一种适于深度拉拔的帘线钢盘条及其制造方法与流程

文档序号:29136176发布日期:2022-03-05 01:59阅读:244来源:国知局
一种适于深度拉拔的帘线钢盘条及其制造方法与流程

1.本发明属于冶金技术领域,具体涉及一种帘线钢盘条及其制造方法。


背景技术:

2.汽车轻量化快速发展以及新能源汽车的迅速崛起,使得汽车轮胎骨架用钢帘线的强度要求逐步提高。钢帘线的强度等级也逐步从最初的普通强度(nt)级普通强度发展到目前的超高强度(st)级超高强度和极高强度(ut)级特高强度级别。
3.钢丝的强度越高要求拉拔后的直径越细,结构越复杂,因而对于帘线钢用盘条,合理控制钢中的夹杂物,主要为mns以及可变形的40%sio2+15%al2o3+20%cao复合夹杂物等可变形夹杂物,将有助于提高盘条的拉拔性能。另外,盘条组织中索氏体组织的比例也会影响盘条的拉拔性能,一般地,盘条在冷却至600-650温度范围内发生等温转变,转变组织为索氏体,对于高碳钢盘条而言,索氏体比例一般在85%以上,索氏体过高,珠光体片层细,会使盘条抗拉强度过高,位错密度大,拉拔硬化加大,不利于深度拉拔;索氏体比例过低,盘条强度低,塑性差,盘条拉拔变形能力差,同样不适于深度拉拔。所以,只有将盘条中索氏体的比例、抗拉强度控制在合适的范围内才能够满足盘条深度拉拔低断丝率的要求,进一步推进钢帘线往高强化、精细化方向发展。
4.通过对以上技术问题的解决能够实现4000mpa以上ut级钢帘线和切割钢丝用盘条的生产普及化。


技术实现要素:

