压电材料是当施加电压时能够膨胀或收缩(电气应变效应)、且相反地如果它们经受压力则能够产生电压(压电效应)的材料。
它们因此组成能够将机械能转换成电能或反之的一类非常重要的材料。它们实际上已经广泛地用于能量转换领域的产品中,例如致动器和传感器,并在通常的应用中及先进技术中是普遍的,因而在当今社会起到基础性作用。
压电材料具有钙钛矿型晶体结构。矿物钙钛矿是具有化学式CaTiO3的钛酸钙。钙钛矿氧化物家族具有一般组成ABO3,其中元素A(在图1A和1B中以灰色表示)相对于氧(在图1A和1B中以白色显示)12倍配位,且元素B(在图1A和1B中以黑色表示)显现出与氧的八面体配位。位点A定位在立方体的角处,位点B处于立方体的中心,且氧原子定位在每个面的中心。或者,结构可表示为位点B在立方体的角处,位点A在立方体的中心,且氧原子在每个边的中点处(分别地,图1A和1B)。
钙钛矿型结构显示出对其组成的变化、以及对最终材料的可能变形(distortion)的优良的耐受性,因为其能够适应对AO和BO键的长度之间平衡的任何不一致,因此使得能够存在大量的以及各种各样的化学计量的化合物。
变形例如四方形(图2)、正交形、菱形和单斜变形实际上引起晶体对称性的变化,其中一个或多个阳离子从晶格中具有高对称性的位置移位,这导致铁电或反铁电行为。换句话说,当在单一晶胞内正电荷的中心和负电荷的中心没有重合时,导致自发极化。
但是,在铁电材料中,自发极化是必需的但不是充分的,因为还需要通过电场对极化进行重新取向。
最普遍的压电材料家族当然是锆钛酸铅(PZT)陶瓷的压电材料家族,因为其高的压电系数值、高的介电常数值以及高的耦合系数值。这些性质在准同型相界(MPB)附近的组合物中观察到。MPB展示出对温度的轻度依赖性,使得性质的稳定性在宽温度范围内达到。
但是,由于PZT包含大量的毒性铅,所以使用这些材料由于环境原因将经受严格标准的管理。
因此,期望的是开发具有较低环境影响和无铅的且表现出与PZT相当的压电系数(200-710pC/N)的材料。
因此在最近几年,已经研究了各种无铅体系,其中尤其是钛酸钡、铋和碱金属的钛酸盐及铌酸盐。
Wenfeng Liu等在“Large Piezoelectric Effect in Pb-free Ceramics”,Phys.Rev.Letters,(2009),103,257602和在US20110037015中研究了陶瓷(1-α)Ba(Zr0.2Ti0.8)O3-α(Ba0.7Ca0.3)TiO3(BZT-αBCT),其中α是在0-1之间的摩尔分数,其使用常规的固态反应法获得。
上述作者报告了在相图中在位于x=0.32和T=57℃处存在立方-菱形-四方(C-R-T)三相点导致具有高压电性的材料,具有可与由锆钛酸铅(PZT)制备的具有高敏感性或高极化的压电转换器相当的值。特别地,作者显示出具有钙钛矿结构以及0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3(BZT-0.5BCT)型的复合组成的陶瓷在相对低的居里温度(Tc~93℃)处具有高达620pC/N的高压电系数d33,而BZT-BCT复合陶瓷对于x=0.53表现出大约114℃的较高的Tc。
