一种Pt热阻薄膜的制备方法与流程

文档序号:31150765发布日期:2022-08-17 02:32阅读:240来源:国知局
一种Pt热阻薄膜的制备方法与流程
一种pt热阻薄膜的制备方法
技术领域
1.本发明涉及物理气相沉积薄膜及其制备方法领域,尤其是一种pt热阻薄膜的制备方法。


背景技术:

2.传感器在增强我国国防建设、改善人民生活质量、促进国民经济发展等方面具有重大作用与需求。按照测量对象分类,传感器可分为物理传感器、化学传感器和生物传感器等,常见的位移传感器、力传感器、温度传感器、速度传感器、振动传感器等都属于物理传感器。化学传感器包括气体传感器、浓度传感器、成分传感器、离子活度传感器等。医疗器械和设备中的细胞传感器、免疫传感器、微生物传感器、酶传感器、组织传感器等都属于生物传感器。按照工作原理分类,传感器可分为阻抗式传感器、电动势式传感器和光电传感器。按照结构分类,传感器又可分为块体式传感器和薄膜式传感器,其中薄膜传感器具有高精度、高线性特征,在小空间、精准测量的场景中广泛应用。
3.温度是非常重要的物理量,工业生产中任何物理、化学过程都与温度紧密联系在一起。在国民经济生产中,温度的检测和控制都是十分重要的。温度传感器根据测量机制的差异可分为四类,即热膨胀式、热电阻式、热电势式和热辐射式,其测温原理、测温范围和使用场合如表1所示。
4.热电阻和热电偶的使用十分广泛。常用热电阻和热电偶的种类如表2所示。基于敏感材料差异,热电阻可分为金属热电阻和半导体热敏电阻。常用的金属热电阻有pt、cu、ni、fe、rhfe合金、ptco金、agco合金等,半导体热敏电阻有ge、si等。半导体热敏电阻通常由金属氧化物和化合物按不同比例烧结制成,其电阻大、尺寸小、热惯性小,适用于测量快速变化的温度。但半导体热敏电阻的线性度和重复性较差。金属热电阻已经成熟应用的有pt、ni和cu电阻。pt热电阻具有精度高、线性度好、性能稳定可靠和重复性好等特点,在-259.34℃~630.74℃温域内以pt电阻温度计作为标准电阻来制定其他温度标准,被广泛用于工业和实验室测温。当前国内外pt热电阻典型应用型号案例有如pt10、pt46、pt100、pt200、pt1000等,对应其在0℃时的电阻分别是10ω、46ω、100ω、200ω、1000ω。上述pt热电阻的测温范围广,电阻随温度的变化几乎是线性的。其电阻温度系数(temperature coefficient of resistance,简称tcr)一般≤3.85
×
10-3
/(k
·
ω),开发tcr值较大且稳定的pt热阻薄膜具有重要工程应用意义。
5.表1、温度传感器的分类。
[0006][0007]
表2、常用热电阻和热电偶的种类。
[0008][0009]
1999年,kouznetsov在普通磁控溅射的基础上采用脉冲电源,提出了高功率脉冲磁控溅射(hipims)的方法。hipims是一种峰值功率超过平均功率2个量级,溅射靶材原子高度离化的脉冲溅射技术。经过十多年的发展,hipims渐渐成为一种在镀膜工艺中有着广泛应用前景的薄膜沉积技术。hipims的新颖特殊之处在于应用了短宽度(30~100μs)、低频(50hz至1khz)、高靶电流密度(高达几a/cm2)的脉冲,可产生具有高度离化的等离子体束流。在该瞬间大电流辉光放电情况下,空间中存在自由电子,在两极间施加脉冲电压,自由电子在电场的作用下运动,并与工作气体原子发生碰撞,产生电子和离子;产生的电子又可以与工作气体原子碰撞,而碰撞产生的离子被加速与阴极碰撞并产生二次电子;脉冲结束后,电子湮灭或与离子复合,电子冲击电离逐渐减弱,此时金属原子的电离主要由带电荷的粒子与金属原子碰撞产生电荷转移,也就是所谓的电荷交换机制;最终,工作气体离化形成等离子体。hipims放电电流由到达靶面的离子与电子构成,放电电流的迅速增大说明这种靶材原子的自溅射过程是不断增殖的,该过程又被称为“雪崩式”放电。
[0010]
值得注意的是,hipims的平均功率基本与传统直流磁控溅射(dcms)相当。在传统dcms中,等离子体以气体离子为主。因此,hipims与dcms对基体的加热效果基本类似,而在hipims短脉冲期间产生的等离子体密度更高,达到10
13
cm-3
(dcms为109~10
10
cm-3
)。因此,使用hipims会增加溅射原子发生电子碰撞电离的可能性,并使离化率水平达到90%以上。在实际应用中,离化率还取决于:i)材料本身特性,如被溅射元素原子相对于溅射气体原子的
第一电离势差异;ii)电子碰撞电离的横截面大小;iii)溅射工艺参数,尤其是峰值靶峰值及沉积气压。hipims靶电压和电流脉冲的详细形状作曲线由开关单元中电容器组相与靶表面大小决定。由于以上特点,hipims成为一种具有广阔应用前景的离化物理气相沉积技术,并成为国际科研工作者争相研究的热点,目前国内研究尚处于起步阶段。


