本发明涉及一种生产用于制造复杂形状的部件的反模板的方法,以及涉及一种通过使用此类的反模板的加压烧结来制造复杂形状的部件的方法。
本发明涉及制造部件的领域,特别是通过致密化多孔或粉末状材料来制造工业机械部件。本领域涵盖通过在单轴或多轴的等静负载(isostaticload)下的烧结(例如,热的、特别是等静的、加压的、高压火花烧结(称为火花等离子体烧结(sparkplasmasintering,sps))、或是选择性激光烧结)的各种致密化技术。
更具体地说,sps烧结技术包括将一定体积的陶瓷、聚合物或金属粉末固结(consolidating)在导电模具中,从而快速获得微观结构良好的致密材料。这种固结是通过同时施加一个载荷(在施加在模具上的高单轴压力下,例如100mpa的压力)和由模具中的高强度脉冲直流电(例如,500至10000a)所提供的500℃至2000℃的加热来实现的,随后粉末的完全烧结只需几分钟完成。
这种sps烧结技术的主要优点是,考虑到在高温下的高升温速率和相对较短的停留时间,材料的致密化不会伴随或伴随很少的晶体生长。
背景技术:
sps烧结技术施加的单轴加压具有导致致密化异质性(heterogeneity)的缺点,特别是针对在厚度上有很大差异的复杂形状的部件,其导致了相对于有限的空间和时间在不同厚度的区域之间去除材料的不均匀性。一般来说,复杂形状是指具有或不具有厚度变化的可变曲率、或是具有或不具有曲率变化且具有较大的厚度变化、及/或具有几何断裂的形状。
为了克服致密化不均匀(inhomogeneity)的缺点,专利文件fr3042992提供在粉末状(或多孔)材料以及用于生产部件所定制的模具的反模板(counterform)面之间添加可变形的界面层。
然而,烧结技术也存在一个问题,当部件具有复杂形状时,模具或模具反模板的使用不容易使部件从模具中移走,特别是形成难以接近的咬边,因此,锥形很难在不部分地破坏部件下从模具中移开。
反模板可以是通过压制由粘合剂聚集(agglomerated)的陶瓷粉末层或通过将陶瓷粉末粘合在聚合物预制件上所获得的印刷件,惰性(inert)界面覆盖于反模板。由于复杂形状的咬边问题以及需要界面覆盖的这些反模板的表面状态问题,这些技术在可接近的几何形状方面有很大的局限性。
为了生产与可从模具上移除的咬边相兼容的反模板,有必要倍增反模板的数量,以便避免从模具上移走的问题。然后,为每个反模板所定制的工具需要被制造,导致了额外的设计和加工步骤。这些许多的反模板的组装也是缺陷的一个来源(最终部件的不匹配几何形状、初始裂纹、材料损失等)。
从文件us2017/291221中还知道,根据待制造部件的形状,使用通过增材打印所生产的薄壁容器。容器被集成到热等静压(hotisostaticpressing,hip)技术压机中,以便使粉末化的金属致密化。文件us2017/368780在hip压机中使用多种材料的增材打印,以便根据指示赋予部件特定属性。
在同样涉及hip技术的文件ep2551040中,先前以增材层制造的容器的材料与待制造部件的材料相同。其他文件,us2017/361490、us2016/144432或us2016/030654使用附加的阶段来实施hip技术:凝胶阶段,或使用预先通过蜡基(wax-based)方法和hip技术所制作的陶瓷模具。
然而,这些文件实施了hip技术,所述技术涉及使用超大、复杂和耗时的手段。
技术实现要素:
本发明旨在克服这个问题,特别是旨在避免开发用于生产反模板的专用工具,并在控制反模板的表面状态的同时促进反模板部分的连接。为此,本发明特别提供了一种反模板的使用方法,所述反模板的结构是从数字控制的增材技术所形成的,并且提供了一种反模板的尺寸确定方法以便预期待致密化的材料沿着施加压力的轴的缩减。