单晶BZT-BCT复合材料在准同型相界(MPB)处显示出约1500-2000pC/N的高压电系数d33。通过优化Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3型的陶瓷复合材料的极化条件(poling condition),已经观察到约630pC/N的高压电系数d33,平面机电耦合系数(planar electromechanical factor)为56%。
图3展示了BZT-0.5BCT材料的压电系数d33、其它无铅压电材料的压电系数、以及PZT族的材料的压电系数之间的比较。如图中清楚地显示的,不仅无铅BZT-BCT材料的压电系数为其它压电材料的压电系数至少两倍,而且其压电性质比大多数PZT材料更好。
但是,通过常规固态反应的制备技术是非常复杂的。因此已经开发了更简单和更低成本且使得能够更好地控制最终化合物的化学计算量的技术例如溶胶-凝胶技术。
如在“Preparation and Characterization of(Ba0.88Ca0.12)(Zr0.12Ti0.88)O3Powders and Ceramics Produced by Sol-Gel Process”,Advanced Materials Research(2010),148-149,1062-1066中描述中,Xianghua Liu等人使用溶胶-凝胶技术制备了无铅BZT-BCT陶瓷,具有约400pC/N的最大压电系数d33。而且制备了(Ba0.88Ca0.12)(Zr0.12Ti0.88)O3组成稍微变化的体系,其压电系数剧烈降至215pC/N。
大多数铁电陶瓷薄膜可使用各种沉积方法沉积在涂布有铂的Pt(111)/Ti/SiO2/Si(100)型硅衬底上,组成接近准同型相界,沉积方法有:溅射脉冲激光烧蚀、丝网印刷、金属-有机化学气相沉积以及溶胶-凝胶沉积和化学溶液沉积(CSD)方法。
化学溶液沉积(CSD)、且特别是使用溶胶-凝胶技术获得的溶液的沉积由于以下而获得一些优点:可使用低温、组成的均匀性、覆盖基底的延伸的表面积的可能性以及与其它方法例如物理沉积法相比的工艺的简单性。
溶胶凝胶技术包括在有机溶剂中混合金属-有机化合物(主要是金属醇盐)。随后加入水产生两种反应:一种水解以及一种缩合。
M(OR)n+xH2O→M(OH)x(OR)n-x+xROH(水解)
M-OR+MOH→M-O-M+R-OH或
M-OH+M-OH→M-O-M+H-OH(缩合)
这些反应导致形成颗粒的三维晶格。
溶胶前体然后可干燥并煅烧以获得晶体陶瓷,或作为替代,可通过精细地控制竞争反应而被稳定,且试剂可用于产生薄膜。
在文献中,已经提出使用下面试剂的BZT-BCT的各种溶胶凝胶合成。
(BaAc=乙酸钡;CaAc=乙酸钙;TiIP=异丙醇钛;ZrIP=异丙醇锆;ZrON=硝酸氧锆;ZrAcAc=乙酰乙酸锆;TiBut=丁醇钛;Zrn-P=正丙醇锆;HAc=乙酸;2-MOE=2-甲氧基乙醇;ETOH=乙醇;AcAc=乙酰丙酮)
如可以注意到的,最广泛使用的溶胶-凝胶体系是使用2-甲氧基乙醇(2-MOE)作为溶剂的那些。但是,2-甲氧基乙醇对人类是高毒性的。
而且,不利用2-MOE的体系导致形成在短时间内凝胶化的不稳定溶胶溶液,使得难以储存该溶液以及随后将其用于压电薄膜的沉积中。
因此,期望改进用于合成压电材料的溶胶-凝胶方法,使得其不使用对人类致癌和致突变以及对环境有毒性的溶剂,且导致形成随时间稳定而不导致形成凝胶的溶胶溶液。
本发明的目的因此是提供用于合成BZT-BCT型的压电材料的新的前体溶液和新方法,其不利用对人类致癌和诱导突变以及对环境有毒性的溶剂、并产生透明且稳定的溶胶溶液。