技术实现要素:

[0011]
基于现有技术的不足,本发明的目的在于突破现有pt热阻薄膜的沉积制备技术,提供一种制备结构致密、表面光滑、结合良好pt热阻薄膜的方法。
[0012]
为实现上述目的,本发明所采取的技术方案为:一种pt热阻薄膜的制备方法,包括如下步骤:
[0013]
(1)将基体进行机械研磨、抛光、清洗处理;
[0014]
(2)使用hipims溅射金属pt靶,于基体加载负偏压,于惰性气体氛围中沉积pt薄膜。
[0015]
hipims具有靶材离化率高,膜基结合力强以及薄膜结构致密等一系列优势,是目前制备薄膜的前沿技术。基于高离化率以及气体稀释效应特征,hipims的出现为溅射沉积致密度高且表面粗糙度低的高质量薄膜材料提供了新思路。高度离化有利于生长致密度高、内应力低的薄膜,低应力状态有利于生长厚膜;此外,因hipims沉积过程中各种离子的产生及传输存在竞争及延迟机制,若辅以匹配脉冲偏压,便可提取、倾向沉积部分金属元素,并抑制残余有害气体(如ar等)的引入。
[0016]
优选地,所述步骤(2)中,使用hipims溅射金属pt靶,于基体加载负偏压,于惰性气体氛围中沉积pt薄膜。
[0017]
优选地,所述步骤(2)中,hipims溅射金属pt靶,其高功率脉冲磁控电源的输出脉冲宽度≤200μs,靶材峰值电流密度为0.5-2.0a/cm2。
[0018]
优选地,所述步骤(2)中,溅射时在ar工作气氛中沉积。
[0019]
优选地,所述步骤(2)中,沉积腔室压力为0.1-1.0pa;沉积过程中基体加载负偏压,压力为-30~-150v。
[0020]
优选地,所述步骤(1)中,基体为石英、氧化铝中的至少一种。
[0021]
相对于现有技术,本发明的有益效果为:本发明通过采用高功率脉冲磁控溅射技术方法,制备得到结构致密、表面光滑、结合良好pt热阻薄膜。
附图说明
[0022]
图1所示为hipims制备pt热电阻薄膜的结构示意图;
[0023]
图2所示为实施例1-8所制备pt热阻薄膜的xrd图谱,结果表明本发明制备pt热阻薄膜均呈现立方相结构,未出现其他杂质相;
[0024]
图3所示为实施例1-8所制备pt热阻薄膜的截面形貌图,表明本发明制备的pt热阻薄膜结构致密、表面光滑;
[0025]
图4所示为实施例1-8所制备pt薄膜的tcr系数值。
具体实施方式
[0026]
为更好的说明本发明的目的、技术方案和优点,下面将结合附图和具体实施例对本发明作进一步说明。
[0027]
实施例1-5及实施例6-8。
[0028]
实施例1
[0029]
1、基体预处理
[0030]
(1)对石英、氧化铝基体进行机械研磨、抛光处理;
[0031]
(2)溶剂清洗处理;先使用异丙醇超声清洗10min,再使用98%酒精溶液超声清洗10min,取出后再用超纯水超声清洗3min;
[0032]
(3)辉光清洗处理;采用ar气体离子源对基体进行清洗30min,环境压力为0.1pa;基体偏压为-800v,频率240khz。
[0033]
2、hipims制备pt热电阻薄膜
[0034]
使用高功率脉冲磁控溅射金属pt靶,于基体加载负偏压,于惰性气体氛围中沉积pt薄膜。设定hipims电源的输出脉冲宽度为200μs、靶材峰值电流密度0.5a/cm2。薄膜沉积过程中,维持基体温度为300℃。通入工作气体ar,调节沉积腔室压力至0.4pa,基体加载负偏压,大小为-60v,沉积时间10min。
[0035]
实施例2
[0036]
1、基体预处理
[0037]
同实施例1。
[0038]
2、hipims制备pt热电阻薄膜
[0039]
