氧化镓纳米棒及其制备方法和光电探测器件与流程

文档序号:23385377发布日期:2020-12-22 13:50阅读:189来源:国知局
氧化镓纳米棒及其制备方法和光电探测器件与流程
本申请属于半导体材料制备
技术领域
,尤其涉及一种氧化镓纳米棒及其制备方法,以及一种光电探测器件。
背景技术
:氧化镓,化学式为ga2o3,是一种n型宽禁带氧化物半导体材料,其禁带宽度高达4.4~5.3ev。该类材料具有优异的热稳定性、化学稳定性以及较高的击穿电压,且在可见光区域高度透明,对紫外光极其敏感,是一种理想的日盲紫外探测的光敏材料。在氧化镓基光电探测器件的研究中,人们采用由各种方法制备的氧化镓薄膜类制得不同类型的紫外探测器件,并研究不同结晶态以及合成工艺对氧化镓基光电探测器件的响应度及光暗电流等性能指标的影响。由于纳米结构材料的比表面积越大其具有的散射能力更强,对应的紫外探测器件可获得更高的光响应度,因此,氧化镓纳米棒的生长对于紫外探测领域具有非常重要的研究意义。然而,由于氧化镓纳米棒的生长非常困难,生长温度普遍偏高,利用贵金属催化或异质晶种层又带来成本以及制备工艺的挑战,因此,现有的研究中对于氧化镓纳米结构的研究非常有限,阻碍了其在光电探测器件领域的应用。技术实现要素:本申请的目的在于提供一种氧化镓纳米棒的制备方法,以及由此制得的氧化镓纳米棒,旨在解决一种新的氧化镓纳米棒的制备方法。进一步地,本申请还提供了一种光电探测器件。为实现上述申请目的,本申请采用的技术方案如下:本申请提供一种氧化镓纳米棒的制备方法,所述制备方法包括以下步骤:提供基底和氧化镓靶材,并固定于可抽真空的腔体中;向所述腔体中通入氧气和惰性气体,所述氧气的通入速度为1~10sccm,所述惰性气体的通入速度为3~30sccm,并保持所述腔体的压强为0.11~2.0pa,然后开启脉冲激光器进行脉冲激光沉积,形成氧化镓纳米棒。本申请所提供的氧化镓纳米棒的制备方法,利用了脉冲激光沉积技术,并通过控制腔体中氧气的相对含量以及控制腔体的压强为0.11~2.0pa,实现了氧化镓纳米结构的自催化以及结晶形貌的调制,成功制备了高质量的氧化镓纳米棒。与现有技术相比,既无需采用贵金属来催化反应,也无需引入异质晶种层,方法简单优化,操作可控,可实现氧化镓纳米棒的规模化生产。进一步地,本申请还提供了一种氧化镓纳米棒,由上述制备方法制得。本申请所提供的氧化镓纳米棒,具有明显的棒状结构,且结晶度高,比表面积大,光散射能力强,可应用于制备具有良好光响应度的光电探测器件。更进一步地,本申请还提供了一种光电探测器件,包括光敏材料,所述光敏材料包括上述氧化镓纳米棒。本申请所提供的光电探测器件,其光敏材料包括上述氧化镓纳米棒,具有较高的光响应度。附图说明为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1是贫氧环境下制备的氧化镓纳米材料的sem图,其中,氧压分别为(a)5×10-1pa,(b)5×10-2pa,(c)5×10-3pa,(d)5×10-4pa;图2是氧化镓纳米棒的生长过程的示意图,其中1~3为氧化镓的沉积过程,4~6为贫氧状态下合金液滴的形成以及过饱和析出成棒的过程;图3是沉积时不同腔体压强下制备的氧化镓纳米材料的sem图;图4是沉积时不同腔体压强下制备的氧化镓纳米材料的xrd谱。