该目的通过本发明获得,因其涉及根据权利要求1的前体溶液,根据权利要求11的所述前体溶液的制备方法,根据权利要求12的压电材料,根据权利要求14的用于制备压电材料的膜的方法,根据权利要求15的装置和根据权利要求16的压电材料的用途。
本发明现在将结合附图详细地描述,其中:
-图1示出了ABO3型的理想立方钙钛矿的晶胞单元;
-图2示出了两种极化态的钙钛矿结构的四方铁电变形;
-图3示出了MPB组成的压电材料的压电性质d33;
-图4示出了使用MEMS装置的设备的结构的简化图,所述MEMS装置包括使用本发明的溶液获得的压电区。
-图5示出了干燥样品BZT-0.5BCT(HAc)的DTA热谱图,其以10℃/分钟的加热速率以及20.0mL/分钟的气流进行测量;
-图6示出了通过在950℃烧结包含HAc作为溶剂和螯合剂的前体溶液获得的BZT-0.5BCT粉末前体的XRD谱图。
-图7示出了BZT-0.5BCT(HAc-AcAc)的干燥样品的DTA(?TGA)热谱图,其以10℃/分钟的加热速率以及20.0mL/分钟的气流进行测量;和
-图8示出了通过在950℃烧结包含HAc作为溶剂和AcAc作为螯合剂的前体溶液获得的BZT-0.5BCT粉末前体的XRD谱图。
根据本发明的一个方面,提供了用于制备BZT-αBXT型陶瓷的前体溶液,其中X选自Ca,Sn,Mn和Nb,且α是选自0.10-0.90范围内的摩尔分数,前体溶液包含:
1)至少一种钡的无水或脱水前体化合物;
2)至少一种选自钙化合物、锡化合物、锰化合物和铌化合物的无水或脱水前体化合物;
3)至少一种锆的无水前体化合物;
4)至少一种钛的无水前体化合物;
5)溶剂,其选自多元醇、醇、羧酸、酯、酮、醚及其混合物;和
6)螯合剂。
术语“前体溶液”被理解为包含在适当的处理之后用于形成BZT-BXT陶瓷的所有组分的混合物。
金属化合物
在本文中,“钡前体化合物”、“钙前体化合物”、“锡前体化合物”、“锰前体化合物”、“铌前体化合物”、“锆前体化合物”和“钛前体化合物”被理解为其中有机基团通过有机基团的氧或氮原子分别键合至金属元素Ba,Ca,Sn,Mn,Nb和Zr和Ti的化合物。金属前体的选择决定了钙钛矿结构的位点A和B的阳离子的性质。
钡和钙的前体化合物为无水或脱水形式是必需的。已经发现,实际上,在前体溶液的制备过程中来源于前体化合物的水合的残余水的存在导致其不稳定性,并造成胶凝。
特别地,Ca,Ba,Zr,Ti,Sn,Nb和Mn的前体化合物可在如下中进行选择:金属醇盐、金属-二醇络合物、金属-硫醇络合物、金属羧酸盐、金属-3-二酮络合物、金属-3-二酮酯络合物(metal-3-diketoester complex)、金属-3-亚氨基酮络合物(metal-3-iminoketo complex)、金属-胺络合物、尤其是金属醇盐、及它们的部分水解物和金属羧酸盐。
Ca的前体化合物的实例包括乙酸盐、例如乙酸钙(Ca(OAc)2),和烷醇盐例如二异丙醇钙(Ca(OiPr)2)。
Ba的前体化合物的实例包括乙酸盐、例如乙酸钡(Ba(OAc)2),和烷醇盐例如二异丙醇钡(Ba(OiPr)2)。
Ti的前体化合物的实例包括烷醇盐,例如四乙醇钛(Ti(OEt)4)、四异丙醇钛Ti(OiPr)4)、四正丁醇钛(Ti(OnBu)4)、四异丁醇钛(Ti(OiBu)4)、四叔丁醇钛(Ti(OtBu)4)或二甲氧基二异丙醇钛(Ti(OMe)2(OiPr)2),尤其是四丁醇钛和异丙醇钛。
