一种低合金化Al-Mg-Si合金的热处理方法与流程

文档序号:22973991发布日期:2020-11-19 22:17阅读:106来源:国知局

本发明属于铝合金材料领域,具体涉及一种低合金化al-mg-si合金的热处理方法。



背景技术:

6系铝合金应用最广、产量最大的铝合金,现有6系铝合金已被应用于航空航天、武器装备、交通运输、电力等重要行业。然而随着应用范围的扩大,发现6系铝合金的强韧性、焊接性以及耐腐蚀性受到了严峻的挑战。

6系al-mg-si合金是典型的轻质中强铝合金结构材料,其挤压制品广泛应用于众多领域。低合金化al-mg-si合金主要指6063、6060、6101等mg、si元素质量分数总量低于1%的铝合金,此类合金具有很高的塑性、很好的导电导热及耐蚀性能,以及优异的成形性能,可实现高速挤压、薄壁复杂结构和高挤压比成型,但是,其强度性能通常较低,限制了其应用范围。

6系铝合金,主要的强化相为mg2si,然而目前6系铝合金中合金元素含量较低,如mg的含量为0.3%-1.2%;si的含量为0.3%-1.7%,因此,合金强度和硬度较低。例如6063铝合金挤压型材,t6状态下抗拉强度一般不高于260mpa;6061-t6的抗拉强度通常也低于290mpa。虽然可以添加锆、钒、硼、钛等元素进行铝合金改性,但是在铝合金提高强度后,韧性、耐腐蚀性以及焊接性能降低。



技术实现要素:

本发明的目的是提供一种低合金化al-mg-si合金的热处理方法,通过特殊的热处理方法,提升了耐腐蚀性能和力学性能。

为了解决以上技术问题,本发明采用以下技术方案:

一种低合金化al-mg-si合金的热处理方法,所述低合金化al-mg-si合金:co0.12%,si0.42%,mg0.58%,fe0.15%,cu0.1%,cr0.04%,nb0.02%,la0.05%,余量为al;包括如下步骤:步骤s1,挤压:采用常规正向热挤压方法加工成形,控制锭坯加热温度和挤压速度,使挤出模口的合金温度为530-560℃;步骤s2,淬火:采用分级冷却方式进行在线淬火处理,并进行二次拉伸,然后挤压合金半制品先在空冷区行进5-10s,随后进入强风快速冷却区,行进时间为20-40s,冷却速度为6-10℃/s;合金经强风淬火冷却至250℃以下,再空冷至室温;步骤s3,时效:采用双级人工时效处理,即对经过在线淬火的合金半制品进行矫直和切定尺后,放入已升温至220-280℃的电阻炉内进行一级时效热处理,保温0.5-1.5小时;然后将合金快速转入已升温至100-140℃的电阻炉内进行二级时效处理,保温2.5-6.5小时,出炉后空冷。

进一步,所述一级时效热处理,温度为240-270℃,保温时间为0.5-1.0小时。

进一步,所述二级时效热处理,温度为110-130℃,保温时间3.5-5.5小时,出炉后空冷;两级时效之间转移时间不大于12秒。

进一步,二次拉伸中第一次拉伸:510℃淬火,拉伸率为2-3%。

进一步,二次拉伸中第二次拉伸:490℃淬火,拉伸率为0.4-0.6%。

进一步,低合金化al-mg-si合金的制备方法包括以下步骤(a)熔炼中间合金:将纯铝锭装炉,炉气温度设定为750-780℃,待纯铝锭熔化后保温20-40min进行扒渣,然后将铝铜中间合金、铝铁中间合金和纯镁锭按照块重及尺寸从大到小依次加入到熔炼炉中,然后将炉气温度提升10-20℃保温至中间合金及镁锭全部熔化后,再将炉气温度提升10-20℃后依次加入铝硅中间合金、铝铬中间合金、纯锌锭、nb和la,保温至完全熔化后得到合金溶液,将合金熔液的温度降低至720-740℃,加入其他合金元素后进行精炼,然后以1℃/min的速度升温至780℃,精炼10min,降温至720度后,依次进行静置、扒渣和铸造,得到铸锭;(2)均匀化处理:将铸锭进行均匀化处理,得到均匀化后的铸锭;(3)热挤压及热处理:对均匀化后的铸锭进行热挤压,得到挤压型材,随后对挤压型材进行低合金化al-mg-si合金的热处理方法。

