的mg原子,比与基材形成较弱键结(与a1或mg原子),或只与层13-1中的其他mg原子键结的mg原子更容易保留在单层13m1中。基材中任何现有的mg-o键都将保持完整。

图11是在6×10-9torr的基本压力和100秒的固定制程时间下,在多个退火温度下以为单位的mg的蒸发量的图。要注意的是,在最终温度在250℃至350℃之间的100秒停留时间之前,有200秒的斜坡时间将晶圆/基材温度从室温升高到最终温度,并为该实验生成数据。

参考图7,第一实施例的制程流程中的第三步骤32为氧化,其中在-223℃至900℃之间,较佳为在200℃至400℃之间于腔室中暴露mg单层13m1于氧气或氧气物种。随着氧化温度降低,氧扩散到包括基材的下层中的风险降低。氧物种(oxygenspecies)被定义为自由基和离子之一或两者。较佳地,氧化是涉及氧气流的自然氧化。然而,氧化也可以是自由基氧化或暴露于臭氧。在此,可以在氧化之前将其上形成部分p-mtj结构的晶圆冷却至室温,或者可以在退火温度或接近退火温度的条件下进行氧化。当步骤31和32在大抵相同的温度下进行时,氧化步骤可以与退火步骤在同一腔室中进行,或者当mg沉积和退火温度大抵不同时,氧化步骤可以在不同的腔室中进行。因此,单层13m1中的每个mg原子被氧化以形成具有(001)岩盐结构的第一mgo单层13x1,其中mg:o比例为1:1。由于在所得的结晶结构中没有空位(novacantsites),并且未反应的氧气返回到氧化腔室的大气中,因此在第一mgo单层中没有多余的氧气。

较佳地,分别重复图5-图7所示的mg沉积、升华和氧化步骤至少一次,以在第一mgo单层13x1上生成第二mgo单层,如图8-图10所示。因此,最终的mgo通道阻障由严格控制1:1化学计量的多个mgo单层组成。通常,需要重复四次或五次该制程以提供厚度的通道阻障。换句话说,通过上述方法形成的每个mgo单层的厚度约为(在001方向的单位晶格的一半)。本领域技术人员将理解,通常需要厚度的mgo通道阻障来达到小于5ohms-cm2的ra目标。

本公开内容还包括其中通道阻障13和高介电常数增强层15均是mgo,并且由关于图5-图10描述的制程流程形成的实施例。要注意的是,用于高介电常数增强层的基材是具有底部自旋阀构造的p-mtj1中的自由层14(图1)。在图2所示的顶部自旋阀实施例中,自由层14作为其上形成mgo通道阻障13的基材,并且高介电常数增强层形成在晶种层11上。在图1和图2中,通道阻障和自由层之间的界面21,在自由层中引起界面垂直异向性,而自由层和高介电常数增强层之间的界面22,在自由层中引起界面垂直异向性。

根据图13-图18所示的本公开的第二实施例,通过在至少一次mg沉积期间包括至少一个掺杂元素m,以修改第一实施例的制程流程,从而将mg和m共沉积在基板上。较佳地,m为下列之一或多者:ti、v、cr、mn、fe、ga,in,al,si,ge,sn,zr,mo、nb、hf、ta、w、和n。在图13中,在小于200℃下,mg原子的沉积30伴随掺杂原子m的沉积30d以在基材12上产生mgm层13d-1,例如,在mgm合金中,m含量为数个ppm至最大约75原子百分比(apluralityofppmtoamaximumofabout75atomic%)。与第一实施例的mgo层相比,一个或多个m元素有利地用于引入替代缺陷(substitutionaldefects),以改变所得mgmo膜中的能带结构或导电性。

参考图14,第一退火步骤31在200℃至900℃之间执行,较佳在200℃至400℃之间进行,以升华层13d-1中大部分的mg原子。退火在mg蒸气压大于10-6torr的温度下进行,使得当mg-mg键断裂时,大量的mg将蒸发,从而在基材上留下mg和m原子的单层13md1。残留在基材上的mg和m原子可以优先与a2原子或o原子键合,例如分别在参考层12或金属氧化物子层13-0中。在一些实施例中,取决于退火温度,m原子不升华。通常,在固定温度下,金属元素的m原子比mg具有更高的熔点和更低的蒸气压,这意味着单层13md1中的m含量通常大于初始沉积的mgm层13d-1中的m含量。

参考图15,第二实施例的制程流程中的下一步骤为氧化步骤32,其中单层13md1中的mg原子在温度约为-223℃至最高900℃,较佳为低于400℃的腔室内暴露于氧气或氧气物种。因此,单层13md1中的每个mg原子与氧反应以形成第一mgmo单层13xd1,其中mg:o比例为1:1。由于未反应的氧气返回到氧化腔室中的大气,因此没有多余的氧气保留在第一mgmo单层中。根据图19表中所示的氧化条件和形成氧化物的自由能,m原子可能不与氧反应。朝向图表底部的mg等具有较大负数的元素,与氧的反应速率高于接近于图表顶部的m元素。

如第一实施例,当mgm的沉积、退火和氧化涉及每个制程的不同温度时,通常在不同的制程腔室中执行mgm的沉积、退火和氧化步骤。另一方面,如果退火和氧化步骤采用相同的温度,则步骤31和32都可以在同一制程腔室中发生。此外,如果mgm沉积增加到200℃,并且处于与退火和氧化步骤相同的温度,则所有三个制程都可以在同一腔室中执行。

本公开的第二实施例预期金属沉积、退火和氧化的制程流程可以重复一次或多次。因此,在图16中,第二mg沉积33与先前描述的一种或多种掺质m的沉积33d同时发生。第二共沉积33/33d在第一mgmo单层13xd1上产生第二掺杂层13d-2。层13d-2中的掺质m浓度可以不等于第一掺杂层13d-1中的m浓度。

在图17中,第二退火步骤34在200℃至900℃之间,较佳在200℃至400℃之间进行,并且使层13d-2中大部分mg的原子升华。同时,掺质m原子可能升华或可能不升华。因此,第二mgm单层13md2形成在第一mgmo单层13xd1上,并且可以具有比层13d-2中的m含量更大的m含量。其余的mg和m原子可以优先与氧原子键结,而不是与第一个mgmo单层中的mg原子键结。

在-223℃至900℃,较佳200℃至400℃的温度进行第二氧化步骤35,以氧化第二mgm单层中的mg原子,从而形成第二mgmo单层13xd2,其中mg:o比例为1:1。如果不需要第三mgmo单层来提供期望的ra和通道阻障厚度,则第一和第二mgmo单层13xd1、13xd2分别形成通道阻障13。然而,可能需要重复进行mgm沉积、退火步骤和氧化步骤,才能提供期望的ra值和所得mgmo层的厚度。

本文描述的所有实施例可以通过标准工具和制程结合到制造方案中。通过此方法制成的mgo通道阻障,高介电常数增强层或绝缘层的膜品质得到显著提升,因为相较于氧化不足或过度氧化,其mg:o比例分别小于1:1或大于1:1,通过此方法制成的mgo通道阻障缺陷更少。在逐层生长模式中使用高达900℃的高温,可以使mgo形成过程中mg和氧气的表面扩散增加,因此与现有技术相比,mgo阻障的结晶度更高。因此,改善通道阻障的自旋滤波特性和重要的p-mtj性能指标,包括drr、写入电流和界面感应pma。

尽管已经参照较佳的实施例具体显示和描述本公开,但本领域普通技术人员应理解,在不悖离本公开的精神与权利要求下,可在形式和细节作各种的更动。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1