异丙醇钛的水合焓远高于四丁醇钛的水合焓(EH=-64.9kJ/mol),且这可归因于其是单体物质(即,烷醇盐分子之间没有低聚键)。
由于异丙醇钛缺乏低聚键合,因此单体可被水从所有侧面攻击而不会首先经历解聚。
四丁醇钛相反是三聚体的(即基础单元通过以低聚方式键合的三个相同单体形成)。因此,相当量的能量在水解可能开始前被消耗以打破低聚键,导致低的水合焓(EH=-19.3kJ/mol)。因此,在不存在甚至少量的螯合剂的情况下,丁醇钛与异丙醇钛相比是水解更稳定的,并因此反应性更低,异丙醇钛具有相比负得多的水解焓,并倾向于在甚至少量水存在下分解。
在任何情况下,与钛和锆的值相比具有高的螯合剂值,异丙醇钛比丁醇钛更稳定,可能是由于更完全的配体的交换。
Zr的前体化合物的实例是正丙醇锆、四乙醇锆(Zr(OEt)4)、四异丙醇锆(Zr(OiPr)4)、四正丁醇锆(Zr(OnBu)4)、四异丁醇锆、(Zr(OiBu)4)、四叔丁醇锆(Zr(OtBu)4)或二甲氧基二异丙醇锆(Zr(OMe)2(OiPr)2)、尤其是正丙醇锆。
Mn的前体化合物的实例包括乙酸锰。
此外,Nb的前体化合物的实例包括五乙醇铌。
在Ti和Zr的前体化合物中,特别指出的是烷醇盐是有利的,因为它们的高的反应性和在低反应温度下能够形成期望的相,而在Ba和Ca的化合物中,羧酸盐是有利的。
溶剂
溶剂的选择与期望确定其中选择的Ba,Ca,Sn,Mn,Nb和Zr和Ti的前体化合彼此相容的方式相关联,但首先是与期望获得透明的且稳定的溶胶溶液相关联。
已经发现来源于金属化合物的水合、来自环境湿汽或来自溶剂中残余的残余水的存在导致凝胶在溶胶溶液中的沉淀,由此确定其不稳定性。
因此期望将在凝胶溶液的制备期间残余水的存在降低至最小。
已经注意到前体化合物与选自多元醇、醇、羧酸、酯、酮、醚及他们的混合物的溶剂结合使用能够使获得的溶胶溶液保持透明且随着时间是稳定的。
在选择溶剂中的其它考虑包括它们的粘度、可获得性、稳定性和毒性。
在下文中,术语“多元醇”指包含至少两个碳原子和至少两个OH基团的可能分支的烷基化合物。
特别地,多元醇可以是二醇。二醇的具体实例包括丙二醇、乙二醇和1,3-丙二醇、特别是丙二醇和乙二醇。
多元醇,除了能够共同溶解(co-dissolve)金属-有机化合物外,还具有比现有技术中常用的溶剂更高的粘度,使得能够通过旋涂较厚的BZT-BXT膜进行生产而不破裂。
可用作辅助溶剂的醇的实例是乙醇、1-丁醇、1-丙醇、2-丙醇、2-丁醇、异丁醇、1-戊醇、2-戊醇、2-甲基-2-戊醇,特别是乙醇和1-丁醇。
可用作辅助溶剂的羧酸的实例是乙酸、正丁酸、x-甲基丁醇、i-戊酸、2-乙基丁酸、2,2-二甲基丁酸、3,3-二甲基丁酸、2,3-二甲基丁酸、3-甲基戊酸,4-甲基戊酸,2-乙基戊酸,3-乙基戊酸,2,2-二甲基戊酸,3,3-二甲基戊酸,2,3-二甲基戊酸,2-乙基己酸,和3-乙基己酸。
可用作辅助溶剂的酯的实例是乙酸乙酯、乙酸丙酯、乙酸正丁酯、乙酸仲丁酯、乙酸叔丁酯、乙酸异丁酯、乙酸正戊酯、乙酸仲戊酯、乙酸叔戊酯和乙酸异戊酯。
可用作辅助溶剂的酮的实例是丙酮和甲基乙基酮。
可用作辅助溶剂的醚的实例是二甲醚或二乙醚。
螯合剂
为了使金属化合物在分解时稳定,特别是钛和锆化合物,必须使用螯合剂。
螯合剂通过在溶液中物理围绕阳离子(位阻)和通过与其直接键合以降低它们的化学反应性(诱导效应)二者起作用。