进一步,所述步骤二中所述均匀化处理的处理温度为560-600℃,时间为8h。

本发明具有以下有益效果:

与现有技术不同,铝合金的电导率要达到55%以上,其抗拉强度一般低于150mpa;纯铝的电导率可达60%以上,但抗拉强度只能达到60-70mpa。可见,强度性能与电导率的矛盾非常突出。

而通过采用本发明的热处理工艺,低合金化al-mg-si合金可获得更高的抗拉强度,电导率达到59%iacs以上的性能匹配,电导率达到57%iacs以上的性能匹配,从而拓展了该系铝合金的应用。

具体实施方式

为便于更好地理解本发明,通过以下实例加以说明,这些实例属于本发明的保护范围,但不限制本发明的保护范围。

一种低合金化al-mg-si合金的热处理方法,包括如下步骤:步骤s1,挤压:采用常规正向热挤压方法加工成形,控制锭坯加热温度和挤压速度,使挤出模口的合金温度为530-560℃;步骤s2,淬火:采用分级冷却方式进行在线淬火处理,并进行二次拉伸,第一次拉伸:510℃淬火,拉伸率为2-3%,第二次拉伸:490℃淬火,拉伸率为0.4-0.6%,然后挤压合金半制品先在空冷区行进5-10s,随后进入强风快速冷却区,行进时间为20-40s,冷却速度为6-10℃/s;合金经强风淬火冷却至250℃以下,再空冷至室温;步骤s3,时效:采用双级人工时效处理,即对经过在线淬火的合金半制品进行矫直和切定尺后,放入已升温至220-280℃的电阻炉内进行一级时效热处理,保温0.5-1.5小时;然后将合金快速转入已升温至100-140℃的电阻炉内进行二级时效处理,保温2.5-6.5小时,出炉后空冷。所述一级时效热处理,温度为240-270℃,保温时间为0.5-1.0小时。所述二级时效热处理,温度为110-130℃,保温时间3.5-5.5小时,出炉后空冷;两级时效之间转移时间不大于12秒。

所述低合金化al-mg-si合金:co0.12%,si0.42%,mg0.58%,fe0.15%,cu0.1%,cr0.04%,nb0.02%,la0.05%,余量为al。低合金化al-mg-si合金的制备方法包括以下步骤:(a)熔炼中间合金:将纯铝锭装炉,炉气温度设定为750-780℃,待纯铝锭熔化后保温30min进行扒渣,然后将铝铜中间合金、铝铁中间合金和纯镁锭按照块重及尺寸从大到小依次加入到熔炼炉中,然后将炉气温度提升10-20℃保温至中间合金及镁锭全部熔化后,再将炉气温度提升10-20℃后依次加入铝硅中间合金、铝铬中间合金、纯锌锭、nb和la,保温至完全熔化后得到合金溶液,将合金熔液的温度降低至730℃,加入其他合金元素后进行精炼,然后以1℃/min的速度升温至780℃,精炼10min,降温至720度后,依次进行静置、扒渣和铸造,得到铸锭;(2)均匀化处理:将铸锭进行均匀化处理,得到均匀化后的铸锭;(3)热挤压及热处理:对均匀化后的铸锭进行热挤压,得到挤压型材,随后对挤压型材进行低合金化al-mg-si合金的热处理方法。所述步骤二中所述均匀化处理的处理温度为580℃,时间为8h。

实施例1

一种低合金化al-mg-si合金的热处理方法,包括如下步骤:步骤s1,挤压:采用常规正向热挤压方法加工成形,控制锭坯加热温度和挤压速度,使挤出模口的合金温度为545℃;步骤s2,淬火:采用分级冷却方式进行在线淬火处理,并进行二次拉伸,第一次拉伸:510℃淬火,拉伸率为2.5%,第二次拉伸:490℃淬火,拉伸率为0.5%,然后挤压合金半制品先在空冷区行进7s,随后进入强风快速冷却区,行进时间为30s,冷却速度为8℃/s;合金经强风淬火冷却至250℃以下,再空冷至室温;步骤s3,时效:采用双级人工时效处理,即对经过在线淬火的合金半制品进行矫直和切定尺后,放入已升温至250℃的电阻炉内进行一级时效热处理,保温1小时;然后将合金快速转入已升温至120℃的电阻炉内进行二级时效处理,保温4.5小时,出炉后空冷。所述一级时效热处理,温度为260℃,保温时间为1.0小时。所述二级时效热处理,温度为120℃,保温时间4.5小时,出炉后空冷;两级时效之间转移时间不大于12秒。

