耐火块体和玻璃熔炉的制作方法

文档序号:13098421阅读:223来源:国知局
本发明涉及具有高氧化铝含量的熔融耐火产品,其特别地最适合用于生产玻璃制造的熔炉的上部结构。
背景技术
:在耐火产品中,众所周知用于建造玻璃熔炉的熔融产品和烧结产品之间存在区别。与烧结产品不同,熔融产品通常包含连接晶粒的粒间玻璃相。因此烧结产品和熔融产品所带来的问题以及解决这些问题所采用的技术方案一般是不同的。因此,用于制造烧结产品的组合物先验地本身不能用于制造熔融产品,反之亦然。熔融产品,通常称为“电铸”产品,通过在电弧炉中熔融合适的原料的混合物或通过任何适合于这些产品的其他技术来获得。然后将熔融材料浴浇铸在模具中,然后获得的产物经历受控制的冷却循环。在熔融产品中,具有高含量氧化铝(al2o3)的电铸产品已知数十年。根据晶体组成,它们被分为两个主要的家族:区分为基本上由β-氧化铝组成的产品和由α-氧化铝(或“刚玉”)和β-氧化铝的混合物组成的产品。us-a-2043029描述了含有1%至10%的氧化钠并且基本上由β-氧化铝形成的材料。jp10-218676描述了β-氧化铝产品,其包含按重量百分数计为85%至95%的al2o3、4.0%至7.5%的na2o+k2o、0.2%至2.0%的mgo、0.2%至3.0%的cao+sro+bao、小于0.5%的sio2和小于0.1%的fe2o3+tio2。ep1288177描述了具有高含量氧化铝的产品,其旨在用于玻璃制造炉的上部结构并由α-氧化铝和β-氧化铝的混合物组成,并且孔隙率为7%至25%。在实践中,经分析,所有市售的主要由β-氧化铝组成的材料,如monofraxh、scimosh或jargalh,均具有非常相似的组成,即92重量%至94重量%的al2o3、5%至7%的na2o和小于0.5%的二氧化硅及小于0.5%的其他氧化物。所有这些产品实际上都不含α-氧化铝(在jargalh中小于3%至4%且通常最多为2%)。在实践中,经分析,所有的市售α/β-氧化铝材料,如monofraxm、scimosm或jargalm均具有非常相似的组成,即94重量%至95重量%的al2o3、大约4%的na2o和0.5%至1%的二氧化硅及小于0.5%的其他氧化物。所有这些产品的α-氧化铝含量为40%至45%,β-氧化铝含量为50%至60%。β-氧化铝材料具有高的耐热冲击性和高的耐热机械应力性和低导热率。这些性能使它们非常适用于玻璃熔炉(玻璃制造炉)中的上部结构(用于形成冠部)。在构成玻璃的原料通过火焰燃烧器熔融的炉中,存在提高能量效率的不断需求。本发明旨在满足这种需要。技术实现要素:更具体地,以基于氧化物的重量百分数计且总量为100%,本发明涉及具有以下平均化学组成的熔融耐火产品:al2o3:至100%的余量;fe2o3:0.6%至5.0%和/或tio2:1.5%至10.0%,条件是fe2o3+tio2≤10.0%;na2o+k2o:1.0%至8.0%;sio2:0.2%至2.0%;cao+bao+sro:≤0.5%;与al2o3、fe2o3、tio2、na2o、k2o、sio2、cao、bao和sro不同的氧化物物质:≤1.5%。令人惊奇的是,发明人已经注意到,该组合物使产品在对应于燃烧器火焰的温度的波长中具有提高的辐射能力。耐火产品因此表现出更好的对来自火焰的能量的释放。有利地,这导致更高的能量效率。根据本发明的产品还可以包含以下可选特征中的一个或多个:-al2o3≥90%,或者甚至al2o3≥92%;-氧化铁fe2o3的含量大于或等于1.0%、或者甚至大于或等于1.2%、或者甚至大于或等于1.5%,和/或小于或等于4.5%、或者甚至小于或等于4.0%、或者甚至小于或等于3.5%、或者甚至小于或等于3.0%;-氧化钛tio2的含量大于或等于1.7%、或者甚至大于或等于2.0%、或者甚至大于或等于2.5%、或者甚至大于或等于3.0%,和/或小于或等于9.0%、或者甚至小于或等于8.0%、或者甚至小于或等于7.0%、或者甚至小于或等于6.0%、或者甚至小于或等于5.0%;-当存在大于0.6%的氧化铁fe2o3时,氧化钛tio2的含量大于或等于1.0%、或者甚至大于或等于1.2%、或者甚至大于或等于1.5%、或者甚至大于或等于2.0%,和/或小于或等于8.0%、或者甚至小于或等于7.0%、或者甚至小于或等于6.0%、或者甚至小于或等于5.0%、或者甚至小于或等于4.0%;-fe2o3+tio2的含量大于1.0%、或者甚至大于或等于1.2%、或者甚至大于或等