带有绝缘被膜的电磁钢板及其制造方法、使用该电磁钢板而成的变压器的铁芯、变压器以及变压器的介质损耗的减少方法与流程

文档序号:23589149发布日期:2021-01-08 14:24阅读:70来源:国知局
带有绝缘被膜的电磁钢板及其制造方法、使用该电磁钢板而成的变压器的铁芯、变压器以及变压器的介质损耗的减少方法与流程

本发明涉及带有绝缘被膜的电磁钢板及其制造方法、使用该电磁钢板而成的变压器的铁芯、变压器及变压器的介质损耗的减少方法。其中,本发明涉及介电特性优异即具有低介质损耗的绝缘被膜的电磁钢板,特别涉及具有上述绝缘被膜的取向性电磁钢板。



背景技术:

电磁钢板是作为旋转器、静态器的铁芯坯材广泛利用的软磁性坯材。尤其是取向性电磁钢板是作为变压器、发电机的铁芯坯材使用的软磁性坯材,具有铁的易磁化轴即<001>位向与钢板的轧制方向高度一致的结晶组织。这样的集合组织在取向性电磁钢板的制造工序中在二次再结晶退火时被称为所谓的goss位向的(110)〔001〕位向的晶粒优先生长,通过二次再结晶而形成。

一般而言,对取向性电磁钢板从与钢板相接一侧起实施由以镁橄榄石为主体的被膜层以及以硅磷酸盐玻璃为主体的绝缘被膜层的双层构成的绝缘被膜。硅磷酸盐玻璃被膜层具有赋予绝缘性、加工性和防锈性等的目的。但是,由于玻璃和金属的密合性低,所以通常以镁橄榄石为主体的陶瓷被膜层形成于上述玻璃被膜层与钢板之间。这些被膜层在高温下形成,并且与钢板比较,具有较低的热膨胀率,因此,下降到室温时的钢板与绝缘被膜之间的热膨胀率的差异对钢板赋予张力,具有减少铁损的效果。例如,如专利文献1记载,期望尽可能地将8mpa以上这样高张力赋予钢板。为了满足这样的要求,以往提出了各种玻璃质被膜。例如,专利文献2中提出了以磷酸镁、胶体二氧化硅及铬酸酐为主体的被膜,另外,专利文献3中提出了以磷酸铝、胶体二氧化硅和铬酸酐为主体的被膜。

取向性电磁钢板的主要用途的变压器的铁芯是通过层叠多个钢板而形成。在使铁芯励磁时,在钢板内部产生感应电流,该电流以焦耳热的形式损失。其一般称为涡流损耗。为了减少这样的损失,取向性电磁钢板以0.30mm以下,根据情况以0.20mm以下的非常薄的厚度使用。在层叠的钢板间有电流流通时,会使将钢板变薄的效果抹掉,因此,对钢板表面的被膜要求高绝缘性。将属于导体的钢板和形成于其表面的绝缘体(绝缘被膜)层叠多层的状态可被看成是一种电容器。一层一层的静电电容虽然是几乎能够忽略的程度,但成为大型变压器时,层叠个数也变得非常多,由此作为整体具有相当大的静电电容,储藏于变压器的静电能量也变大。储藏于变压器的静电能量最终作为热能被释放,成为介质损耗(以下也称为介损),会导致能量损失。

该损耗是作为结构系数(buildingfactor)[实际变压器损失(铁损)和坯材(构成该变压器的铁芯的电磁钢板)的损失(铁损)的比]的劣化而表现。为了避免该现象,有时也进行将层叠的钢板的一部分绝缘释放的处理。然而,由于这样的处理会增大涡流损耗,所以优选尽量不进行。因此,本发明人等研究了通过适当地控制绝缘被膜的介电特性而避免该损失。虽然在半导体的领域中在进行低介电常数层间绝缘膜(low-k膜)之类的研究开发,但是电磁钢板的领域中目前为止还不存在与本发明相同目的的发明。

作为利用被膜的介电特性的发明,可以举出专利文献4。然而,专利文献4通过使用介质损耗大的被膜而促使发热(损耗),将所层叠的钢板热粘接。即,可以说专利文献4所公开的发明是与本发明的中心思想相违背的发明。

另外,作为着眼于构成变压器的部件的介电特性的技术,例如可举出专利文献5、6。但是,专利文献5、6记载的技术是适当地控制卷线、线轴的绝缘部件的介电特性而提高其绝缘性的技术,并不是适当地控制铁芯坯材的介电特性。