更具体地说,本发明的一个主题是通过加压烧结致密化来生产用于制造复杂形状部件的反模板的方法。在此方法中,反模板根据以下步骤由通过数字控制的三维(3d)增材打印而沉积的连续层所形成,:
-在三维增材打印系统的控制单元中数字地模型化待生产的部件的三维负片(three-dimensionalnegative),以便对待生产的反模板进行打印,所述反模板的剩余部份具有适合用于制造部件的模具的形状的多个面;
-通过3d增材打印技术生产反模板,所述反模板的尺寸通过密度拉伸系数(densitystretchfactor)而增加,所述密度拉伸系数对待制造的部件的尺寸在所述待制造的部件进行烧结致密化的过程中所施加的压力的方向上的收缩进行补偿;以及
-通过烧结完成对反模板的增材打印。
特别地,增加的模板尺寸和事先烧结的特征的结合使得能够提供适应性
-通过在反模板的烧结期间以及随后待制造的部件的材料的烧结期间的适应性,其导致了对此材料的目标致密化程度的严谨应用,以及导致物理化学特征(physico-chemicalcharacteristics)的获得-获得更高的孔隙(porosity)均匀性(homogeneity)和待制造部件的预定孔隙率(porosityfraction)-以及精确获得的几何特征(尺寸和结构)。
根据一些有利的实师方式:
-3d增材打印技术可选自立体光刻(stereolithography)、粘合剂喷射(binderjetting)、可控挤出(controlledextrusion)、熔融沉积成型(fusedfilamentfabrication)、喷墨打印(inkjetprinting)以及气溶胶喷射打印(aerosoljetprinting;
-用于生产反模板的多孔材料选自陶瓷、二氧化硅、金属硅酸盐和复合材料;
-打印是对壁厚小于或等于5毫米的反模板进行,从而避免部件在随后的烧结过程中出现任何裂纹;
-在随后的步骤中,所述反模板被分成至少两个部分,所述两个部分沿着至少一个接合面接合以便消除至少一个咬边,所述接合面介于所述多个部分之间将复杂形状分离成可直接从模具中移除的多个部分。
从反模板上去除粘合剂的步骤可有利地在3d增材打印的输出时通过在200℃和600℃之间的温度下以介于0.1和1℃/分之间的升温速率的热处理来进行,其取决于反模板的材料。此步骤可以去除在反模板生产过程中被引入至材料中的有机化合物。
此外,去除粘合剂的步骤可随后进行预烧结的步骤,所述预烧结的步骤包括在更高温度下对反模板进行热处理,所述温度介于600℃和1500℃之间,其取决于反模板的材料,此步骤可使反模板开始致密化,赋予其机械强度并且促进界面的应用。
本发明的另一个主题是一种通过使用如前述的方法所生产的反模板进行烧结来制造复杂形状部件的方法,所述用于制造部件方法根据以下步骤进行:
-将多个反模板部份聚集在用于在单轴压力下进行烧结的致密化模具中;
-将待致密化的粉末状材料引入穿过反模板部分的至少一个管道中;
-通过在单轴压力下的烧结对待致密化的材料进行致密化;以及
-分离所述多个反模板部分以便释放由此所制造的部件。
待制造部件的多孔或粉末状材料可选自陶瓷、金属合金、聚合物和复合材料。另外,反模板部分的至少一个外壁可形成空隙,然后填充陶瓷粉末,所述陶瓷粉末的烧结温度与反模板部分的陶瓷的烧结温度相等。
根据一些优选特征:
-反模板的材料被选择以便使反模板的材料与待制造部件的材料在烧结时表现出相同的行为,这种相同的行为是反模板材料事先烧结所导致的;
-反模板的陶瓷的烧结开始温度或烧结结束温度高于或等于,或是分别高于待制造部件的烧结开始温度或烧结结束温度;
