本发明涉及3D打印材料,具体地,涉及3D打印氮化铝陶瓷材料及其制备方法。
背景技术:
:3D打印材料是3D打印技术发展的重要物质基础,在某种程度上,材料的发展是决定着3D打印能否有得到更广泛的应用的决定性因素。目前,3D打印材料主要包括工程塑料、光敏树脂、橡胶类材料、金属材料和陶瓷材料。3D打印陶瓷材料是陶瓷粉末与粘结剂粉末组成的混合物。由于粘结剂粉末的熔点较低,激光烧结时便会将粘结剂粉末融化进而使得陶瓷粉末粘结在一起。在激光烧结后,需要将陶瓷制品置于温控炉中进行高温养护。现有的陶瓷材料在激光直接烧结时,液相表面张力大,在快速凝固过程中会产生较大的热应力,从而形成较多的裂纹。技术实现要素:本发明的目的是提供一种3D打印氮化铝陶瓷材料及其制备方法,该3D打印氮化铝陶瓷材料的液相表面张力小进而使得陶瓷制品的表面的裂纹少;同时该制备方法原料易得、工序简单。为了实现上述目的,本发明提供了一种3D打印氮化铝陶瓷材料的制备方法,包括:1)将高岭土、石脂粉、氮化铝、硼酸、草酸、三氧化钼、纳米铝、玻璃纤维和水进行混合,接着进行煅烧以制得煅烧产物;2)将聚偏氟乙烯、甲基纤维素、硅烷偶联剂与煅烧产物进行混合以制得基料;3)将基料进行研磨以制得3D打印氮化铝陶瓷材料。本发明还提供了一种3D打印氮化铝陶瓷材料,该3D打印氮化铝陶瓷材料通过上述的制备方法制备而得。在上述技术方案中,本发明通过上述各原料以及各步骤的协同作用使得制得的3D打印氮化铝陶瓷材料的液相表面张力小进而使得陶瓷制品的表面的裂纹少;同时该制备方法原料易得、工序简单。本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。具体实施方式以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。本发明提供了一种3D打印氮化铝陶瓷材料的制备方法,包括:1)将高岭土、石脂粉、氮化铝、硼酸、草酸、三氧化钼、纳米铝、玻璃纤维和水进行混合,接着进行煅烧以制得煅烧产物;2)将聚偏氟乙烯、甲基纤维素、硅烷偶联剂与煅烧产物进行混合以制得基料;3)将基料进行研磨以制得3D打印氮化铝陶瓷材料。在本发明的步骤1)中,各物料的用量可以在宽的范围内选择,但是为了进一步降低制得的3D打印氮化铝陶瓷材料的液相表面张力,进而使得陶瓷制品的表面的裂纹减少,优选地,在步骤1)中,相对于100重量份的高岭土,石脂粉的用量为29-38重量份,氮化铝的用量为24-29重量份,硼酸的用量为14-18重量份,草酸的用量为10-14重量份,三氧化钼的用量为5-9重量份,纳米铝的用量为11-14重量份,玻璃纤维的用量为17-24重量份,水的用量为140-180重量份。在本发明的步骤1)中,混合的具体条件可以在宽的范围内选择,但是为了进一步降低制得的3D打印氮化铝陶瓷材料的液相表面张力,进而使得陶瓷制品的表面的裂纹减少,优选地,在步骤1)中,混合至少满足以下条件:混合温度为15-35℃,混合时间为40-60min。在本发明的步骤1)中,煅烧的具体条件可以在宽的范围内选择,但是为了进一步降低制得的3D打印氮化铝陶瓷材料的液相表面张力,进而使得陶瓷制品的表面的裂纹减少,优选地,在步骤1)中,煅烧至少满足以下条件:煅烧温度为470-520℃,煅烧时间为7-10h。同时,在本发明中,为了进一步降低制得的3D打印氮化铝陶瓷材料的液相表面张力,进而使得陶瓷制品的表面的裂纹减少,优选地,在步骤1)的煅烧之前,制备方法还包括升温工序,具体为:首先将混合物自15-35℃以0.5-0.8℃/min的速率升温至150-200℃并保温20-40min,接着以1.5-2.5℃/min的速率升温至300-380℃并保温30-40min,最后以0.8-1℃/min的速率升温至470-520℃并保温。在本发明的步骤1)中,纳米铝的粒径可以在宽的范围内选择,但是为了进一步降低制得的3D打印氮化铝陶瓷材料的液相表面张力,进而使得陶瓷制品的表面的裂纹减少,优选地,在步骤1)中,纳米铝的粒径为30-40nm。在本发明的步骤2)中,各物料的用量可以在宽的范围内选择,但是为了进一步降低制得的3D打印氮化铝陶瓷材料的液相表面张力,进而使得陶瓷制品的表面的裂纹减少,优选地,在步骤2)中,相对于100重量份的煅烧产物,聚偏氟乙烯的用量为75-90重量份,甲基纤维素的用量为25-33重量份,硅烷偶联剂的用量为9-16重量份。在本发明的步骤2)中,混合的具体条件可以在宽的范围内选择,但是为了进一步降低制得的3D打印氮化铝陶瓷材料的液相表面张力,进而使得陶瓷制品的表面的裂纹减少,优选地,在步骤2)中,混合至少满足以下条件:混合温度为15-35℃,混合时间为20-40min。