专利文献1:日本特开平8-67913号公报

专利文献2:日本特开昭50-79442号公报

专利文献3:日本特开昭48-39338号公报

专利文献4:日本特开平11-187626号公报

专利文献5:国际公开第2016/059827号

专利文献6:日本特开2000-164435号公报



技术实现要素:

本发明提供一种在用作变压器的铁芯的坯材的情况下能够减少变压器的介质损耗的带绝缘被膜的电磁钢板。另外,本发明的目的在于提供一种上述带绝缘被膜的电磁钢板的制造方法、使用带上述绝缘被膜的电磁钢板而得到的变压器的铁芯和变压器以及变压器的介质损耗的减少方法。

本发明人等首先测定了用以往方法制造的取向性电磁钢板的介电特性,由此开始进行研究。如下制备试件。

首先,将利用公知的方法制造的板厚:0.23mm的已完成成品退火的取向性电磁钢板切断为100mm×100mm的大小,除去未反应的退火分离剂后,进行去应力退火(800℃,2小时,n2气氛)。此时,在上述钢板的表面形成以镁橄榄石为主体的被膜层(镁橄榄石被膜层)。在5质量%磷酸水溶液轻酸洗后,将专利文献2所记载的涂布处理液涂布于具有上述镁橄榄石被膜层的钢板的表面而形成绝缘被膜层,制造带有被膜的电磁钢板。然后,将通过酸洗除去钢板单面的绝缘被膜的钢板作为试件。具体而言,在所制造的带绝缘被膜的电磁钢板的试样的单面(整面),贴付腐蚀防止胶带后,通过在110℃的25质量%naoh水溶液中浸渍10分钟左右,从而除去没有贴附腐蚀防止胶带一侧的面的绝缘被膜,将其作为试件。

在上述试件的具有绝缘被膜的一侧的表面安装电极,使用keysighttechnologies公司制lcr测量仪“e4980a”,以静电电容方式在室温(26℃)下、在测定频率50hz-1mhz的范围内测定绝缘被膜的介电特性。应予说明,绝缘被膜的各层的厚度是镁橄榄石被膜层为2.0μm、硅磷酸盐绝缘被膜层为2.0μm,合计4.0μm。

将测定的绝缘被膜的介电常数(εr)示于图1,将介质损耗角正切(tanδ)示于图2。虽然在低频下测定值的差别大,但是在1000hz下的测定值的差别小,几乎是可以忽略的程度,由此通过1000hz下的介电常数、介质损耗角正切来评价材料的介电特性。应予说明,对于仅具有没有绝缘被膜层的镁橄榄石被膜层的取向性电磁钢板的试样,不能保持被膜的绝缘性,无法测定介电特性。

通过如此,发现能够测定绝缘被膜的介电特性,所以,接下来,本发明人等对于控制绝缘被膜的介电特性的方法进行了反复深入的研究。其结果是发现了在构成绝缘被膜的绝缘被膜层中含有顺电体或者含有中空陶瓷粒子,则能够控制绝缘被膜的介电特性。

作为一个例子,在专利文献2所记载的涂布处理液添加日辉触媒化成株式会社制纳米中空二氧化硅“thrulya”5质量%,与上述相同地将其涂布于具有镁橄榄石被膜层的钢板的两面,形成绝缘被膜层,制造带有绝缘被膜的电磁钢板。然后,通过酸洗,除去了钢板单面的绝缘被膜,制备试样。对于该试样,利用与上述相同的方法,测定绝缘被膜的介电特性。将结果示于图3、图4。可知上述包含纳米中空二氧化硅的绝缘被膜与以往方法(专利文献2)的绝缘被膜比较,在50hz-1mhz的整个范围内为低介电常数、低介质损耗角正切。

并且,发现将具有这样的低介电常数、低介质损耗角正切的带有绝缘被膜的电磁钢板用作大型变压器的铁芯材料的情况下,具有介质损耗减少,改善变压器的损失的效果,从而完成了本发明。