具体实施方式为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。应理解,在本申请的各种实施例中,各步骤的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。在前期利用脉冲激光沉积技术(英文简称为pld)制备氧化镓薄膜的研究过程中,本申请人创造性地发现,在贫氧环境下,当腔体中的氧压降低至5×10-4~5×10-1pa时形成的氧化镓薄膜的表面形貌出现明显的凝结成核的现象,如图1所示,其中,氧压分别为(a)5×10-1pa,(b)5×10-2pa,(c)5×10-3pa,(d)5×10-4pa,由此形成的氧化镓薄膜的厚度分别为(a)204.6nm,(b)157.8nm,(c)153.6nm,(d)105.9nm。基于这一发现,本申请人猜想该现象或有利于制备氧化镓纳米棒,并对氧化镓纳米棒的合成工艺进行了探索,从而提供了如下制备氧化镓纳米棒的技术方案。在本申请说明书中,“贫氧环境”指的是腔体中的氧含量低于利用脉冲激光沉积技术制备氧化镓薄膜时腔体中的氧含量的一种含氧环境。一种氧化镓纳米棒的制备方法,制备方法包括以下步骤:s01、提供基底和氧化镓靶材,并固定于可抽真空的腔体中;s02、向腔体中通入氧气和惰性气体,氧气的通入速度为1~10sccm,惰性气体的通入速度为3~30sccm,并保持腔体的压强为0.11~2.0pa,然后开启脉冲激光器进行脉冲激光沉积,形成氧化镓纳米棒。本申请实施例所提供的氧化镓纳米棒的制备方法,利用了脉冲激光沉积技术,并通过控制腔体中氧气的相对含量以及控制腔体的压强为0.11~2.0pa,实现了氧化镓纳米结构的自催化以及结晶形貌的调制,成功制备了高质量的氧化镓纳米棒。与现有技术相比,既无需采用贵金属来催化反应,也无需引入异质晶种层,方法简单优化,操作可控,可实现氧化镓纳米棒的规模化生产。具体地,步骤s01中,基底作为生长氧化镓纳米棒的载体,可选为本领域的常规基底,一些实施例中,基底选为蓝宝石衬底。蓝宝石衬底在材料的外延生长过程中的晶格匹配以及择优取向等方面与氧化镓匹配很好,利于形成高质量的氧化镓纳米棒。进一步地,基底应经过前处理,以作为表面清洁的氧化镓纳米材料生长基底,包括但不限于对基底表面进行清洗和去氧化层处理等。氧化镓靶材作为形成氧化镓纳米棒的原料,可选为市售氧化镓陶瓷靶材,一些实施例中,氧化镓靶材的纯度为99.99%~99.999%,以制备高纯度、高质量的氧化镓纳米棒。通过固定于可抽真空的腔体中,以完成基底和氧化镓靶材的安装。不同型号的脉冲激光沉积设备的腔体结构均存在或多或少的差异,实际安装过程中,可根据所使用的设备型号调整基底和氧化镓靶材的具体位置。一些实施例中,固定在腔体中的基底和氧化镓靶材的相对距离为50~60mm,通过调整基底和氧化镓靶材的相对距离在该范围内,有利于控制氧化镓纳米线生长的均匀性,提高氧化镓纳米棒的合成质量。进一步地,腔体中的氧化镓靶材位于基底的上游位置,以促进氧化镓靶材的烧蚀粒子在基底上沉积以形成氧化镓纳米棒。步骤s02中,向腔体中通入氧气和惰性气体,氧气的通入速度为1~10sccm,惰性气体的通入速度为3~30sccm,并保持腔体的压强为0.11~2.0pa,以形成氧化镓纳米棒而非其他的氧化镓纳米结构。