在本发明的步骤2)中,研磨的具体条件可以在宽的范围内选择,但是为了进一步降低制得的3D打印氮化铝陶瓷材料的液相表面张力,进而使得陶瓷制品的表面的裂纹减少,优选地,在步骤3)中,研磨采用球磨的方式进行,并球磨至少满足以下条件:大球与小球的质量比为2:1.3-1.5,磨球与物料的质量比为10:0.8-1.2,转速为600-1200rpm,球磨时间为25-35min。本发明还提供了一种3D打印氮化铝陶瓷材料,该3D打印氮化铝陶瓷材料通过上述的制备方法制备而得。以下将通过实施例对本发明进行详细描述。实施例11)将高岭土、石脂粉、氮化铝、硼酸、草酸、三氧化钼、纳米铝(粒径为35nm)、玻璃纤维和水按照100:34:27:16:12:7:13:21:150的重量比于25℃下混合50min,接着自25℃以0.7℃/min的速率升温至180℃并保温30min,然后以2℃/min的速率升温至360℃并保温35min,最后以0.9℃/min的速率升温至490℃并保温8h以制得煅烧产物;2)将煅烧产物、聚偏氟乙烯、甲基纤维素、硅烷偶联剂(KH550)按照100:80:28:14的重量比于25℃下混合30min以制得基料;3)将基料进行球磨(大球与小球的质量比为2:1.4,磨球与物料的质量比为10:1.0,转速为900rpm,球磨时间为30min)以制得3D打印氮化铝陶瓷材料A1。实施例21)将高岭土、石脂粉、氮化铝、硼酸、草酸、三氧化钼、纳米铝(粒径为30nm)、玻璃纤维和水按照100:29:24:14:10:5:11:17:140的重量比于15℃下混合40min,接着自15℃以0.5℃/min的速率升温至150℃并保温20min,然后以1.5℃/min的速率升温至300℃并保温30min,最后以0.8℃/min的速率升温至470℃并保温7h以制得煅烧产物;2)将煅烧产物、聚偏氟乙烯、甲基纤维素、硅烷偶联剂(KH560)按照100:75:25:9的重量比于15℃下混合20min以制得基料;3)将基料进行球磨(大球与小球的质量比为2:1.3,磨球与物料的质量比为10:0.8,转速为600rpm,球磨时间为25min)以制得3D打印氮化铝陶瓷材料A2。实施例31)将高岭土、石脂粉、氮化铝、硼酸、草酸、三氧化钼、纳米铝(粒径为40nm)、玻璃纤维和水按照100:38:29:18:14:9:14:24:180的重量比于35℃下混合60min,接着自35℃以0.8℃/min的速率升温至200℃并保温40min,然后以2.5℃/min的速率升温至380℃并保温40min,最后以1℃/min的速率升温至520℃并保温10h以制得煅烧产物;2)将煅烧产物、聚偏氟乙烯、甲基纤维素、硅烷偶联剂(KH570)按照100:90:33:16的重量比于35℃下混合40min以制得基料;3)将基料进行球磨(大球与小球的质量比为2:1.5,磨球与物料的质量比为10:1.2,转速为1200rpm,球磨时间为35min)以制得3D打印氮化铝陶瓷材料A3。对比例1按照实施例1的方法进行以制得3D打印氮化铝陶瓷材料B1,所不同的是,步骤1)中未使用硼酸。对比例2按照实施例1的方法进行以制得3D打印氮化铝陶瓷材料B2,所不同的是,步骤1)中未使用草酸。对比例3按照实施例1的方法进行以制得3D打印氮化铝陶瓷材料B3,所不同的是,步骤1)中未使用三氧化钼。对比例4按照实施例1的方法进行以制得3D打印氮化铝陶瓷材料B4,所不同的是,步骤1)中未使用纳米铝。对比例5按照实施例1的方法进行以制得3D打印氮化铝陶瓷材料B5,所不同的是,步骤1)中未使用玻璃纤维。对比例6按照实施例1的方法进行以制得3D打印氮化铝陶瓷材料B6,所不同的是,步骤2)中未使用硅烷偶联剂。检测例1将上述3D打印氮化铝陶瓷材料进行3D打印以制得打印制品,接着检测打印制品的表面的裂纹,统计每平方立米的裂纹数(条/dm2)以及平均裂纹长度(μm/条),具体结果见表1。表1裂纹数(条/dm2)平均裂纹长度(μm/条)A130.1A210.2A320.1B160.6B280.4B370.4B490.5B590.4B6100.3通过上述实施例、对比例和检测例可知,本发明提供的制得的3D打印氮化铝陶瓷材料具有较低的液相表面张力,进而减少陶瓷制品的表面的裂纹。以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。当前第1页1 2 3