即,本发明具有以下的构成。

[1]一种带绝缘被膜的电磁钢板,在电磁钢板表面的至少单面,具有1000hz下的介电常数为15.0以下且介质损耗角正切为20.0以下的绝缘被膜。

[2]根据[1]所述的带有绝缘被膜的电磁钢板,其中,上述绝缘被膜具有包含中空陶瓷粒子的绝缘被膜层。

[3]根据[1]所述的带有绝缘被膜的电磁钢板,其中,上述绝缘被膜具有包含1mhz下的介质损耗系数为0.10以下的低介质损耗物质的绝缘被膜层。

[4]一种带有绝缘被膜的电磁钢板的制造方法,是上述[2]所记载的带有绝缘被膜的电磁钢板的制造方法,

使用含有中空陶瓷粒子的绝缘被膜层形成用处理液,将该处理液涂布于电磁钢板的表面或具有镁橄榄石被膜层的电磁钢板的表面,进行烧结处理。

[5]一种带绝缘被膜的电磁钢板的制造方法,是上述[3]所述的带有绝缘被膜的电磁钢板的制造方法,

使用含有上述低介质损耗物质的绝缘被膜层形成用处理液,将该处理液涂布于电磁钢板的表面或具有镁橄榄石被膜层的电磁钢板的表面,进行烧结处理。

[6]一种带绝缘被膜的电磁钢板的制造方法,是上述[3]所述的带有绝缘被膜的电磁钢板的制造方法,

使用能够析出上述低介质损耗物质的绝缘被膜层形成用处理液,将该处理液涂布于电磁钢板的表面或具有镁橄榄石被膜层的电磁钢板的表面,进行烧结处理后,实施在1050℃以上的温度下加热30秒以上的结晶化处理,使上述低介质损耗物质析出在绝缘被膜层中。

[7]一种变压器的铁芯,使用上述[1]~[3]中任一项所述的带有绝缘被膜的电磁钢板而成。

[8]一种变压器,具备上述[7]所述的变压器的铁芯。

[9]一种变压器的介质损耗的减少方法,是减少变压器的介质损耗的方法,

层叠带绝缘被膜的电磁钢板而构成该变压器的铁芯,所述带绝缘被膜的电磁钢板在电磁钢板表面的至少单面具有1000hz下的介电常数为15.0以下且介质损耗角正切为20.0以下的绝缘被膜。

[10]根据[9]所述的变压器的介质损耗的减少方法,其中,

上述绝缘被膜具有包含中空陶瓷粒子的绝缘被膜层。

[11]根据[9]所述的变压器的介质损耗的减少方法,其中,上述绝缘被膜具有包含1mhz下的介质损耗系数为0.10以下的低介质损耗物质的绝缘被膜层。

根据本发明,能够提供一种在用作变压器的铁芯的坯材的情况下,减少变压器的介质损耗的效果优异的带绝缘被膜的电磁钢板。根据本发明,对于层叠电磁钢板而成为变压器的铁芯时成为问题的介质损耗的问题,通过使用具有低的介电常数和介质损耗角正切的绝缘被膜的电磁钢板,能够减少变压器的介质损耗,因此能够减少结构系数。

以往,对于特别是在大型变压器中变显著的因层叠钢板的静电电容增大所导致的介质损耗的增加之类的缺点,通过对变压器和变压器铁芯的制造以及设计时下工夫而进行应对。而根据本发明,通过适当地对形成于构成变压器的铁芯的电磁钢板的表面的绝缘被膜的介电特性进行控制,即使在变压器和变压器铁芯的制造以及设计时不特别耗费工夫,也能够抑制因层叠该电磁钢板时的静电电容增大导致的介质损耗的增加,能够提高变压器和变压器铁芯的制造性。

附图说明

图1是表示以往例的绝缘被膜的介电特性(介电常数的频率依存性)的坐标图。

图2是表示以往例的绝缘被膜的介电特性(介质损耗角正切的频率依存性)的坐标图。

图3是表示本发明例的绝缘被膜的介电特性(介电常数的频率依存性)的坐标图。

图4是表示本发明例的绝缘被膜的介电特性(介质损耗角正切的频率依存性)的坐标图。

具体实施方式

以下,对本发明的各构成要件进行说明。

本发明所使用的电磁钢板没有特别限定,例如可以使用通过公知的方法制造的电磁钢板。作为优选的电磁钢板的一个例子,例如可以使用按照下述方法制造的取向性电磁钢板。

首先,对优选的钢的成分组成进行说明。以下,只要没有特别说明,各元素的含量的单位“%”是指“质量%”。

c:0.001~0.10%

c是对goss位向晶粒的产生有用的成分,为了有效发挥上述作用,可以含有0.001%以上。另一方面,c含量超过0.10%时,有时即使因脱碳退火也发生脱碳不良的情况。因此,c含量优选为0.001~0.10%的范围。

