本技术涉及高炉冶炼的,具体而言,涉及一种高炉炉役后期铜壁体厚度测量装置及使用方法。
背景技术:
1、高炉炉腹到炉身下在铜壁体使用达到7~10年后,热面起挂渣作用的燕尾槽结构磨为光板,壁体表面挂渣能力显著下降,渣皮容易反复脱落,导致铜壁体加速磨损,最终,冷却管路磨穿漏水,被迫休风处理破损壁体,使高炉冶炼状况和经济指标显著恶化,严重时高炉铜壁体大面熔损、炉壳烧红,带来安全隐患。
2、因此,有必要对进入炉役中后期的铜壁加装能同步磨损的厚度检测装置,用于跟踪壁体的磨损情况和分析其磨损速度,对濒临破损铜壁体进行监控,并提出控制其磨损的方法和对策,延长其使用寿命。
3、“一种测量高炉的冷却壁温度的方法和高炉”(cn110578026a),该方法包括以下步骤:预先在位于高炉同一层的所有冷却壁上沿其长度方向开设卡槽,以使所有卡槽共同构成环槽;将光纤嵌入环槽中;在高炉的外壳开设引出口;将光纤的两端从引出口穿出后与信号处理器电连接。该高炉包括外壳、冷却壁和耐火层,位于高炉同一层的所有冷却壁上沿其长度方向开设有卡槽,所有卡槽共同构成环槽;环槽中嵌设有光纤,外壳开设有引出口,光纤的两端从引出口穿出后与信号处理器电连接。本发明基于光纤测温原理能够对高炉的冷却壁的温度进行全面、准确的检测,降低冷却壁被烧坏的风险,并不能对冷却壁厚度进行测量、也不能对其工况和剩余寿命形成动态预测。
4、“高炉冷却器破损检测装置”(cn2608513y),该专利中公开了一种破损检测装置,其组成中包括减压装置、压力显示装置、高效气体捕集器、在线气体检测信号发生器、中央报警显示器、信号动力电缆和手持式气体检测信号发生器。当冷却器破损后,将由信号发生器向操作者发出报警信号。减压装置及压力显示装置与手持式气体检测信号发生器配合,可以以较少的投资实现冷却器每个水头的检测,判断冷却器热面型、冷面型及孔洞型破损的确切位置和破损程度,为操作者采取相应的措施提供依据。该装置主要是用来监控冷却器损坏情况,未涉及一种适用无损测厚的高炉冷却壁结构及分析方法。
5、“一种测定高炉冷却器侵蚀状态的模拟侵蚀装置”(cn201228266y),该装置由恒温水箱、进水管、加热装置、侵蚀实验管、蒸汽管和冷凝管组成,水通过进水管进入侵蚀实验管,在加热装置部分加热形成水和蒸汽并对侵蚀实验管进行侵蚀,蒸汽再通过蒸汽管进入冷凝管,在冷凝管上端设置的相对侵蚀比较挂片也同时进行比较侵蚀,蒸汽通过冷凝管变成水继续流入恒温水箱循环使用,形成一循环装置,能够对冷却水管壁面温度对冷却水的侵蚀性能的影响进行实验研究,更准确的描述冷却水的侵蚀规律。该装置未涉及对新高炉冷却壁进行改进,将测厚件与壁体制作为一体式,并配套相应的布置方法,形成对炉役前中期壁体挂渣能力的分析技术,并以此改进高炉操作延长其使用寿命的技术或方法。