5.本发明的目的在于提供一种适于深度拉拔的帘线钢盘条,意预降低盘条组织中索氏体的比例。所述盘条的金相组织为索氏体+珠光体+铁素体,其中索氏体比例控制在60~70%,珠光体比例为30~40%,铁素体作为少量存在的组织,比例≤10%。盘条中各组织的比例是指盘条金相组织图(例如sem放大图)中各组织的面积占比。
6.进一步地,本技术意预获得片层更厚的珠光体组织,珠光体片层厚度在0.10~0.35mm,珠光体团尺寸10~20um,减少金相组织的位错密度,以避免抗拉强度过大,抑制拉拔硬化。
7.进一步地,本技术意预对盘条的中心碳偏析级别进行控制,按照yb/t 4413《高碳钢盘条中心碳偏析金相评定方法》评价,本发明盘条的中心碳偏析级别≤1级,从而能够有效抑制盘条冷却过程中网状渗碳体析出,组织中网状渗碳体级别≤1级,本技术为0级。
8.进一步地,盘条表面氧化皮厚度13~18um,比现有平均氧化层厚度厚了5um,氧化皮中feo/fe3o4=2~2.5:1,feo/fe3o4更低,更容易达到理想的(机械)除鳞效果,有助于显著降低盘条拉拔断丝率。
9.本发明盘条的抗拉强度σ在(103762*ceq~114606*ceq)mpa,式中碳当量ceq=c+mn/6+cr/5,式中元素符号代表钢中该元素的重量百分含量,强度适中,更适于深度拉拔,显著降低断丝率。现有技术生产的盘条抗拉强度范围σ=(120387*ceq~131231*ceq)mpa,抗
拉强度主要由两个因素决定:一是化学成分,即碳当量;二是冷却时的冷却强度、盘条的相变温度,冷却强度小相变温度高,盘条强度低;冷却强度大相变温度低,盘条强度高。本技术主要通过控制冷却强度来防止抗拉强度过高。
10.盘条的化学成分按照质量百分比计为:c:0.70-0.99%,si:0.15-0.30%,mn:0.15-0.60%,cr:0.01-0.50%,余量为fe及不可避免的杂质元素。强度涉及72级、82级、86级、92级帘线钢。
11.本技术盘条中化学元素的作用原理如下:
12.c是高碳硬线钢中的主要强化元素,通过固溶强化和析出强化提高钢的强度,随着碳含量的增加,盘条强度提升,拉拔钢丝的强度也随着提升。但是过共析钢中随着碳含量的增加,盘条心部网状渗碳体析出的概率也随之增加。因此本发明c含量范围设定在0.78-0.99%。
13.si是帘线钢中的主要脱氧元素,通过si脱氧生成无害化的sio2夹杂物。但si同时也是强化铁素体的元素,帘线钢中过高的si含量会造成珠光体中的铁素体相塑性降低,钢丝拉拔延展性变差,因此本发明si含量控制在0.15-0.30%。
14.mn在帘线钢中既可以脱氧形成可变形的mns夹杂物,同时又是钢中主要提升强度的元素。但mn同时也是易偏析元素,过高的mn使钢材偏析加重,同时会提高钢的淬透性,增加奥氏体冷却时的过冷度,使珠光体片层变细,强度提高,塑性变差。因此本发明mn含量控制在0.15-0.60%。
15.cr在帘线钢中能够促进c曲线右下移动,推迟索氏体相变时间、降低相变温度,可以细化珠光体片层间距,能够显著改善钢材的塑性指标,显著改善拉拔加工性能,实现大的拉拔变形,减少中间热处理,提高拉拔钢丝的最终强度。但帘线钢中cr含量过高容易在冷却过程中形成过冷组织贝氏体、马氏体,塑性变形差,影响钢材的拉拔加工性能,本发明优选cr控制在0.35%以下。
16.本技术另外还要提供帘线钢盘条的制造方法,具体生产工艺流程:包括依次进行的kr铁水预处理、转炉冶炼、lf精炼、方坯连铸、方坯加热轧制、盘条冷却。
17.其中:
18.冶炼符合成份设计的钢水,采用连铸工艺将钢水连铸成小方坯,中间包过热度控制在15-30℃,配备有电磁搅拌装备,凝固末端采用动态轻压下设备,拉矫机各区压力辊采用位移压下模式,具体1#-6#辊位移压下量分别为2mm,2mm,3mm,4mm,4mm,4mm。与常规连铸坯碳偏析控制主要采用轻压下技术方相比,本技术动态压下采用“轻压下+重压下”组合压下技术,在铸坯凝固初期采用轻压下,凝固后期采用重压下。连铸坯碳偏析指数≤1.05,其中连铸坯碳偏析指数=连铸坯心部c%/熔炼c%。
19.坯料轧制选择合适的加热温度,具体轧制前加热炉内高温段温度1180℃以上,总加热时间120min以上,高温时间60min以上,保证铸坯有足够温度和时间扩散。通过高温扩散进一步抑制心部碳偏析。
20.盘条终轧温度控制在800-900℃,轧制速度设定95~120m/s,吐丝温度850~950℃。
21.吐丝后的盘条线圈在风冷辊道上控冷,辊道速度范围为0.95-1.05m/s,从0.95m/s开始递增。开启1-3#风机加快盘条的初始冷却速率,促使盘条从吐丝温度快速冷却至700℃