si:1.0~5.0%

si是提高电阻、使铁损降低,并且使铁的bcc组织稳定化而能够进行高温的热处理的有效的成分,si含量优选为1.0%以上。但是,si含量超过5.0%时难以进行通常的冷轧。因此,si含量优选为1.0~5.0%的范围。si含量更优选为2.0~5.0%的范围。

mn:0.01~1.0%

mn不仅有效有助于钢的热脆性的改善,而且在混合存在s、se的情况下,形成mns、mnse等析出物,发挥作为晶粒生长抑制剂的功能,由此mn的含量优选为0.01%以上。另一方面,mn含量超过1.0%时,存在mnse等析出物的粒径粗大化而失去作为缓蚀剂的效果的情况。因此,mn含量优选为0.01~1.0%的范围。

sol.al:0.003~0.050%

al是在钢中形成aln而作为分散第二相具有缓蚀剂作用的有用成分,作为sol.al,优选含有0.003%以上。另一方面,al含量作为sol.al超过0.050%时,存在aln粗大析出而失去作为缓蚀剂的作用的情况。因此,al含量作为sol.al优选为0.003~0.050%的范围。

n:0.001~0.020%

n也是与al同样地对形成aln有用的成分,因此优选含有0.001%以上。另一方面,超过0.020%含有n时存在钢坯加热时产生膨胀等情况。因此,n含量优选为0.001~0.020%的范围。

选自s和se中的1种或2种的合计:0.001~0.05%

s、se是与mn、cu结合而形成mnse、mns、cu2-xse、cu2-xs,作为钢中的分散第二相发挥缓蚀剂的作用的有用成分。为了得到有用的添加效果,优选这些s、se的合计的含量为0.001%以上。另一方面,s、se的合计的含量超过0.05%的情况下,不仅钢坯加热时的固溶不完全,也成为制品表面的缺陷的原因。因此,s、se的含量不论是在含有s或se中的1种的情况下或含有s和se这2种的情况下,均优选合计0.001~0.05%的范围。

优选将以上的元素作为钢的基本成分。另外,上述以外的剩余部分可以是fe及不可避免的杂质的组成。

另外,可以在上述成分组成中进一步含有选自cu:0.01~0.2%、ni:0.01~0.5%、cr:0.01~0.5%、sb:0.01~0.1%、sn:0.01~0.5%、mo:0.01~0.5%、bi:0.001~0.1%中的1种或2种以上。通过含有辅助的具有作为缓蚀剂的作用的元素,能够进一步提高磁性提高。作为这样的元素,可举出容易偏析于晶粒径或表面的上述的元素。均通过为上述的含量的下限以上而能够得到有用的效果。另外,若超过上述含量的上限,则容易产生被膜外观的不良、二次再结晶不良,由此优选为上述范围。

并且,在上述成分组成的基础上,可以含有选自b:0.001~0.01%、ge:0.001~0.1%、as:0.005~0.1%、p:0.005~0.1%、te:0.005~0.1%、nb:0.005~0.1%、ti:0.005~0.1%、v:0.005~0.1%中的1种或2种以上。通过含有这些中的1种或2种以上,能够进一步强化晶粒生长的抑制力而稳定地得到更高的磁通密度。

接下来,对于带有绝缘被膜的电磁钢板的优选的制造方法进行说明。

将具有上述说明的成分组成的钢用以往公知的精炼工艺进行熔制,使用连续铸造法或铸块-开坯轧制法,制成钢坯材(钢坯),其后对上述钢坯进行热轧制而形成热轧板,根据需要实施热轧板退火后,实施1次或包括中间退火的2次以上的冷轧而制成最终板厚的冷延板。接着,通过由下述的一系列的工序构成的制造方法能够制造带绝缘被膜的电磁钢板,即,实施一次再结晶退火和脱碳退火后,涂布以mgo为主成分的退火分离剂,实施最终成品退火,形成以镁橄榄石为主体的被膜层后,涂布用于形成玻璃质的绝缘被膜层的涂布处理液,实施兼具烧结的平坦化退火。