6、“一种延长高炉铜冷却壁使用寿命的方法”(cn106319118b),用于有效保护高炉铜冷却壁。该方法包括:高炉铜冷却壁热面温度计算系统,可以得到高炉铜冷却壁的热面温度;高炉铜冷却壁热面渣皮厚度判断系统,可以判断是否需要迅速建立一定厚度的渣皮来保护铜冷却壁;高炉铜冷却壁制冷系统,强制冷却需要保护的高炉铜冷却壁,使铜冷却壁热面迅速建立起有效的渣皮;通风和净化装置及控制系统,负责完成整个系统的通风散热以及冷却介质的液化循环过程。相比于现有技术,本发明缓解了以往高炉铜冷却壁破损较快和不易更换的矛盾,进而提高高炉一代炉役。本发明可以减少高炉铜冷却壁渣皮的异常脱落带来的高炉炉缸温度波动,保障了高炉长期稳定顺行,未涉及一种适用无损测厚的高炉冷却壁结构及分析方法。
7、综上所述,目前没有涉及一种高炉炉役后期铜壁体厚度在线测量装置和使用方法,用于高精度监测高炉铜壁体厚度,并依通过不断分析最新测厚和温度的历史数据的方法预测铜壁体在不同温度条件下的剩余工作寿命,指导高炉调整壁体工况,延长其使用寿命。
技术实现思路
1、本发明所要解决的技术问题在于针对上述存在的问题,提供一种高炉炉役后期铜壁体厚度测量装置及使用方法,实现对壁体的在线连续高精度测厚,再通过不断更新厚度测数据和对应部位的温度数据连续评测铜壁体损坏趋势和剩余寿,指导高炉调整操作,控制体损坏。
2、本技术的实施例是这样实现的:
3、本技术实施例提供一种高炉炉役后期铜壁体厚度测量装置,其特征在于,包括同步磨损机构、耦合剂自调节机构和测量探头机构,所述同步磨损机构水平穿设于高炉冷却壁上,尾端与铜壁体内表面平齐,首端与所述耦合剂自调节机构的一端相连接,耦合剂自调节机构内设有所述测量探头机构,测量探头机构通过数据线与外部计算机相联,记录测量数据。
4、在一些可选的实施方案中,所述同步磨损机构包括与所述铜壁体同材质制成的同步磨损柱,所述同步磨损柱上设有密封挡圈,同步磨损柱尾端插入高炉冷却壁,所述密封挡圈与高炉炉壳相抵接,同步磨损柱的首端外露于高炉,与所述耦合剂自调节机构相连接。
5、在一些可选的实施方案中,所述耦合剂自调节机构包括耦合剂调节缸和波纹管膨胀器,所述耦合剂调节缸内充满耦合剂,前端面中心设有连接法兰,后端面中心设有向后延伸的线管,所述同步磨损柱尾端与所述连接法兰相连接,同步磨损柱尾端面与耦合剂调节缸前端面内壁平齐设置,所述测量探头机构伸入耦合剂调节缸内,所述数据线穿设于所述线管内;所述波纹管膨胀器安设于耦合剂调节缸的顶部,通过设置通孔相连通。
6、在一些可选的实施方案中,所述测量探头机构包括超声波探头和探头位移驱动,所述超声波探头置于所述耦合剂调节缸内,通过数据线与外部计算机相联,所述探头位移驱动位于耦合剂调节缸外部,与所述线管紧密贴合设置,驱动超声波探头前后移动。
7、在一些可选的实施方案中,所述同步磨损柱尾端设有卡接凸块,所述卡接凸块两侧设有连接凸耳,所述卡接凸块与所述连接法兰相卡接,所述连接凸耳与连接法兰通过螺栓相连接紧固。
8、在一些可选的实施方案中,所述探头位移驱动包括驱动电机、旋转螺杆和调节螺母,所述旋转螺杆一端与所述超声波探头相连接,另一端穿过所述线管与所述驱动电机相连接,所述调节螺母固定于线管尾部,与旋转螺杆相配置。
9、一种高炉炉役后期铜壁体厚度测量装置的使用方法,其特征在于,包括如下步骤:
10、步骤a,在冷却壁上钻安装孔,安装孔位于两条水道之间,靠近冷却壁热电偶,测量钻孔部位壁体材料的长度,切割同步磨损柱,使插入部分的长度与安装孔深度相同,将同步磨损结构装入安装孔内,并通过灌入耐火液态浆料密封;将耦合剂调节缸前端与同步磨损柱尾部通过螺栓连接,再把探头位移驱动与超声波探头连接;