通过向腔体中以特定速度通入氧气和惰性气体,并保持沉积压强在0.11~2.0pa,一方面,确保氧化镓纳米材料呈现明显的棒状结构取向性生长,以合成氧化镓纳米棒;另一方面,保证氧化镓纳米材料的外延生长速率不至于过高,促进氧化镓棒状生长,从而形成高质量的氧化镓纳米棒。经实验测试,在0.11~2.0pa下沉积形成的氧化镓纳米材料呈明显的棒状结构取向性生长,且结晶质量好。本申请实施例的氧化镓纳米棒的生长过程符合vls模式,如图2所示。具体地,在脉冲激光沉积设备的腔体中,在贫氧环境、且沉积压强为0.11~2.0pa的条件下,脉冲激光烧蚀氧化镓靶材激发出气态的ga和o原子,ga和o原子到达基底形成ga2o3层,随后过量的ga在ga2o3层的表面凝聚成ga液滴,同时,ga液滴吸附o原子而结合成液态的gaox,从而形成众多的ga和gaox的合金液滴,之后,该合金液滴不断地吸附ga和o原子,出现过饱和的状态,而不断地析出ga2o3晶体,由于合金液滴的诱导和催化作用,逐渐形成ga2o3纳米棒。开启脉冲激光器进行脉冲激光沉积的步骤中,激光能量和脉冲频率影响着沉积速率,激光沉积的时间影响着氧化镓纳米棒的外延层厚度,通过调整激光能量、脉冲频率和沉积时间,可进一步优化氧化镓纳米棒的合成质量。一些实施例中,开启脉冲激光器进行脉冲激光沉积的步骤中,控制激光能量为250~300mj、且脉冲频率为2~3hz。该激光能量为脉冲激光器能达到的最大稳定输出能量,该脉冲频率可保证最大稳定输错能量的持续性,当脉冲频率过大时会导致激光能量输出不稳定,导致激光能量衰减,当脉冲频率过小时,影响晶体生长速度和结晶质量;当激光能量过高时会导致沉积过程中溅射出来的粒子尺寸过大而影响材料的均匀性和结晶性;当激光能量过低时会到时沉积过程中到达衬底表面的粒子数目过低而降低材料的沉积速率。一些实施例中,脉冲激光沉积的时间为0.5~2小时。沉积时间过短会导致棒状外延生长不明显,沉积时间过长可能导致棒状结构出现倒伏、聚集成膜或者结晶质量下降等现象。脉冲激光器的选择可选为本领域的常规技术,如一些实施例中,采用氟化氪准分子激光器(又称为krf准分子脉冲激光器)。进一步地,向腔体中通入氧气和惰性气体的步骤之前还包括:对腔体抽真空至本底真空度,然后加热基底至工作温度;其中,本底真空度小于或等于6×10-5;工作温度为550~650℃。本底真空度越低,腔体内真空度越高,腔内杂质气体越少,越有利于制备高纯度和小误差的氧化镓纳米棒,同时,工作温度影响着沉积速率和氧化镓纳米棒的质量,若工作温度大于650℃,会加快基底表面沉积的材料的热运动,使得粒子在基底表面有更高的动能来迁移,进而使得粒子更容易在基底表面越过扩散势垒而显示薄膜状的生长模式;若工作温度小于550℃,会使得材料生长过程中的热运动无法获得足够的能量,进而降低材料的结晶度。本申请实施例通过调节本底真空度和工作温度在上述大小范围内,有利于合成高质量的氧化镓纳米棒。优选地,本底真空度为1×10-6~6×10-5,当控制本底真空度在上述范围内,有利于制备高质量的氧化镓纳米棒。优选地,工作温度为600℃。对腔体抽真空至本底真空度的步骤以及加热基底至工作温度的步骤可参考本领域的常规技术。更进一步地,开启脉冲激光器进行脉冲激光沉积的步骤之前还包括:对氧化镓靶材进行前处理,以去除靶材表面的污染物和氧化层,保证用以沉积的反应物的洁净与纯度,并确保激光烧蚀时衬底能够激发出稳定均匀的紫色等离子羽辉。一些实施例中,在0.11~2.0pa的沉积压强下,利用挡板挡住基底,打开krf准分子激光器(激光能量300mj,脉冲频率2hz)并对靶材进行烧蚀和融化15min。