本发明的绝缘被膜可以由一层绝缘被膜层构成,也可以由二层以上的被膜层构成。在由二层以上的被膜层构成的情况下,优选在钢板基底侧形成有镁橄榄石被膜层,另外在其表层侧形成有绝缘被膜层。镁橄榄石被膜层的形成不仅为了确保进一步形成于其表层侧的玻璃质或玻璃陶瓷质的绝缘被膜层与基底的密合性而优选,而且由于镁橄榄石本身为顺电体,所以是低介电常数且低介质损耗的材料,可得到具有所希望的介电特性的绝缘被膜,在这方面也优选。

上述绝缘被膜层以电绝缘性和向钢板赋予张力为目的而形成。绝缘被膜层优选是玻璃质或玻璃陶瓷质。作为绝缘被膜层,一般而言,能够具有低温烧结性,利用制成了水溶液的涂布处理液进行涂布,由此形成磷酸盐系的绝缘被膜层。从制造成本方面考虑,优选绝缘被膜层是一层,但出于赋予低摩擦系数、高耐热性等特性的目的,可以进一步形成第二层或多于第二层的追加被膜层。

测定绝缘被膜的介电特性时,测定全部的被膜层,例如绝缘被膜由镁橄榄石被膜层和绝缘被膜层构成的情况下测定包含镁橄榄石被膜层和绝缘被膜层的全部的被膜层的特性。介电特性可以利用静电电容法进行测定。变压器在50-60hz下励磁,所以低频率下的特性重要,如图1等所示的测定结果可知,低频时测定误差大,由此本发明中采用测定误差小的1000hz下的测定值。低频率的材料特性和1000hz下的材料特性有相关性,本发明中采用能够充分确保测定精度的1000hz的值。

作为绝缘被膜的介电特性,介电常数(εr)过大时静电电容变大,加之作为变压器铁芯时因变压器的介质损耗的增加、电流的截断等导致产生过大的脉冲电流的问题。因此,绝缘被膜的1000hz下的介电常数(εr)为15.0以下。上述介电常数优选为12.0以下。绝缘被膜的1000hz下的介电常数的下限没有特别限定,能够实现上述介电常数1.0以上的范围。

另外,绝缘被膜的介质损耗角正切(tanδ)变大时,如下述式(1)所示,介质损耗也变大。因此,绝缘被膜的1000hz的介质损耗角正切(tanδ)为20.0以下。上述介质损耗角正切优选为10.0以下。

这里,介质损耗p是,

p=fεrc0v2tanδ…(1)

f:频率,c0:真空的静电电容,v:电压。

绝缘被膜的厚度根据钢板截面的sem观察测定。从介质损耗的观点考虑,厚度薄则有利,但过薄时绝缘性变差,因此绝缘被膜的厚度优选为2.0μm以上,更优选为3.0μm以上。反之绝缘被膜的厚度过厚时绝缘性变高而优选,但介质损耗增加,或者占积率劣化,由此绝缘被膜的厚度优选为6.0μm以下,更优选为5.0μm以下。

绝缘被膜层只要是可确保电绝缘性的物质,以氮化物、硫化物、氧化物、无机物、有机物中的任一种作为主体均没有问题,但考虑去应力退火、常压、大气中的使用等时,优选为氧化物,特别优选为无机氧化物为主体。

作为无机氧化物,可举出磷酸盐、硼酸盐、硅酸盐等,优选使用现在一般作为绝缘被膜层成分的主体利用的硅磷酸盐玻璃。硅磷酸盐玻璃在大气中具有吸湿的性质,由此,出于防止其的目的,优选含有选自mg、al、ca、ti、nd、mo、cr、ba、cu和mn中的1种或2种以上的元素。

作为得到具有本发明的介电特性的绝缘被膜的方法,可举出在构成绝缘被膜的绝缘被膜层中,含有中空陶瓷粒子的方法、含有顺电体等低介质损耗的物质(以下也称为低介质损耗物质)的方法等。

上述中空陶瓷粒子利用该中空陶瓷粒子的空气层而控制绝缘被膜的介电特性。作为上述中空陶瓷粒子,例如可举出中空二氧化硅粒子等。

作为上述低介质损耗物质,例如可举出氧化铝(al2o3)、氧化镁(mgo)、镁橄榄石(mg2sio4)、铌酸镁钡(ba(mg1/3nb2/3)o3)、钛酸钕酸钡(ba4nd9.3ti18o54)、透辉石(camgsi2o6)等。应予说明,这里的低介质损耗物质是指1mhz下的介质损耗系数(εrtanδ)为0.10以下的物质。1mhz下的介质损耗系数为0.05以下则更优选。