实施例2

一种低合金化al-mg-si合金的热处理方法,包括如下步骤:步骤s1,挤压:采用常规正向热挤压方法加工成形,控制锭坯加热温度和挤压速度,使挤出模口的合金温度为530℃;步骤s2,淬火:采用分级冷却方式进行在线淬火处理,并进行二次拉伸,第一次拉伸:510℃淬火,拉伸率为3%,第二次拉伸:490℃淬火,拉伸率为0.4%,然后挤压合金半制品先在空冷区行进10s,随后进入强风快速冷却区,行进时间为20s,冷却速度为10℃/s;合金经强风淬火冷却至250℃以下,再空冷至室温;步骤s3,时效:采用双级人工时效处理,即对经过在线淬火的合金半制品进行矫直和切定尺后,放入已升温至280℃的电阻炉内进行一级时效热处理,保温0.5小时;然后将合金快速转入已升温至140℃的电阻炉内进行二级时效处理,保温2.5小时,出炉后空冷。所述一级时效热处理,温度为270℃,保温时间为0.5小时。所述二级时效热处理,温度为130℃,保温时间3.5小时,出炉后空冷;两级时效之间转移时间不大于12秒。

实施例3

一种低合金化al-mg-si合金的热处理方法,包括如下步骤:步骤s1,挤压:采用常规正向热挤压方法加工成形,控制锭坯加热温度和挤压速度,使挤出模口的合金温度为560℃;步骤s2,淬火:采用分级冷却方式进行在线淬火处理,并进行二次拉伸,第一次拉伸:510℃淬火,拉伸率为2%,第二次拉伸:490℃淬火,拉伸率为0.6%,然后挤压合金半制品先在空冷区行进5s,随后进入强风快速冷却区,行进时间为40s,冷却速度为6℃/s;合金经强风淬火冷却至250℃以下,再空冷至室温;步骤s3,时效:采用双级人工时效处理,即对经过在线淬火的合金半制品进行矫直和切定尺后,放入已升温至220℃的电阻炉内进行一级时效热处理,保温1.5小时;然后将合金快速转入已升温至100℃的电阻炉内进行二级时效处理,保温6.5小时,出炉后空冷。所述一级时效热处理,温度为240℃,保温时间为1.0小时。所述二级时效热处理,温度为110℃,保温时间5.5小时,出炉后空冷;两级时效之间转移时间不大于12秒。

对比例1

与实施例1的制备工艺基本相同,唯有不同的是不加入co。

对比例2

与实施例1的制备工艺基本相同,唯有不同的是0.05%co。

对比例3

与实施例1的制备工艺基本相同,唯有不同的是不进行二次拉伸。

对比例4

与实施例1的制备工艺基本相同,唯有不同的是不进行第一次拉伸。

对比例5

与实施例1的制备工艺基本相同,唯有不同的是不进行第二次拉伸。

对比例6

与实施例1的制备工艺基本相同,唯有不同的是不加入co也不进行二次拉伸。

对实施例1-3和对比例1-6制得的国标样品,进行测定断裂伸长率和拉伸强度,晶间腐蚀深度,剥落腐蚀等级,测定结果如下表所示。

由上表可知:由实施例1-3和对比例1-2可知,co的用量过少导致性能不足,不加入co导致电导率下降严重。由实施例和对比例3-5可知,经过二次拉伸后,抗拉性能有了明显的改善。同时由对比例1和6可知,co的加入与拉伸是互相促进的,两者要同时进行才能实现最佳性能。

以上内容不能认定本发明具体实施只局限于这些说明,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思前提下,还可以做出若干简单推演或替换,都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1