以下,促进细化珠光体团尺寸,抑制网碳析出,此阶段会有少量铁素体析出;快冷阶段冷却速度控制在15-20℃/s为佳,根据环境温度调整风机风量开启度,具体环境温度20℃以上,1-3#风机开启度分别为90%、90%,70%。具体环境温度20℃以下,1-3#风机开启度分别为90%、90%,50%。之后的风机(3#后的其余风机)全部关闭,关闭主要是充分慢冷,盘条进入相变区,由奥氏体向索氏体和珠光体转变,提高索氏体相变温度,实现索氏体在650℃左右相变,同时延长相变时间、实现等温转变。相变过程中相变潜热的释放会让盘条温度有一个回升随着相变的完成盘条温度会重新下降,待盘条温度下降到570℃以下后相变基本结束,之后对盘条线圈设置保温罩进行缓冷,促进盘条表面的氧化层增厚,氧化层中feo进一步转变为fe3o4,降低feo/fe3o4。
22.对于风冷辊道上的保温罩设置:1-11#保温罩对应快冷和相变区间,盘条在这两个冷却区间对应的风冷辊道上不设置保温罩,12#以后的保温罩全部关闭,保证盘条在570℃左右充分保温,充分缓冷,增加氧化皮厚度,调节氧化层的成分使更有利于盘条除鳞,降低拉拔断丝率。
23.与现有技术相比,本发明的优点在于:
24.(1)本发明生产的盘条,珠光体片层粗、珠光体团尺寸小,能够适应盘条的深入拉拔,减少钢丝在大减面率拉拔条件下的裂纹发生倾向,有效降低断丝率,断丝率比正常工艺降低30%。
25.(2)盘条中c:0.70-0.99%,属于高碳盘条钢,而高碳盘条钢的索氏体比例一般在85%以上,本技术的盘条制造方法尤其是方法中的控冷工艺将盘条中的索氏体比例控制在了60-70%,粗片状珠光体比例在30-40%。通过粗化片层有效降低盘条抗拉强度,一方面在粗拉拔阶段可以减少磨具损耗和钢丝表面发热,降低了表面缺陷风险,从而降低拉拔断丝率。另一方面就深拉拔而言,珠光体片层过细,钢丝在拉拔过程中面缩下降时的真应变变小,即钢丝能保持稳定塑性可承受的拉拔减面量减小,即钢丝可深度拉拔性能降低。
26.(3)本发明生产的盘条,氧化层厚度在13-18um比正常工艺厚5um,并且氧化层组成feo/fe3o4=(2~2.5)/1,更有利于盘条机械除鳞,减小盘条除鳞不净对表面的拉拔损失,影响钢丝拉拔断丝率。
附图说明
27.图1为本发明实施例1盘条的显微组织图;
28.图2为本发明实施例2盘条的氧化层示意图。
具体实施方式
29.以下结合具体实施例对本发明作进一步详细描述。
30.以熔炼100吨钢水制造帘线钢盘条为例,采用铁水预处理+转炉冶炼+lf精炼+连铸成方坯的流程生产出下列成分的各实施例的铸坯,连铸坯碳偏析指数满足≤1.05。
31.连铸方坯入炉加热,确保均热温度在1180℃以上,并且1180℃以上高温时间保持4小时以上,确保铸坯充分加热扩散,进一步降低碳偏析。在奥氏体相区将连铸方坯连轧成盘条,盘条终轧温度控制在800-900℃,轧制速度设定95~120m/s,吐丝温度控制在900-950℃,提高吐丝温度增加奥氏体稳定性,吐丝后盘条线圈的冷却采用快冷+慢冷+保温。盘条线
圈所在的辊道速度设定0.95m/s,辊道速度逐渐增加到1.05m/s以此拉开线圈间距。开启1-3#风机实现快冷,加快珠光体形核,抑制珠光体长大,风机开启度为90%,90%,30%;3#之后的风机关闭进行慢冷,盘条进入相变区间,盘条在环境温度和自身潜热释放的条件下相变,提高了相变温度,650℃左右,延长索氏体相变时间,待盘条温度出现下降并下降至570℃以下后认为相变完成,此时对应关闭12#后保温罩对相变后的盘条保温,促进盘条表面部分feo层转变成fe3o4,此设置一般可以将盘条表面feo厚度/fe3o4厚度调节至(2~2.5)/1,盘条除鳞效果更好,降低表面缺陷和拉拔时的断丝率。
32.实施例1-5涉及盘条的元素成分和铸坯偏析指数参见表1。
33.表1
[0034][0035][0036]
实施例1-5和两个对比例具体的工艺参数参见表2。
[0037]
表2
[0038][0039]
实施例1-5和两个对比例最终盘条的检测性能见表3。
[0040]
表3
[0041][0042][0043]
通过以上实施例和对比例的对比,可以证明:采用本技术的控冷方法,尤其是控冷工艺中的慢冷进行相变以及之后的加罩缓冷,可以显著改变索氏体组织含量、珠光体片层距,从而控制盘条抗拉强度,满足抗拉强度σ在(103762*ceq~114606*ceq)mpa,改善拉拔性能。
[0044]
尽管以上详细地描述了本发明的优选实施例,但是应该清楚地理解,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1