11、步骤b,使用时,启动探头位移驱动推动超声波探头前进,同时,会挤压缸内的耦合剂从通孔进入波纹管膨胀器内并使之膨胀,当超声波探头移动贴合到同步磨损柱尾部时,会停止前进,耦合剂实现自动润滑,对同步磨损柱进行超声波高清厚度信号测量;完成测量后超声波探头退后到原始位置,同时波纹管膨胀器内的耦合剂会回流到耦合剂调节缸内;
12、步骤c,根据测得的铜壁体厚度数据和冷却壁温度数据,计算高炉铜壁体在不同温度条件下磨损速度规律;
13、步骤d,依据铜壁体厚度数据动态估算铜壁体的剩余寿命区间范围和综合剩余寿命,以此来指导调整铜壁体附近炉料结构,减少磨损。
14、在一些可选的实施方案中,步骤c中所述铜壁体的磨损速度计算包括如下内容:
15、按照高炉铜壁体实际温度经验工作范围,将温度区间分为n个,每个区间温度记为tn,将测量第m次进入温度区间tn时测量的厚度记为ln-em,当壁体温度跳出该温度区间时测量的厚度ln-om,持续时间记为tn-m;
16、统计铜壁体在某一温度区间t1的总工作时间和总磨损厚度计算铜壁体在各温度区间的磨损速率υn,则,
17、
18、统计的总时间段内铜壁体的综合磨损速度为:
19、
20、在一些可选的实施方案中,步骤d中所述剩余寿命区间范围的计算包括如下内容:
21、统计高炉某一部位铜壁体一段时间h内,在温度区间tn时的磨损速度υn,并估算铜冷却壁保持在温度tn区间工作时的剩余工作能力,如下式:
22、其中,△ln为铜壁体磨损面到冷却壁水道的剩余厚度,由此可得铜壁体剩余最长寿命为:
23、maxd={d1、d2、...、dn},
24、铜壁体剩余最短寿命为:mind={d1、d2、...、dn},
25、冷却壁剩余工作寿命范围为:mind~maxd。
26、在一些可选的实施方案中,所述铜壁体的综合剩余寿命的计算包括如下内容:
27、计算高炉某一部位铜壁体一段时间h的综合磨损速度之后每周计算一次之前h时间段内的铜壁体的综合磨损速率,分别记为:然后利用得到磨损速率数据回归出预测壁体综合磨损速度与时间的规律方式:
28、
29、铜壁体的综合剩余寿命x满足方程:
30、
31、求解得到的x为壁体的综合剩余寿命。
32、本技术的有益效果是:本技术提供的一种高炉炉役后期铜壁体厚度测量装置及使用方法,通过在炉役后期高炉磨损的铜壁体上加装一同步磨损结,以及配套的自动控制装置,实现了利用超声波实现对壁体的在线连续测厚,并结合测厚数据和高炉壁体温度数据动态分析高炉壁在不同温度区间的损坏速率和剩余寿命;磨损结构是壁体同材质的高纯铜,可实现利用超声波对与壁体的同步磨损件的精准测量,同时,发明的耦合剂自填充缸和探头位移器,使装置具备了自动连续测厚功能;测厚装置与壁体热电偶数据同步采集方法,并对厚度和温度数据进行对比分析,建立壁体了在不同温度区间下的磨损速度、剩余寿命评价方法;建立炉役后期铜壁体剩余寿命区间范围和综合剩余寿命动态分析方法,动态预测壁体磨损速率和极限寿命,指导高炉调整壁体附近炉料结构和工作参数,达到延长炉役后期铜壁体使用寿命目的。