于1.5%、或者甚至大于或等于2.0%,和/或小于或等于9.0%、或者甚至小于或等于8.0%、或者甚至小于或等于7.0%、或者甚至小于或等于6.0%、或者甚至小于或等于5.0%、或者甚至小于或等于至4.0%;-na2o+k2o的含量大于或等于1.5%、或者甚至大于或等于2.0%、或者甚至大于或等于2.5%、或者甚至大于或等于3.0%、或者甚至大于或等于3.5%,和/或小于或等于7.5%、或者甚至小于或等于7.0%;-sio2的含量大于或等于0.3%、或者甚至大于或等于0.5%,和/或小于或等于1.5%、或者甚至小于或等于1.2%、或者甚至小于或等于1.0%、或者甚至小于或等于0.9%;-“其他氧化物物质”是杂质;-zro2的含量小于1.0%、优选小于0.8%、优选小于0.5%;-该产品是优选地重量大于10kg的块体的形式。根据一个实施方式,以基于氧化物的重量百分数计且总量为100%,本发明涉及具有以下平均化学组成的熔融耐火产品:al2o3:至100%的余量;tio2:2.0%至5.0%;fe2o3+tio2:≤6.0%;na2o+k2o:1.0%至8.0%;sio2:0.3%至1.5%;cao+bao+sro:≤0.5%;与al2o3、fe2o3、tio2、na2o、k2o、sio2、cao、bao和sro不同的氧化物物质:≤1.5%。根据另一实施方式,以基于氧化物的重量百分数计且总量为100%,本发明涉及具有以下平均化学组成的熔融耐火产品:al2o3:至100%的余量;fe2o3:1.0%至3.0%和tio2:1.0%至4.0%;fe2o3+tio2:≤6.0%;na2o+k2o:1.0%至8.0%;sio2:0.3%至1.5%;cao+bao+sro:≤0.5%;与al2o3、fe2o3、tio2、na2o、k2o、sio2、cao、bao和sro不同的氧化物物质:≤1.5%。本发明还涉及用于制造根据本发明的耐火产品的方法,包括以下相继步骤:a)混合原材料以形成起始给料,b)熔融所述起始给料直到获得熔融材料浴,c)浇铸且通过受控的冷却来固化所述熔融材料,以获得熔融耐火产品,该方法值得注意的是,选择所述原材料以便所述熔融耐火产品具有与根据本发明的产品的组成一致的组成。最后,本发明涉及玻璃熔炉,该玻璃熔炉包含根据本发明的产品,特别是通过根据本发明的方法制造的产品或者通过根据本发明的方法能够制造的产品,特别是作为上部结构(冠部)。定义通常,术语“熔融产品”、“熔融和铸造产品”或“通过熔融获得的”是指通过完全固化(通过冷却)熔融材料浴而获得的固体产品、任选地退火的产品。“熔融材料浴”是为了保持其形状而必须容纳在容器中的物质。呈现为液体的熔融材料浴可以含有固体部分,但是以不足以使它们能够构成所述物质的量。根据本发明的产品可以含有天然存在于氧化锆源中的氧化铪hfo2。氧化铪hfo2在根据本发明的产品中的重量含量小于或等于5%、通常小于或等于2%。术语“zro2”通常表示氧化锆和这些痕量的氧化铪。因此,hfo2不包括在“其他氧化物物质”中。术语“杂质”用于表示不可避免的成分,必然地由原材料引入或由与这些成分的反应产生。除非另有说明,否则本说明书的所有百分数均为基于氧化物的重量百分数。具体实施方式在根据本发明的熔融和铸造产品中,以根据本发明的含量以fe2o3形式表示的铁和/或以tio2形式表示的氧化钛的存在,使得可以在与其他成分组合时获得特别适合用作玻璃熔融炉冠部的耐火产品。然而,在含量太高的情况下,这些氧化物的存在对产品的热机械性能(特别是蠕变)可以是有害的。因此,它们的含量必须受到限制。碱金属氧化物na2o和k2o的存在使得可以确保可行性,特别是以大尺寸的块体的形式的产品的可行性。在一个实施方式中,与al2o3、fe2o3、tio2、na2o、k2o、sio2、cao、bao和sro不同的氧化物物质限于这样的物质:其不存在并不是特别需要的并且通常作为原材料中的杂质存在。与al2o3、fe2o3、tio2、na2o、k2o、sio2、cao、bao和sro不同的这些氧化物物质的存在基本上不会改变所获得的结果,只要它们的含量保持小于1.5%。通常,在熔铸产品中,氧化物占产品重量的多于98.5%、多于99%、或者甚至大约100%。在根据本发明的产品中也是如此。可以进行用于制造旨在用于玻璃熔炉的基于氧化铝的熔融产品的任何常规方法,只要起始给料的组成使得可以获得具有与根据本发明的产品的组成一致的组成的产品。特别地,根据本发明的产品可以根据上述步骤a)至步骤c)制造。