螯合剂的实例是乙酰丙酮(2,2-戊二酮或AcAc)、乙酸(HAc)、甘油、丙二醇、二乙醇胺、EDTA(乙二胺四乙酸)和三乙醇胺。
乙酰丙酮取代一些或全部的醇盐配体,且由于AcAc配体不是快速水解,因此降低了螯合溶胶的整体水解速率。螯合剂的量影响了水解速率、颗粒的尺寸、缩合过程以及形成钙钛矿相。已经显示AcAc配体在水解和缩合后保持与金属阳离子的紧密连接,且高温可能是完全除去它们所必需的,过量的AcAc可导致不能合成展现出纯钙钛矿相的材料。
乙酸(HAc)还可用于降低烷醇钛的反应性。在包含烷醇钛的溶胶中的胶凝和沉积可利用加入适量的乙酸进行抑制。在任何情况下,当乙酸的量高时,可形成不溶性乙酸盐物质,因此阻止在钙钛矿相中的直接结晶并增加溶胶溶液中均匀性的缺乏并因此增加由此沉积的膜中均匀性的缺乏。因此,当乙酸用作螯合剂时,相对于钛和锆的量选择合适量的乙酸可影响均匀膜的产生。
其它组分
此外,本发明组合物包含作为具有高分子量的增粘剂(viscosizing agent)的聚乙烯吡咯烷酮(PVP)和聚乙二醇。
聚乙烯吡咯烷酮和聚乙二醇用于调节组合物中溶液的粘度并降低或消除膜中的裂纹。
根据另一个方面,提供了用于制备用于产生BZT-αBXT型陶瓷的前体溶液的方法,其中X选自Ca,Sn,Mn和Nb,且α是在0.10-0.90范围内选择的摩尔分数,所述方法包括如下步骤:
1)将至少一种钡的无水或脱水前体化合物和至少一种选自至少一种钙化合物、至少一种锡化合物、至少一种锰化合物和至少一种铌化合物的无水或脱水前体化合物溶解在溶剂中以获得第一溶液,所述溶剂选自多元醇、醇、羧酸、酯、酮、醚和它们的混合物;
2)将钛的无水前体化合物和锆的无水前体化合物溶解在螯合剂中以获得第二溶液;
3)混合所述第一和第二溶液以获得前体溶液。
Ca和Ba,Zr,Ti,Sn,Nb,和Mn的前体化合物可各自单独溶解在自己的溶剂中,且然后由此获得的溶液可混合在一起。
或者,在前体溶液的制备中,可以制备Ba-Ca的第一溶液和Ti-Zr的第二溶液,然后混合这两种溶液以获得透明且稳定的前体溶液。
在一个实施方式中,钡、钙、锡、锰和铌的脱水前体可通过以下方式获得:将这些元素中的一种的前体化合物以非-无水或脱水形式溶解在溶剂中,并随后对所得溶液脱水以获得脱水的前体化合物,所述溶剂选自多元醇、醇、羧酸、酯、酮、醚和它们的混合物。
当使用醇盐时,在水解过程中,这些有利于形成M-O-M键,因此有助于在胶凝过程中保持前体溶液的均匀性。
尽管金属醇盐非常难以处理、通常对于甚至仅仅痕量的湿汽非常敏感、以及倾向于迅速分解,但它们被用于CSD反应中,因为它们能够水解和缩合以形成长链的低聚物(多孔三维金属-有机结构),其在煅烧后收缩形成干凝胶(其普遍地是无水且多孔的)。
这些多孔干凝胶在烧结(退火)步骤期间产生致密的结晶膜。膜形成过程中的引导力是由于导致固体晶格收缩的毛细力而产生的表面能或表面压力的降低。
当选择多元醇作为溶剂时,可以最小化来源于Ca和Ba,Zr,Ti,Sn,Nb,和Mn的起始化合物的结晶水的残余水的影响,且使前体溶液稳定,因此获得可储存用于后续使用的稳定的且透明的溶液。
根据另一方面,提供了由BZT-αBXT型陶瓷制备的压电材料,其中X选自Ca,Sn,Mn和Nb,且α是选自0.10-0.90范围内的摩尔分数,所述陶瓷获自如上所述的前体溶液。该材料可为膜的形式。