-陶瓷可选自粉末化的钇稳定氧化锆(yttria-stabilizedzirconia,ysz)、氧化铝增韧氧化锆(alumina-toughenedzirconia,atz)、氧化锆增韧氧化铝(zirconia-toughenedalumina,zta),所述陶瓷表现出40到80%的致密化程度;
-至少一个开口导管设置在反模板外部,以便使用用于形成部件的粉末状或多孔材料填充反模板,并去除任何多余的粉末;
-反模版的增材打印通过反模版的烧结来完成,这种烧结可能与待制造部件的烧结同时应用。
根据一个有利的实施例,提供一层多孔及/或粉末状材料作为反模板和待致密化的材料之间的界面。这种分离界面可防止反模板与待获得部件的粉末之间的任何相互作用。
有利地,界面由至少一层选自石墨、氧化钇和氮化硼的材料所形成。界面层可以以选自喷雾、粉末沉积和适当形状的片材中的形式来施加。
附图说明
通过阅读以下参考附图给出的非限制性描述,本发明的进一步信息、特征和优点将变得显而易见,附图分别示出:
-图1a,根据本发明的方法的示例性待生产的复杂形状部件;
-图1b,图1a中待生产部件的三维负片的数字模型;
-图2,通过使用通过根据本发明的方法所生产的反模板进行烧结来制造根据本发明的复杂形状部件的方法的主要步骤2a到2e的截面示意图;
-图3a至3c,在制造图1a和1b的部件的情况下所生产的两个反模板的视图,以及将这两个反模板一起放入模具中用于通过sps加压烧结进行致密化(图3c)的视图,以及
-图4,被制造的部件的透视图。
在附图中,相同的组件由相同的参考符号所标识,其指的是描述中所提到的一个或多个段落。
具体实施方式
参照图1a,提出了根据本发明的制造方法生产的复杂形状的示例性部件1。平行于基准面xoz)的平面“p”是两个预先产生的反模板的接合面(如下所述),以便在生产后容易地使部件从模具中移除:具体而言,部件1特别地具有形成咬边的凹部“c”,这使得从模具中移除变得困难。根据本发明,凹部“c”随后完全位于一个反模板的一侧。
图1b显示了图1a的部件1的三维负片(negative)10的数字模型3。此数字模型3是在三维增材打印系统的控制单元中产生的(未显示),以便制成待生产的反模板的部分的正形式(positiveform)。为了便于从模具中移除,所述正形式被分为两个部分,如图1a所示。下一步是通过3d增材打印技术(在本例中为立体光刻(stereolithography))生产各个反模板部分,其结果参考图3的两个反模板部分30a和30b。
图2显示了根据本发明方法的主要步骤2a至2e中实施的方法的剖面示意图,其用于通过在单轴压力下的烧结制造复杂形状24d的部件,此方法使用了根据本发明的通过3d增材打印技术(在本例中为立体光刻)从粘结陶瓷粉末中所生产的反模板20(步骤2a)。
在图示的例子中,单一个二面体反模板足以方便地从棱柱状部件24d(参见步骤2e)的模具中移除,所述形状在本简化示例中被视为是复杂的。然后,通过喷涂将恒定厚度的石墨界面层22沉积在反模板20上(步骤2b),然后将待致密化的材料24添加到此界面22(步骤2c)。此界面22用于防止在反模板20以及待制造的粉末24之间的相互作用。
在示例中所使用的用于制造部件的待致密化的材料为金属合金、钛铝合金(titaniumandaluminumalloy,tial)以及rené族中的镍基超合金。
有利地,反模板20的材料是被选择以便在烧结开始和结束温度以及致密程度方面使得反模板材料和待制造的部件24的材料在烧结上具有类似的烧结行为。
在合金用于待制造的部件的情况下,对于以tial制成的部件来说用于反模板的陶瓷为氧化铝增韧氧化锆(alumina-toughenedzirconia,atz),对于以从rené族中选择的镍基超合金来说则为钇稳定氧化锆(yttria-stabilizedzirconia,ysz)。更一般地说,用于反模板的陶瓷的烧结起始温度(或烧结结束温度)高于或等于(或分别高于)待制造部件的金属合金的烧结起始温度(或烧结结束温度)。