使用高功率脉冲磁控溅射金属pt靶,于基体加载负偏压,于惰性气体氛围中沉积pt薄膜。设定hipims电源的输出脉冲宽度为100μs、靶材峰值电流密度0.8a/cm2。薄膜沉积过程中,维持基体温度为300℃。通入工作气体ar,调节沉积腔室压力至0.4pa,基体加载负偏压,大小为-60v,沉积时间10min。
[0040]
实施例3
[0041]
1、基体预处理
[0042]
同实施例1。
[0043]
2、hipims制备pt热电阻薄膜
[0044]
使用高功率脉冲磁控溅射金属pt靶,于基体加载负偏压,于惰性气体氛围中沉积pt薄膜。设定hipims电源的输出脉冲宽度为80μs、靶材峰值电流密度1.1a/cm2。薄膜沉积过程中,维持基体温度为300℃。通入工作气体ar,调节沉积腔室压力至0.4pa,基体加载负偏压,大小为-60v,沉积时间10min。
[0045]
实施例4
[0046]
1、基体预处理
[0047]
同实施例1。
[0048]
2、hipims制备pt热电阻薄膜
[0049]
使用高功率脉冲磁控溅射金属pt靶,于基体加载负偏压,于惰性气体氛围中沉积pt薄膜。设定hipims电源的输出脉冲宽度为50μs、靶材峰值电流密度1.5a/cm2。薄膜沉积过程中,维持基体温度为300℃。通入工作气体ar,调节沉积腔室压力至0.4pa,基体加载负偏
压,大小为-60v,沉积时间10min。
[0050]
实施例5
[0051]
1、基体预处理
[0052]
同实施例1。
[0053]
2、hipims制备pt热电阻薄膜
[0054]
使用高功率脉冲磁控溅射金属pt靶,于基体加载负偏压,于惰性气体氛围中沉积pt薄膜。设定hipims电源的输出脉冲宽度为30μs、靶材峰值电流密度2.0a/cm2。薄膜沉积过程中,维持基体温度为300℃。通入工作气体ar,调节沉积腔室压力至0.4pa,基体加载负偏压,大小为-60v,沉积时间10min。
[0055]
实施例6
[0056]
1、基体预处理
[0057]
同实施例1。
[0058]
2、hipims制备pt热电阻薄膜
[0059]
使用高功率脉冲磁控溅射金属pt靶,于基体加载负偏压,于惰性气体氛围中沉积pt薄膜。设定hipims电源的输出脉冲宽度为80μs、靶材峰值电流密度1.1a/cm2。薄膜沉积过程中,维持基体温度为300℃。通入工作气体ar,调节沉积腔室压力至0.1pa,基体加载负偏压,大小为-30v,沉积时间10min。
[0060]
实施例7
[0061]
1、基体预处理
[0062]
同实施例1。
[0063]
2、hipims制备pt热电阻薄膜
[0064]
使用高功率脉冲磁控溅射金属pt靶,于基体加载负偏压,于惰性气体氛围中沉积pt薄膜。设定hipims电源的输出脉冲宽度为80μs、靶材峰值电流密度1.1a/cm2。薄膜沉积过程中,维持基体温度为300℃。通入工作气体ar,调节沉积腔室压力至0.6pa,基体加载负偏压,大小为-100v,沉积时间10min。
[0065]
实施例8
[0066]
1、基体预处理
[0067]
同实施例1。
[0068]
2、hipims制备pt热电阻薄膜
[0069]
使用高功率脉冲磁控溅射金属pt靶,于基体加载负偏压,于惰性气体氛围中沉积pt薄膜。设定hipims电源的输出脉冲宽度为80μs、靶材峰值电流密度1.1a/cm2。薄膜沉积过程中,维持基体温度为300℃。通入工作气体ar,调节沉积腔室压力至1.0pa,基体加载负偏压,大小为-150v,沉积时间10min。
[0070]
如图1-4所示,本发明实施例1-8制备的pt热阻薄膜均呈现立方相结构,未出现其他杂质相;且结构致密、表面光滑。
[0071]
上述实施例和说明书中描述的只是说明本发明的原理和最佳实施例,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1