特别地,压电材料可以为膜或粉末的形式,且可代替常规PZT用于例如用于气囊的传感器、燃料压电喷射器、气体打火机的点火源、爆炸传感器、汽车的角度传感器、硬盘、喷墨打印头、PC监视器的接触式传感器、用于加湿器和吸入器的雾化源、烟检测器、用于清洁珠宝和接触镜片的装置、加速计、污染检测器、流量计、管中气泡的检测器、冲击传感器、液面指示器、微定位装置、压力传感器、非破坏性超声清洁装置、超声除油器、超声粉碎器、焊机、超声器械、牙科器具、喷雾器、超声治疗仪、声呐、定位系统、光学和声学麦克风、扬声器、高音扬声器、共振器、滤波器、用于扫描电镜和照相机的微致动器和非易失性存储器。
图4是使用了压电类型的MEMS传感器2的电子设备1的示意图。
电子设备1除了MEMS装置2之外包括:与MEMS装置2连接的ASIC 3;与ASIC 5连接的处理单元4,例如微处理器;与处理单元4连接的存储器5;用于供应电子设备1的各模块的电池8;和输入/输出接口9,其还连接至处理单元4。此外,可存在扬声器11用于产生电子设备1的音频输出(未显示)的声音。
在一个已知的但没显示在本文的方法中,MEMS装置2包括暂停(suspended)区域,例如膜,携带如上所述的压电材料层,并在输出时供应与暂停区域的形变相关的电信号。ASIC 5与MEMS装置2电偶联,从而接收由后者产生的电信号并向外部供给物理量的值,所述物理量作为MEMS装置的形变和/或与其相关的量的结果而测得。
此外,电子设备1可固定到支承体10,其例如通过印刷电路板组成。
根据又一方面,提供了用于制备由BZT-αBXT型陶瓷制成的压电材料的膜的方法,其中X选自Ca,Sn,Mn和Nb,且α是选自0.10-0.90范围内的摩尔分数,所述方法包括将如上所述的前体溶液沉积在基底上的步骤、煅烧步骤和烧结步骤。
特别地,前体溶液可通过旋涂在适当的基底例如涂布有铂的硅基底上进行施加。接着,溶液在氧存在下在高温下煅烧并烧结(退火)以获得均匀晶体膜。
特别地,煅烧步骤可在300℃和450℃之间的温度下进行,且烧结步骤在550-850℃的温度下进行。这能够使获得的薄膜是致密的而没有裂纹。这种沉积、煅烧和烧结的循环可重复许多次以获得彼此堆叠的不同厚度的膜。
可能地,在煅烧步骤前,可特别地在100℃和200℃之间的温度下进行干燥步骤以除去溶剂。
在相反需要获得粉末形式的压电材料的情况下,前体溶液首先在300℃和450℃之间的温度下煅烧,并随后在700-1200℃的温度下烧结。
进一步的特征将根据随后的一些仅仅示例性的且非限制性的实施例的描述而得到显现。
实施例1
在HAc中的BZT-BCT–制备和表征
所有的起始材料(乙酸钡[Ba(CH3COO)2],乙酸钙单水合物[Ca(CH3COO)2·H2O],四丁基钛酸酯[Ti(OC4H9)4],和异丙醇锆[Zr(OC3H7)4]在1-丙醇中的70%溶胶)是分析等级的且不经进一步纯化而被使用。
螯合剂和溶剂分别使用冰乙酸和1-丁醇。
通过将钡和钙的乙酸盐以化学计量比溶解在乙酸和去离子水的混合物中,并通过在50℃的油浴中搅拌30分钟,而在旋转蒸发器中制备溶液A。然后,溶液在120℃回流以除去水,且脱水的粉末重新溶解在冷乙酸中。
对于溶液B,在填充有高纯度氮且小于3ppm含量的水分的手套箱中,将金属醇盐的前体与乙酸混合在一起并在室温搅拌20分钟。
然后将溶液B加入溶液A,通过在室温搅拌2.5小时以获得大约0.8M的透明溶液。
最后,加入1-丁醇以达到0.4M钛的浓度。
BZT-BCT溶液然后通过0.45μm PTFE注射过滤器过滤并保存在手套箱中。