在步骤a)中,确定原材料以保证最终产品中的组成与本发明一致。在步骤b)中,熔融优选通过相当长的电弧(其不产生任何还原)和促进产品的再氧化的搅拌的组合作用来进行。为了最小化具有金属外观的结节的形成并且避免在最终产品中形成狭槽或裂缝,优选在氧化条件下进行熔融。优选地,在法国专利no.1208577号及其增补专利no.75893和no.82310中描述长弧熔融方法。该方法包括使用其电弧在给料和远离该给料的至少一个电极之间喷出的电弧炉,并包括调节电弧长度使其还原作用降至最小值,同时通过电弧本身的作用或通过将氧化气体(例如空气或氧气)鼓泡到浴中、或者通过向浴中加入释放氧的物质(例如过氧化物)而维持熔融浴上方的氧化气氛并搅拌所述浴。在步骤c)中,熔融材料的浴优选浇铸在适于制造块体的模具中。冷却优选以每小时约10℃的速度进行。可以进行用于制造旨在用于玻璃熔炉的高氧化铝熔融产品的任何常规方法,只要起始给料的组成使得可以获得具有与根据本发明的产品的组成一致的组成的产品。根据本发明的产品可以构成块体的全部或一部分。特别地,该产品可以仅构成一个区域(例如,厚度小于50mm、小于40mm、小于30mm、例如厚度约20毫米的表面层),特别是暴露于火焰辐射的区域。块体的形状不限。该块体的至少一个尺寸(厚度、长度或宽度)可以为至少150mm、优选至少200mm、或者甚至至少400mm、或者甚至至少600mm、或者甚至至少800mm或者甚至至少1000mm、或者甚至至少1600mm。在一个有利的实施方式中,块体的厚度、长度和宽度为至少150mm、或者甚至至少200mm、或者甚至至少300mm、或者甚至至少400mm。优选地,该块体是炉、特别是玻璃熔炉的上部结构(冠部)的一部分或者构成炉、特别是玻璃熔炉的上部结构(冠部)。实施例出于说明本发明的目的,给出了以下非限制性的实施例。在这些实施例中,使用以下原材料:-由pechiney公司出售的且含有平均99.4%的al2o3的ac44型氧化铝,-含有58.5%的na2o的碳酸钠,-纯度大于99%的氧化铁,-纯度大于99%的氧化钛(金红石)。根据常规电弧炉熔融工艺制备产品,然后铸造以获得200×200×200mm3格式的块体。所得产品的化学分析在表1中给出;它是按重量百分数表示的平均化学分析。杂质构成至100%的余量。辐射率的评估该装置使用由bruker制造的两个傅立叶变换红外光谱仪(vertex80v和vertex70),这两个光谱仪使得可以在1000cm-1至16000cm-1的光谱范围内进行辐射测量。样品的厚度约为4mm且在样品上分析的区域的典型直径为2mm。样品通过co2激光器(diamondk500,coherentinc.)加热。光束遵循通过分离器和一组反射镜的路径,使得可以对样品的两个面进行相同的加热。通过两个光谱仪同时测量横向孔刺穿的样品和黑色物质(pyroxpy8炉,具有铬酸镧lacro3的圆柱形空腔)辐射的通量,黑色物质的辐射率等于1。红外光谱仪也可用作用于测量样品温度的高温计。所使用的方法是christiansen点法。表1给出了在1600℃时在4000cm-1和14000cm-1之间测量的em值:平均辐射率。当em的值比参考产品(实施例1)获得的值高2倍或更多时,em被认为显著改善。至100%的余量由杂质组成。表1no.al2o3na2osio2fe2o3tio2em195.03.50.7<0.1<0.010.18295.03.40.50.1<0.010.3394.83.40.60.3<0.010.35495.03.50.50.8<0.010.55594.03.40.71.4<0.010.6692.03.30.72.6<0.010.82791.63.80.82.21.60.7891.93.90.71.61.90.68991.03.20.70.93.50.751088.01.70.60.58.90.841193.33.70.60.01.80.451292.43.30.60.13.40.571388.02.10.60.18.40.7与参考实施例1相比,本发明的实施例显示,在4000cm-1至14000cm-1的波长范围内的平均辐射率可以由于存在大于0.6%的氧化铁和/或存在1.5%的氧化钛而改善。当然,本发明不限于描述的通过示例性且非限制性实施例提供的实施方式。特别地,根据本发明的产品不限于特定形式或尺寸,也不限于应用于玻璃制造炉。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1