作为在绝缘被膜层中含有中空陶瓷粒子的方法,例如制备在已知的绝缘被膜层形成用处理液(涂布处理液)添加中空陶瓷粒子而成的涂布处理液。即可举出使用含有中空陶瓷粒子的涂布处理液,将该涂布处理液涂布于基底(电磁钢板)或在表面具有镁橄榄石被膜层的电磁钢板等的表面进行烧结处理,形成包含中空陶瓷粒子的绝缘被膜层的方法。应予说明,本发明的烧结处理例如可以是在从800℃至1000℃的温度下加热10秒到120秒加热的处理。

另外,作为绝缘被膜层中含有低介质损耗物质的方法,与上述同样地例如制备在已知的涂布处理液中添加低介质损耗物质而成的涂布处理液。即可举出使用含有低介质损耗物质的涂布处理液,将该涂布处理液涂布于基底(电磁钢板)或在表面具有镁橄榄石被膜层的电磁钢板等的表面进行烧结处理,形成包含低介质损耗物质的绝缘被膜层的方法。

具体而言,作为涂布处理液,例如可以使用选自mg、ca、ba、sr、zn、al、mn、co的磷酸盐中的至少1种、胶体二氧化硅、以及含有上述中空陶瓷粒子和/或低介质损耗物质的涂布处理液。

存在于上述绝缘被膜层中的中空陶瓷粒子的平均粒径只要没有特别限定,从更有效地减少被膜的介质损耗的观点考虑,优选为20nm以上。另外,从被膜的表面粗糙度的观点考虑,中空陶瓷粒子的平均粒径优选为1000nm以下,进一步优选为500nm以下。

上述低介质损耗物质需要作为固体(结晶相)存在于绝缘被膜层中。存在于上述绝缘被膜层中的低介质损耗物质的平均粒径没有特别限定,但从被膜的表面粗糙度的观点考虑,优选为1000nm以下,进一步优选为500nm以下。并且,虽然理由尚不确定,但粒径越小,形成绝缘被膜时的介质损耗角正切变小(即介质损耗变小),因此,进一步优选平均粒径为100nm以下。另一方面,平均粒径过小时,难以确保涂布处理液中的分散,因此平均粒径优选为5nm以上。

应予说明,上述中空陶瓷粒子的平均粒径、上述低介质损耗物质的平均粒径可以通过tem(透过电子显微镜)观察经分散的上述粒子或上述物质,由得到的照片求得。具体而言,通过上述得到的照片的图像,测定上述粒子或上述物质的投影面积,求出圆当量直径。并且,求出100个上述粒子或上述物质求出的圆当量直径的算术平均,将其作为上述粒子或上述物质的平均粒径(平均一次粒径)。

另外,具有上述平均粒径的中空陶瓷粒子、低介质损耗物质可以作为市售品得到。例如作为中空陶瓷粒子,可举出日辉触媒化成株式会社制的thrulya1110(中空二氧化硅,平均粒径50nm)。另外,例如作为低介质损耗物质,可举出多木化学株式会社制的biralal-c20(al2o3溶胶,平均粒径15~20nm)、ubematerial株式会社制的气相法高纯度超微粉氧化镁500a(氧化镁,平均粒径45~60nm)、ubematerial株式会社制的气相法高纯度超微粉氧化镁2000a(氧化镁、平均粒径190~240nm)。

但是,例如氧化铝、氧化镁与磷酸的反应性高,在绝缘被膜层的烧结过程中与磷酸反应,消失或者溶解,从而存在不保持结晶状态的情况。因此,作为低介质损耗物质,使用氧化铝、氧化镁等与磷酸反应的物质的情况下,优选使用反应性低的状态的物质。

作为这样的与磷酸的反应性低的状态的氧化铝、氧化镁,优选为粒子的结晶形态清晰的物质。即优选为非无定形粒子。另外,特别优选为平均粒径为100nm以下的超微粒子的状态的物质。例如可举出上述的多木化学株式会社制的biralal-c20、ubematerial株式会社制的气相法高纯度超微粉氧化镁500a等。上述biralal-c20是耐热性高,即反应性低,是平均粒径为15~20nm的超微粒子的氧化铝溶胶。另外,上述气相法高纯度超微粉氧化镁500a是具有45~60nm的平均粒径的近似单晶的形态的微粒。