待致密化的材料24在单轴压力下的sps烧结也对本例中的反模板20进行致密化(设想收缩率为-10%至-45%),材料24和反模板20被引入sps模具中(未显示)。
在设想这种致密化时,增加每个反模板部分20的尺寸从而预测部件24在施加单轴压力“f”的sps烧结的方向上的收缩(步骤2d)。因此,部件24的几何形状事先被拉伸系数(stretchfactor)“fe”拉伸以便补偿部件尺寸的此类收缩。系数fe由待致密化的粉末的密度与致密化后的粉末的密度的比值所定义。有利地,在系数fe的值发生变化的情况下,反模板部分20的简化几何形状可以容易地改变。
因此,在本示例性实施例中,单轴压力“f”导致反模板20的最大高度降低40%,所述高度从值“h”(步骤2c)变为值“h”(步骤2d)。这种高度的降低允许部件24d以预期高度制造,初始高度“h”通过应用系数fe而增加。浓缩的模板和部件(编号20d和24d)随后很容易分离(步骤2e)。
图3a和3b的视图以部分30a和30b形式呈现了由atz陶瓷所制成的反模板,在根据图1a和1b制造由tial所制成的部件1的示例中,atz陶瓷和tial合金在烧结上具有类似的行为。这些反模板部分30a和30b在接合面“p”中具有接合面40a和40b(参见图1a)。
有利地,从反模板部分30a、30b中去除粘合剂是通过在200℃和600℃之间的温度下(在示例中是400℃)以介于0.1和1℃/分之间的升温速率(在示例中是0.5℃/分)的热处理来实现的。此步骤使得能够去除在用于产生反模板部分的3d打印期间可能引入至陶瓷粉末中的有机化合物。
优选地,在移除粘合剂之后还进行了预烧结。此预烧结包括在更高的温度下,例如在600℃和1500℃之间(在示例中是1200℃,取决于所用的材料),对去除了粘合剂30a、30b的反模板部分进行处理。这种热处理使得能够开始对反模板部分进行致密化以便赋予它们机械强度,从而促进一个或多个界面层的应用,如下所述。
待制造部件的两个半压痕(half-impressions)41a和41b通过喷涂用石墨42进行覆盖,接着用基于氧化钇的层进行覆盖,以便防止陶瓷与待制造部件的材料(示例中为tial)之间的反应。为了通过立体光刻生产反模板,被分为两个部分的反模板允许去除未聚合的粘料。另外,反模板部分30a、30b有利地具有5mm的最大厚度,从而避免在烧结和在恢复部件时用于去除粘合剂的热处理期间开裂的任何风险。
参考图3c,两个反模板部分30a、30b在sps烧结模具2中接合在一起,使得两个半压痕41a、41b形成与待制造部件相对应的单一压痕(以负形式(negative))。用tial粉末填充所述压痕是通过三个空心导管4来进行的。这些导管4穿过与反模板部分30a的接合面40a相对的面42a(参见图3a)。管道4还允许根据需要清除任何多余的tial粉末。
一个或多个反模板部分30a、30b的外壁可有利地形成空隙,以便于通过3d打印进行生产。这些空隙随后用ysz(钇稳定氧化锆)粉末进行填充,所述粉末的烧结温度相当于所用atz反模板陶瓷的烧结温度。
在单轴压力下的sps烧结过程中,陶瓷和待制造部件的金属合金将同时烧结,烧结的陶瓷覆盖在金属部件上。通过石墨和氧化钇42的界面层(见图3a和3b)的优点,利用机械及/或化学地移除陶瓷容易使陶瓷与部件分离。图4显示了具有仍需去除的一些陶瓷残留物43的最终的部件1。
本发明不限于所描述和显示的示例性实施例。因此,反模板可被分为最小数量的部分以便避免在待制造的部件中出现咬边。
此外,反模板可采用局部薄弱区域的结构而无场所限制,以便于最终从模具中移除。
此外,待制造的部件可以由金属合金粉末、陶瓷、复合材料或任何类型的适当材料构成。