获得的透明且无色的溶液是稳定的且没有沉淀或胶凝的现象。
然后通过在150℃下干燥前体溶液24小时,导致形成沉淀的凝胶,而制备粉末。所得凝胶干燥过夜,并且固体化的团块用研钵及研杵磨碎以获得细粉末。
粉末然后在950℃下烧结2小时以获得相的形成并从所合成的粉末除去未反应的材料。
来源于干凝胶的白色前体的粉末的热性能在空气气氛中通过DTA(差示热分析)分析。通过以10℃/分钟的加热速率将温度从室温变化至1200℃来进行记录。
TGA曲线揭示了在室温和300℃之间的第一重量损失,损失了总重量的5%,其可归因于非结构性水和残余溶剂的蒸发。这导致在90℃的吸热峰。
第二重量损失涉及干凝胶的晶格的破坏和随后的有机物质的损失,以及BZT-0.5BCT的初始形成。
随后的在350℃和550℃之间的三个放热峰揭示了反应的中间产物即Ti和Zr的碳酸盐和氧化物的合成和燃烧的反应,而归因于碳酸盐分解的峰不明显。BZT-0.5BCT的形成在约780℃处完成,如图5所示。
烧结的粉末和烧结的珠粒经受X射线衍射研究以确认相形成。
图6显示出BZT-BCT的烧结样品的X-射线衍射谱,其中,在室温下在XRD数据中单相四方钙钛矿结构是明显的。其它峰在XRD数据中的缺失表明制备的样品的相纯度以及合成和化学程序的效率。
实施例2
BZT-BCT(HAc-AcAc)–制备及表征
所有的起始材料(乙酸钡[Ba(CH3COO)2],乙酸钙单水合物[Ca(CH3COO)2·H2O],丙醇钛[Ti(OC3H7)4]和[Zr(OC3H7)4]在1-丙醇中的70%溶胶)是分析等级的且不经进一步纯化而被使用。
螯合剂和溶剂分别使用冰乙酸和1-丁醇。
通过将钡和钙的乙酸盐以化学计量比溶解在乙酸和去离子水的混合物中,并通过在50℃的油浴中搅拌30分钟,而在旋转蒸发器中制备溶液A。然后,溶液在120℃回流以除去水,且脱水的粉末重新溶解在冷乙酸中。
对于溶液B,在填充有高纯度氮且小于3ppm含量的水分的手套箱中,将TiIP、ZrIP仔细加入AcAc中并在回流条件下在80℃混合30分钟。
然后,这两种溶液混合在一起并在80℃在回流条件下搅拌2小时以获得透明的琥珀色溶液。
最后,加入1-丁醇以达到0.4M钛的浓度并在室温下搅拌1小时。
BZT-BCT溶液然后通过0.45μm PTFE注射过滤器过滤并保存在手套箱中。
获得的透明琥珀色溶液是稳定的且没有沉淀或胶凝的现象。
然后通过在150℃下干燥前体溶液24小时,导致形成沉淀的凝胶,而制备粉末。所得凝胶干燥过夜,并且固体化的团块用研钵及研杵磨碎以获得细粉末。
粉末然后在950℃下烧结2小时以获得相的形成并从所合成的粉末除去未反应的材料。
来源于干凝胶的白色前体的粉末的热性能在空气气氛中通过DTA(差示热分析)分析。通过以10℃/分钟的加热速率将温度从室温变化至1200℃来进行记录。
TGA曲线揭示了在室温和300℃之间的第一重量损失,损失了总重量的7%,其可归因于非结构性水和残余溶剂的蒸发。这导致在90℃的吸热峰。
第二重量损失(25%)涉及干凝胶的晶格的破坏和随后的有机物质的损失,以及BZT-0.5BCT的初始形成。
在640处的最后的峰归因于碳酸盐的分解。BZT-0.5BCT的形成在约800℃处完成,如图7所示。
烧结的粉末经受X射线衍射研究以确认相形成。
图8显示出烧结BZT-BCT样品的X-射线衍射谱,其中,在室温下在XRD数据中单相四方钙钛矿结构是明显的。其它峰在XRD数据中的缺失表明制备的样品的相纯度以及合成和化学程序的效率。