另外,作为在绝缘被膜层中含有低介质损耗物质的方法,也可以使用利用玻璃的结晶化而使低介质损耗物质在绝缘被膜层中微细地析出的方法(以下也称为析出法)。在该情况下,绝缘被膜层成为玻璃陶瓷的形态。

析出法中,使用能够析出低介质损耗物质的涂布处理液,将上述处理液涂布于在电磁钢板或表面具有镁橄榄石被膜层的电磁钢板等的表面,进行烧结处理后,实施结晶化处理,使低介质损耗物质在绝缘被膜层中析出。即,利用析出法,通过涂布处理液的烧结暂时形成玻璃质的绝缘被膜层后,利用结晶化处理使低介质损耗物质的结晶(结晶相)析出。作为上述低介质损耗物质的结晶相,例如可举出mgtio3、mg2tio4、mgal2o4、nd2ti2o7、camgsi2o6等。该情况下,虽然需要良好地组合用于使适宜的结晶相析出的涂布处理液的初始组成和结晶化的热处理条件,但是使低介质损耗物质微细均匀地析出在绝缘被膜层中,因此特性也变得更良好。

作为用于析出法的涂布处理液,例如可以使用含有选自mg、ca、ba、sr、zn、al、mn、co的磷酸盐中的至少1种、胶体二氧化硅以及任意使用的添加物的涂布处理液。

例如,在使mgtio3、nd2ti2o7等结晶在绝缘被膜层中析出的情况下,作为上述添加物,使用包含成为ti、nd的供给源的ti、nd的化合物、例如使用氧化钛、氧化钕的涂布处理液即可。

另外,使camgsi2o6等在绝缘被膜层中析出的情况下,优选使用将上述涂布处理液中的上述磷酸盐和胶体二氧化硅的含有比例以固体成分换算计相对于磷酸盐100质量份,胶体二氧化硅为50~250质量份的涂布处理液。

析出法中的烧结处理例如可以是在800℃至1000℃的温度下加热10秒到120秒的处理。另外,析出法的结晶化处理优选为1050℃以上的温度下加热30秒以上的处理。

绝缘被膜的介电特性例如能够通过调整绝缘被膜层中的中空陶瓷粒子的含量、绝缘被膜层中的低介质损耗物质的含量或者低介质损耗物质的析出量来进行控制。介电特性根据物质而不同,因此优选进行试制作而确定涂布处理液组成、烧结条件、结晶化处理条件等。

实施例

(实施例1)

将以质量%计含有c:0.04%、si:3.25%、mn:0.08%、sol.al:0.015%、n:0.006%、s:0.002%、cu:0.05%、sb:0.01%的硅钢板钢坯在1250℃下加热60分钟后,进行热轧制,形成2.4mm的板厚的热轧板,实施1000℃、1分钟的退火后,利用冷轧形成0.27mm的最终板厚,接着以加热速度80℃/s从室温升温到820℃,在湿润气氛下在820℃进行60秒的一次再结晶退火。接着,将相对于100质量份的mgo混合3质量份的tio2的退火分离剂制成水浆状后进行涂布、干燥。花费100小时将该钢板从300℃升温到800℃后,以50℃/hr升温到1200℃,实施在1200℃下退火5小时的最终成品退火,制备形成有镁橄榄石被膜层的取向性电磁钢板。

接着,准备表1所述的涂布处理液。添加物的平均粒径在tem(透过电子显微镜)下确认。使用作为中空二氧化硅的日辉触媒化成株式会社制的thrulya1110(平均粒径50nm)、作为al2o3溶胶的多木化学株式会社制的biralal-c20(平均粒径15nm)、作为氧化镁的ubematerial株式会社制的气相法高纯度超微粉氧化镁500a(平均粒径53nm)或其2000a(平均粒径210nm)。另外,作为比较材料的al2o3溶胶,使用多木化学株式会社制的biralal-l7(平均粒径8nm)。上述biralal-l7是反应性高的无定形的al2o3溶胶。涂布处理液使用辊涂机而涂布于上述镁橄榄石被膜层的取向性电磁钢板的表面。各绝缘被膜层的克重是以烧结后的质量计单面当中为4.0g/m2。烧结气氛是n2100%,在900℃下进行30秒的均热。