此外,进行脉冲激光沉积的步骤完毕后,关闭脉冲激光器,待腔体内的温度自然降温至100℃以下,以方便取出氧化镓纳米棒产品。基于上述技术方案,本申请实施例还提供了一种光敏材料和光电探测器件。相应地,一种氧化镓纳米棒,由上述制备方法制得。本申请实施例所提供的氧化镓纳米棒,具有明显的棒状结构,且结晶度高,比表面积大,光散射能力强,可应用于制备具有良好光响应度的光电探测器件。相应地,一种光电探测器件,包括光敏材料,光敏材料包括上述氧化镓纳米棒。本申请实施例所提供的光电探测器件,其光敏材料包括上述氧化镓纳米棒,具有较高的光响应度。以下通过实施例对本发明的实施进行举例说明。实施例1本实施例制备了一种氧化镓纳米棒,其制备方法具体包括以下步骤:(1)采用传统方法对单抛c-al2o3(0001)衬底表面进行清洗和去氧化层处理,得到表面清洁的作为材料生长的基底,并放置在用于真空沉积的腔体中并固定;(2)将预先压制的氧化镓陶瓷靶材(纯度99.999%)固定在腔体中,调整靶材与基底之间的距离为60mm后封闭腔门;(3)打开机械泵对腔体抽真空,当腔体内的压强达到0.1pa以下后开启分子泵,将腔内压强抽至6×10-5pa;(4)打开加热源对基底进行升温,直至基底温度达到600℃并保持;(5)关闭分子泵,打开通气阀门,向腔体内通入氧气和氩气的混合气体,o2的通入速度为10sccm,ar的通入速度为30sccm,并保持腔体内的压强在1pa之间;(6)在步骤(5)的基础上,利用挡板挡住衬底,打开krf准分子激光器(激光能量300mj,脉冲频率2hz)对靶材进行烧蚀和融化15min来去掉靶材表面的污染物及氧化层,保证沉积物的洁净与高纯度,并确保激光烧蚀衬底激发出稳定均匀的紫色等离子羽辉;(7)在步骤(6)的基础上,打开挡住衬底的挡板,在c-al2o3(0001)衬底表面进行脉冲激光沉积,沉积时间为60min;(8)沉积结束后,关闭激光器和沉积系统设备,待腔内温度自然降温至100℃以下时取出样品,获得氧化镓纳米棒。实施例2-3和对比例1所提供的氧化镓纳米材料的制备方法与实施例1的基本相同,区别在于:步骤(5)中腔体的压强不同,如表1所示。表1实施例2实施例3对比例1腔体的压强0.11pa2.0pa4.0pa取实施例1-3和对比例1制备的氧化镓纳米材料,分别采用扫描电子显微镜(sem)观察其材料形貌,以及采用x射线衍射仪分析氧化镓纳米材料的样品信息。如图3所示,当沉积时腔体的压强为0.11~2.0pa时,样品都表现出明显的四棱柱形的氧化镓纳米棒结构,并且随着气压的增大纳米棒密度逐渐减小,当沉积时腔体的压强达到4.0pa时,如图3(d)所示,其样品表面平整,说明该条件下没有明显的棒状结构取向性生长,表明本实施例所提供的方法中形成氧化镓纳米棒的最佳沉积压强为0.11~2.0pa。如图4所示,当沉积时腔体的压强为0.11~2.0pa时,观察到了单斜的β-ga2o3的晶面族的衍射峰,以沉积时腔体的压强为1.0pa时的衍射峰强度最强,半高宽最小,说明该气压条件下纳米棒的结晶质量最高。当沉积时腔体的压强达到4.0pa时,β-ga2o3的衍射峰消失,结合sem的形貌分析,说明该气压下生成的是非晶的氧化镓。以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1