如上地制造在镁橄榄石被膜层上形成有绝缘被膜层的带有绝缘被膜的取向性电磁钢板。并且,通过酸洗除去钢板单面的绝缘被膜后,在具有上述钢板的绝缘被膜的一侧的表面安装电极,使用keysighttechnologies公司制lcr测量仪“e4980a”,以静电电容方式在室温(26℃)下在测定频率50hz-1mhz的范围内测定绝缘被膜的介电特性,得到1000hz下的介电常数和介质损耗角正切。绝缘被膜的厚度是镁橄榄石被膜层2.0μm,绝缘被膜层2.0μm,合计4.0μm。

进而层叠得到的带有绝缘被膜的取向性电磁钢板而制成铁芯,安装该铁芯而制成30mva的容量的变压器,评价结构系数(b.f.)。应予说明,上述结构系数是变压器的铁损值除以该变压器的铁芯的坯材即带有绝缘被膜的取向性电磁钢板的铁损值而得到的值。

将结果示于表1。如表1所示,如果具有1000hz下的介电常数为15.0以下且介质损耗角正切为20.0以下的绝缘被膜的取向性电磁钢板,则结构系数得到改善。具体而言,上述取向性电磁钢板即使与在比较例的取向性电磁钢板中的结构系数最小的no.9、17相比,均使结构系数得到约2%以上的改善。这样,通过将具有1000hz下的介电常数为15.0以下且介质损耗角正切为20.0以下的绝缘被膜的取向性电磁钢板层叠而构成变压器的铁芯,能够减少变压器的介质损耗,减少结构系数。

(实施例2)

将以质量%计含有c:0.04%、si:3.25%、mn:0.08%、sol.al:0.015%、n:0.006%、s:0.002%、cu:0.05%、sb:0.01%的硅钢板钢坯在1350℃下加热20分钟后,进行热轧制形成2.2mm的板厚的热轧板,在1000℃实施1分钟退火后,利用冷轧形成0.23mm的最终板厚,接着以加热速度50℃/s从室温升温到820℃,在湿润气氛下在820℃进行60秒的一次再结晶退火。接着,将相对于100质量份的mgo混合3质量份的tio2的退火分离剂制成水浆状后进行涂布、干燥。花费100小时将该钢板从300℃升温到800℃后,以50℃/hr升温到1200℃,在1200℃下进行退火5小时而进行最终成品退火,准备形成有的镁橄榄石被膜层的取向性电磁钢板。

接着,准备表2记载的涂布处理液。添加物的平均粒径通过tem确认。作为氧化钛溶胶,使用tayca株式会社制的tkd-801(平均粒径6nm),作为氧化钕溶胶,使用多木化学株式会社制的biralnd-c10(平均粒径5nm)。使用辊涂机而将涂布处理液涂布于形成有上述镁橄榄石被膜层的取向性电磁钢板的表面,绝缘被膜层的克重分别设为变更成烧结后的质量的表2记载所示。应予说明,镁橄榄石被膜层的厚度为2.0μm。将烧结气氛设为n2100%,在700℃下进行60秒的第一次的烧结。其后,作为结晶化处理,在表2记载的条件下进行第二次的烧结。利用x射线衍射法将在绝缘被膜层中析出的结晶相进行鉴定。

如上述地制造在镁橄榄石被膜层上形成有绝缘被膜层的带绝缘被膜的取向性电磁钢板。然后,通过酸洗除去钢板单面的绝缘被膜后,在上述钢板的具有绝缘被膜的一侧的表面安装电极,使用keysighttechnologies公司制lcr测量仪“e4980a”,以静电电容方式在室温(26℃)下在测定频率50hz-1mhz的范围测定绝缘被膜的介电特性,得到1000hz下的介电常数和介质损耗角正切。

进而层叠得到的带绝缘被膜的取向性电磁钢板而制成铁芯,安装该铁芯而制成50mva的容量的变压器,评价结构系数(b.f.)。

将结果示于表2。如表2所示,如果是具有1000hz下的介电常数为15.0以下且介质损耗角正切为20.0以下的绝缘被膜的取向性电磁钢板,则结构系数得到改善。具体而言,上述取向性电磁钢板即使与比较例的取向性电磁钢板中的结构系数最小的no.1相比,均使结构系数得到2%以上的改善。这样,通过将具有1000hz下的介电常数为15.0以下且介质损耗角正切为20.0以下的绝缘被膜的取向性电磁钢板层叠而构成变压器的铁芯,能够减少变压器的介质损耗,能够减少结构系数。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1